On a strategic motivation of tacit collusion: the Nash-2 equilibrium concept

Marina Sandomirskaya

CMSSE \& SPb EMI RAS
sandomirskaya_ms@mail.ru

The Third International Conference «Industrial Organization and Spatial Economics»

August 26, 2014

Why to bother about extending the Nash equilibrium concept?

- It does not always exist in a number of games widely used in economics:
- Price game in the Hotelling linear city mode
- Tullock contest
- It leads to inadequate game situation.
- Prisoner's dilemma
- Bertrand paradox
- Hotelling minimum differentiation principle

Why to bother about extending the Nash equilibrium concept?

- It does not always exist in a number of games widely used in economics:
- Price game in the Hotelling linear city mode
- Tullock contest
- It leads to inadequate game situation.
- Prisoner's dilemma
- Bertrand paradox
- Hotelling minimum differentiation principle

We seek for a compromise between fully myopic behavior (NE) and perfect rationality (Folk theorem).

Some existing refinements of NE

- Rationalizable conjectural equilibrium (Rubinstein and Wolinsky, 1994)
- Oligopolistic equilibrium (D'Aspremont, Dos Santos and Gerard-Varet, 2003)
- Reflexive games (Novikov and Chkhartishvili, 2003)
- Equilibrium in secure strategies (ESS) (Iskakov and Iskakov, 2005)
- Cooperative equilibrium (Halpern and Rong, 2010)
- Farsighted pre-equilibrium (Jamroga and Melissen, 2011)
- A number of concepts for cooperative games (von NeumannMorgenstern stable set, Harsanyi's indirect dominance of coalition structures, solution in threats and counter-threats, etc.)

Some existing refinements of NE

- Rationalizable conjectural equilibrium (Rubinstein and Wolinsky, 1994)
- Oligopolistic equilibrium (D'Aspremont, Dos Santos and Gerard-Varet, 2003)
- Reflexive games (Novikov and Chkhartishvili, 2003)
- Equilibrium in secure strategies (ESS) (Iskakov and Iskakov, 2005)
- Cooperative equilibrium (Halpern and Rong, 2010)
- Farsighted pre-equilibrium (Jamroga and Melissen, 2011)
- A number of concepts for cooperative games (von Neumann-Morgenstern stable set, Harsanyi's indirect dominance of coalition structures, solution in threats and counter-threats, etc.)

Nash-2 equilibrium

Definition (profitable secure deviation)
A deviation s_{i}^{\prime} of player i at strategy profile $s=\left(s_{i}, s_{-i}\right)$ is profitable and secure if $u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right)$ and for any strategy s_{-i}^{\prime} of player $-i$ such that $u_{-i}\left(s_{i}^{\prime}, s_{-i}^{\prime}\right)>u_{-i}\left(s_{i}^{\prime}, s_{-i}\right)$

$$
u_{i}\left(s_{i}^{\prime}, s_{-i}^{\prime}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)
$$

Nash-2 equilibrium

Definition (profitable secure deviation)
A deviation s_{i}^{\prime} of player i at strategy profile $s=\left(s_{i}, s_{-i}\right)$ is profitable and secure if $u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right)$ and for any strategy s_{-i}^{\prime} of player $-i$ such that $u_{-i}\left(s_{i}^{\prime}, s_{-i}^{\prime}\right)>u_{-i}\left(s_{i}^{\prime}, s_{-i}\right)$

$$
u_{i}\left(s_{i}^{\prime}, s_{-i}^{\prime}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)
$$

Definition (NE-2)

A strategy profile is a Nash-2 equilibrium if no player has a profitable secure deviation.

Nash-2 equilibrium

Definition (profitable secure deviation)
A deviation s_{i}^{\prime} of player i at strategy profile $s=\left(s_{i}, s_{-i}\right)$ is profitable and secure if $u_{i}\left(s_{i}^{\prime}, s_{-i}\right)>u_{i}\left(s_{i}, s_{-i}\right)$ and for any strategy s_{-i}^{\prime} of player -i such that $u_{-i}\left(s_{i}^{\prime}, s_{-i}^{\prime}\right)>u_{-i}\left(s_{i}^{\prime}, s_{-i}\right)$

$$
u_{i}\left(s_{i}^{\prime}, s_{-i}^{\prime}\right) \geq u_{i}\left(s_{i}, s_{-i}\right)
$$

Definition (NE-2)

A strategy profile is a Nash-2 equilibrium if no player has a profitable secure deviation.

