Weakening of the Nash equilibrium concept: existence and application to the Hotelling model

Marina Sandomirskaia

SPb EMI RAS & NRU HSE, CMSSE sandomirskaya ms@mail.ru

8th Int. Conference on Game Theory and Management June 25-27, 2014

Marina Sandomirskaia (EMI, CMSSE)

Nash-2 equilibrium

GTM2014, June 26 1 / 15

Two-person game: basic notions

Consider 2-person non-cooperative game in the normal form

$$G = (i \in \{1, 2\}; s_i \in S_i; u_i : S_1 \times S_2 \to R).$$

Definition (profitable deviation)

A profitable deviation of player *i* at strategy profile $s = (s_i, s_{-i})$ is a strategy s'_i such that

 $u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i}).$

Marina Sandomirskaia (EMI, CMSSE)

Two-person game: basic notions

Consider 2-person non-cooperative game in the normal form

$$G = (i \in \{1, 2\}; s_i \in S_i; u_i : S_1 \times S_2 \to R).$$

Definition (profitable deviation)

A profitable deviation of player *i* at strategy profile $s = (s_i, s_{-i})$ is a strategy s'_i such that

$$u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i}).$$

Definition (NE)

A strategy profile *s* is a Nash Equilibrium if no player has a profitable deviation.

Definition (treat)

A threat of player *i* to player -i at strategy profile *s* is a strategy s'_i such that $u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i})$ and $u_{-i}(s'_i, s_{-i}) < u_{-i}(s_i, s_{-i})$. The strategy profile *s* is said to pose a threat from player *i* to player -i.

Definition (treat)

A threat of player *i* to player -i at strategy profile *s* is a strategy s'_i such that $u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i})$ and $u_{-i}(s'_i, s_{-i}) < u_{-i}(s_i, s_{-i})$. The strategy profile *s* is said to pose a threat from player *i* to player -i.

Definition (secure profile)

A strategy profile s is a secure profile if s poses no treats from one player to another.

Definition (treat)

A threat of player *i* to player -i at strategy profile *s* is a strategy s'_i such that $u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i})$ and $u_{-i}(s'_i, s_{-i}) < u_{-i}(s_i, s_{-i})$. The strategy profile *s* is said to pose a threat from player *i* to player -i.

Definition (secure profile)

A strategy profile s is a secure profile if s poses no treats from one player to another.

Definition (secure deviation)

A profitable deviation s'_i of player i at s is secure if for any threat s'_{-i} of player -i at profile $(s'_i, s_{-i}) = u_i(s'_i, s'_{-i}) \ge u_i(s_i, s_{-i})$.

Definition (treat)

A threat of player *i* to player -i at strategy profile *s* is a strategy s'_i such that $u_i(s'_i, s_{-i}) > u_i(s_i, s_{-i})$ and $u_{-i}(s'_i, s_{-i}) < u_{-i}(s_i, s_{-i})$. The strategy profile *s* is said to pose a threat from player *i* to player -i.

Definition (secure profile)

A strategy profile s is a secure profile if s poses no treats from one player to another.

Definition (secure deviation)

A profitable deviation s'_i of player i at s is secure if for any threat s'_{-i} of player -i at profile $(s'_i, s_{-i}) = u_i(s'_i, s'_{-i}) \ge u_i(s_i, s_{-i})$.

Definition (EinSS)

A strategy profile is an equilibrium in secure strategies if it is secure and no player has a profitable secure deviation.

Marina Sandomirskaia (EMI, CMSSE)

Nash-2 equilibrium

Nash-2 equilibrium

Definition (alternative: secure deviation)

A profitable deviation s'_i of player i at s is secure if for any strategy s'_{-i} of player -i such that $u_{-i}(s'_i, s'_{-i}) > u_{-i}(s'_i, s_{-i}) = u_i(s'_i, s'_{-i}) \ge u_i(s_i, s_{-i})$.

Definition (alternative: secure deviation)

A profitable deviation s'_i of player i at s is secure if for any strategy s'_{-i} of player -i such that $u_{-i}(s'_i, s'_{-i}) > u_{-i}(s'_i, s_{-i}) = u_i(s'_i, s'_{-i}) \ge u_i(s_i, s_{-i})$.

Definition (NE-2)

A strategy profile is a Nash-2 equilibrium if no player has a profitable secure deviation.

NE-2 may be not secure.