Proposition (A. Iskakov \& M. Iskakov, 2012)

$$
N E \subset E S S \subset N E-2
$$

Example: Prisoner's dilemma

	Cooperate	Defect
Cooperate	$(1,1)$	$(-1,2)$
Defect	$(2,-1)$	$(0,0)$

Example: Prisoner's dilemma

	Cooperate	Defect
Cooperate	$(1,1)$	$(-1,2)$
Defect	$(2,-1)$	$(0,0)$

Mutual defection is a unique NE and a unique ESS.

Example: Prisoner's dilemma

	Cooperate	Defect
Cooperate	$(1,1)$	$(-1,2)$
Defect	$(2,-1)$	$(0,0)$

Mutual defection is a unique NE and a unique ESS.
But! Both mutual defection and mutual cooperation are NE-2.

Bertrand model

The model

- two firms producing a homogeneous product with equal marginal costs m_{C};
- p_{M} is the monopoly price level;
- D is total demand.

The model

- two firms producing a homogeneous product with equal marginal costs m_{c};
- p_{M} is the monopoly price level;
- D is total demand.

$$
\pi_{i}\left(p_{i}, p_{-i}\right)= \begin{cases}\left(p_{i}-m_{c}\right) D, & \text { if } p_{i}<p_{-i} \\ \left(p_{i}-m_{c}\right) D / 2, & \text { if } p_{i}=p_{-i} \\ 0, & \text { if } p_{i}>p_{-i}\end{cases}
$$

NE-2 resolves Bertrand paradox

There exists a unique NE: $p=p_{1}=p_{2}=m_{c}$.

NE-2 resolves Bertrand paradox

There exists a unique NE: $p=p_{1}=p_{2}=m_{c}$.
Bertrand paradox
If the number of firms increases from one to two, the equilibrium price decreases from the monopoly price to the competitive price and stays at the same level as the number of firms increases further.

This is not very realistic: pricing above marginal cost is typical for the markets with a small number of firms.

NE-2 resolves Bertrand paradox

There exists a unique NE: $p=p_{1}=p_{2}=m_{c}$.
Bertrand paradox
If the number of firms increases from one to two, the equilibrium price decreases from the monopoly price to the competitive price and stays at the same level as the number of firms increases further.

This is not very realistic: pricing above marginal cost is typical for the markets with a small number of firms.

ESS yields the same outcome.

NE-2 resolves Bertrand paradox

There exists a unique NE: $p=p_{1}=p_{2}=m_{c}$.

Bertrand paradox

If the number of firms increases from one to two, the equilibrium price decreases from the monopoly price to the competitive price and stays at the same level as the number of firms increases further.

This is not very realistic: pricing above marginal cost is typical for the markets with a small number of firms.

ESS yields the same outcome.

The «paradox» is resolved within the NE-2 concept: any $p=p_{1}=p_{2}$, such that $p \in\left[m_{c}, p_{M}\right]$, is NE-2.

NE-2 resolves Bertrand paradox

There exists a unique NE: $p=p_{1}=p_{2}=m_{c}$.
Bertrand paradox
If the number of firms increases from one to two, the equilibrium price decreases from the monopoly price to the competitive price and stays at the same level as the number of firms increases further.

This is not very realistic: pricing above marginal cost is typical for the markets with a small number of firms.

ESS yields the same outcome.

The «paradox» is resolved within the NE-2 concept: any $p=p_{1}=p_{2}$, such that $p \in\left[m_{c}, p_{M}\right]$, is NE-2.

How to choose among multiple equilibria?
Wiseman (2014), D'Aspremont et al. (2003)

Hotelling model of linear city with symmetric locations

The «linear city» Hotelling model

Location is the distance $d \in[0 ; 1]$ between firms 1 and 2 equidistant from the ends of the line.

Fig. 1
Consumers are uniformly distributed. Demand is totally non-elastic. Transportation costs are linear.

Price-setting game
Profit functions of firms $i=1,2$:

$$
\pi_{i}\left(p_{i}, p_{-i}\right)= \begin{cases}p_{i}\left(1+p_{-i}-p_{i}\right) / 2, & \text { if }\left|p_{i}-p_{-i}\right| \leq d, \\ p_{i}, & \text { if } p_{i}<p_{-i}-d, \\ 0, & \text { if } p_{i}>p_{-i}+d,\end{cases}
$$

Assume \bar{p}_{2} is fixed

Fig. 2

NE and ESS in the Hotelling game

Theorem (NE, Hotelling)
For $d \in\left[\frac{1}{2}, 1\right]$ the unique $N E$ is $p_{1}^{*}=p_{2}^{*}=1$. $\pi_{1}=\pi_{2}=1 / 2$.
For $d=0$ the unique $N E$ is $p_{1}^{*}=p_{2}^{*}=0 . \pi_{1}=\pi_{2}=0$.
For $d \in\left(0, \frac{1}{2}\right) N E$ does not exist.