3 × 4 3 ×

Definition (alternative: secure deviation)

A profitable deviation s'_i of player i at s is secure if for any strategy s'_{-i} of player -i such that $u_{-i}(s'_i, s'_{-i}) > u_{-i}(s'_i, s_{-i}) \quad u_i(s'_i, s'_{-i}) \ge u_i(s_i, s_{-i}).$

Definition (NE-2)

A strategy profile is a Nash-2 equilibrium if no player has a profitable secure deviation.

NE-2 may be not secure.

Proposition (I)

- Any NE is an EinSS. (Iskakov & Iskakov, 2012)
- Any EinSS is a NE-2.

- 34

< □ > < □ > < □ > < □ > < □ > < □ >

Strictly competitive games

Definition (strictly competitive game)

A two-person game G is strictly competitive if for every two strategy profiles s and s'

$$u_i(s) \ge u_i(s') \implies u_{-i}(s) \le u_{-i}(s').$$

Examples: zero-sum games, constant-sum games...

Marina Sandomirskaia (EMI, CMSSE)

A B A A B A

Strictly competitive games

Definition (strictly competitive game)

A two-person game G is strictly competitive if for every two strategy profiles s and s'

$$u_i(s) \ge u_i(s') \implies u_{-i}(s) \le u_{-i}(s').$$

Examples: zero-sum games, constant-sum games...

Proposition (II, Iskakov & Iskakov, 2012)

Any EinSS in a strictly competitive game is a NE.

Strictly competitive games

Definition (strictly competitive game)

A two-person game G is strictly competitive if for every two strategy profiles s and s'

$$u_i(s) \ge u_i(s') \implies u_{-i}(s) \le u_{-i}(s').$$

Examples: zero-sum games, constant-sum games...

Proposition (II, Iskakov & Iskakov, 2012)

Any EinSS in a strictly competitive game is a NE.

Denote the guaranteed gains of players 1 and 2 by

$$\underline{V_1} = \max_{s_1} \min_{s_2} u_1(s_1, s_2).$$

$$\underline{V_2} = \max_{s_2} \min_{s_1} u_2(s_1, s_2).$$

Marina Sandomirskaia (EMI, CMSSE)

Nash-2 equilibrium

GTM2014, June 26

5 / 15

Necessary and sufficient conditions of the NE-2 existence for strictly competitive games

Theorem (necessary condition of NE-2)

If strategy profile s is a NE-2, then $u_i(s) \ge V_i$ for both players.

Marina Sandomirskaia (EMI, CMSSE)

Nash-2 equilibrium

GTM2014, June 26 6 / 15

Necessary and sufficient conditions of the NE-2 existence for strictly competitive games

Theorem (necessary condition of NE-2)

If strategy profile s is a NE-2, then $u_i(s) \ge V_i$ for both players.

Theorem (sufficient condition of NE-2)

If a strategy profile s is such that for each player $u_i(s) > \underline{V_i}$, then s is a NE-2.

Necessary and sufficient conditions of the NE-2 existence for strictly competitive games

Theorem (necessary condition of NE-2)

If strategy profile s is a NE-2, then $u_i(s) \ge V_i$ for both players.

Theorem (sufficient condition of NE-2)

If a strategy profile s is such that for each player $u_i(s) > \underline{V_i}$, then s is a NE-2.

Theorem (criterion of NE-2)

Assume a strategy profile $s^* = (s_i^*, s_{-i}^*)$ is such that $u_i(s^*) = \underline{V_i}$ for i = 1or i = 2. s^* is NE-2 if and only if for any $s_i \in \tilde{S}_i = \{s_i : \min_{s_{-i}} u_i(s_i, s_{-i}) = \underline{V_i}\}$

$$u_i(s_i, s_{-i}^*) = \underline{V_i}.$$

Marina Sandomirskaia (EMI, CMSSE)

Definition (path-connected space)

The topological space X is said to be path-connected if for any two points $x, y \in X$ there exist a continuous function $f : [0, 1] \to X$ such that f(0) = x and f(1) = y.

Example: convex set in \mathbb{R}^n .

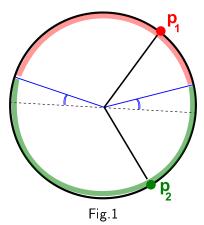
Theorem (NE-2 existence in continuous strictly comp. games)

Assume G is a two-person strictly competitive game. Strategy sets S_1 and S_2 are compact and path-connected. Payoff functions u_1 and u_2 are continuous.

Then there exist NE-2 in G (in pure strategies).