NE and ESS in the Hotelling game

Theorem (NE, Hotelling)
For $d \in\left[\frac{1}{2}, 1\right]$ the unique $N E$ is $p_{1}^{*}=p_{2}^{*}=1$. $\pi_{1}=\pi_{2}=1 / 2$.
For $d=0$ the unique $N E$ is $p_{1}^{*}=p_{2}^{*}=0 . \pi_{1}=\pi_{2}=0$.
For $d \in\left(0, \frac{1}{2}\right) N E$ does not exist.

Theorem (ESS, Hotelling)
For $d \in\left[\frac{1}{2} ; 1\right]$ the unique ESS is $p_{1}^{*}=p_{2}^{*}=1$. $\pi_{1}=\pi_{2}=1 / 2$.
For $d \in\left[0 ; \frac{1}{2}\right)$ the unique $E S S$ is $p_{1}^{*}=p_{2}^{*}=2 d . \pi_{1}=\pi_{2}=d<1 / 2$.

Simulation results, $d=0.7$

Fig.3a. $(1,1)$ is NE. Yellow area is NE-2.

Simulation results, $d=0.5$

Fig.3b. $(1,1)$ is NE. Yellow area is NE-2.

Simulation results, $d=0.35$

Fig.3c. (2d, 2d) is ESS. Yellow area is NE-2.

Simulation results, $d=0.2$

Fig.3d. (2d, 2d) is ESS. Yellow area is NE-2.

Boundary NE-2: a closed-form solution

Red: $\left|p_{1}-p_{2}\right|=d$
Green: $p_{1}=\left(p_{2}+1\right) / 2$ and vice versa.
Pink: $2\left(p_{1}-d\right)=p_{2}\left(1+p_{1}-p_{2}\right)$ and vice versa.
Dark blue: $p_{1}=\frac{1+p_{2}}{2}+\sqrt{\left(\frac{1+p_{2}}{2}\right)^{2}-2 d-p_{2}\left(1-p_{2}\right)}$ and vice versa.
Light blue: $p_{2}=\frac{1+p_{1}}{2}-\sqrt{\left(\frac{1+p_{1}}{2}\right)^{2}-2 d-p_{1}\left(1-p_{1}\right)}$ and vice versa.
Black: $p_{2}=2\left(1-\frac{1-d}{p_{1}}\right)$ and vice versa.

Tullock contest

The model with two players

The contest success function translates the effort x of the players into the probabilities that each player will obtain the resource R.

$$
p_{i}\left(x_{i}, x_{-i}\right)=\frac{x_{i}^{\alpha}}{x_{i}^{\alpha}+x_{-i}^{\alpha}}, \quad x \neq 0, i=1,2 .
$$

If $x=0$ then $p_{i}=p_{-i}=1 / 2$.

The model with two players

The contest success function translates the effort x of the players into the probabilities that each player will obtain the resource R.

$$
p_{i}\left(x_{i}, x_{-i}\right)=\frac{x_{i}^{\alpha}}{x_{i}^{\alpha}+x_{-i}^{\alpha}}, \quad x \neq 0, i=1,2 .
$$

If $x=0$ then $p_{i}=p_{-i}=1 / 2$.
The payoff function for each player

$$
u_{i}\left(x_{i}, x_{-i}\right)=R p_{i}\left(x_{i}, x_{-i}\right)-x_{i} .
$$

Without loss of generality assume $R=1, x_{i} \in[0,1]$.

The model with two players

The contest success function translates the effort x of the players into the probabilities that each player will obtain the resource R.

$$
p_{i}\left(x_{i}, x_{-i}\right)=\frac{x_{i}^{\alpha}}{x_{i}^{\alpha}+x_{-i}^{\alpha}}, \quad x \neq 0, i=1,2 .
$$

If $x=0$ then $p_{i}=p_{-i}=1 / 2$.
The payoff function for each player

$$
u_{i}\left(x_{i}, x_{-i}\right)=R p_{i}\left(x_{i}, x_{-i}\right)-x_{i} .
$$

Without loss of generality assume $R=1, x_{i} \in[0,1]$.
When $\alpha>2$ pure NE doesn't exist.

Simulation results, $\alpha=0.7$

Fig.4a. Red point is NE, ESS, NE-2. Yellow area is NE-2.

Simulation results, $\alpha=1.5$

Fig.4b. Red point is NE, ESS, NE-2.
Blue curve and points are ESS, NE-2. Yellow area is NE-2.

Simulation results, $\alpha=2.3$

Fig.4c. Blue points are ESS, NE-2. Yellow area is NE-2.

Thank you for your attention!

E-mail: sandomirskaya_ms@mail.ru