The Hotelling model on the unit circle

Location is an angle $\alpha \in [0; \pi]$ between two firms 1 and 2.



Price-setting game

$$v_1(p_1, p_2) = \begin{cases} p_1(\pi + p_2 - p_1), & \text{if } |p_1 - p_2| \le \alpha, \\ 2\pi p_1, & \text{if } p_1 < p_2 - \alpha, \\ 0, & \text{if } p_1 > p_2 + \alpha, \end{cases}$$
$$v_2(p_1, p_2) = \begin{cases} p_2(\pi + p_1 - p_2), & \text{if } |p_1 - p_2| \le \alpha, \\ 2\pi p_2, & \text{if } p_2 < p_1 - \alpha, \\ 0, & \text{if } p_2 > p_1 + \alpha. \end{cases}$$

Marina Sandomirskaia (EMI, CMSSE)

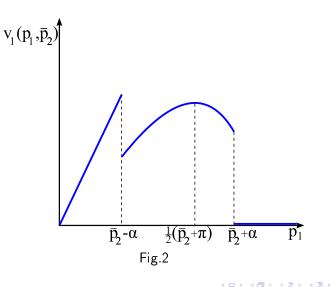
Nash-2 equilibrium

GTM2014, June 26

9 / 15

(日) (四) (三) (三) (三)

Assume \bar{p}_2 is fixed



Marina Sandomirskaia (EMI, CMSSE)

Nash-2 equilibrium

GTM2014, June 26

∃ 990

10 / 15

NE and EinSS in the Hotelling game

Theorem (NE, Hotelling)

For $\alpha \in [\frac{\pi}{2}, \pi]$ the unique NE is $p_1^* = p_2^* = \pi$. $v_1 = v_2 = \pi^2$.

For $\alpha = 0$ the unique NE is $p_1^* = p_2^* = 0$. $v_1 = v_2 = 0$.

For $\alpha \in (0, \frac{\pi}{2})$ NE does not exist.

Marina Sandomirskaia (EMI, CMSSE)

11 / 15

NE and EinSS in the Hotelling game

Theorem (NE, Hotelling)

For $\alpha \in [\frac{\pi}{2}, \pi]$ the unique NE is $p_1^* = p_2^* = \pi$. $v_1 = v_2 = \pi^2$.

For $\alpha = 0$ the unique NE is $p_1^* = p_2^* = 0$. $v_1 = v_2 = 0$.

For $\alpha \in (0, \frac{\pi}{2})$ NE does not exist.

Theorem (EinSS, Hotelling)

For $\alpha \in [\frac{\pi}{2}; \pi]$ the unique EinSS is $p_1^* = p_2^* = \pi$. $v_1 = v_2 = \pi^2$.

For $\alpha \in [0; \frac{\pi}{2})$ the unique EinSS is $p_1^* = p_2^* = 2\alpha$. $v_1 = v_2 = 2\pi\alpha < \pi^2$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Theorem (NE-2, Hotelling)

For all locations $\alpha \in [0; \pi]$ the profile (p_1, p_2) is NE-2 if

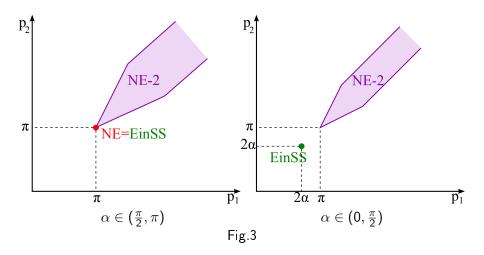
$$|p_1 - p_2| \leq \alpha,$$

 $p_1 \geq \frac{p_2 + \pi}{2}$ and $p_2 \geq \frac{p_1 + \pi}{2}.$
For $\alpha \in [0; \frac{\pi}{2})$ profile $(2\alpha, 2\alpha)$ is also an isolated NE-2.

Marina Sandomirskaia (EMI, CMSSE)

э

12 / 15



Marina Sandomirskaia (EMI, CMSSE)

Nash-2 equilibrium

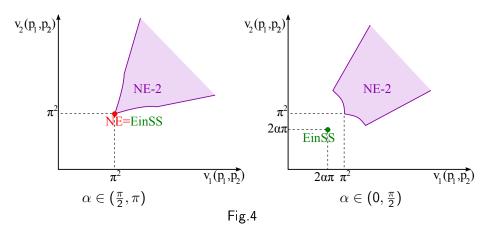
GTM2014, June 26

Ξ.

13 / 15

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

NE-2 gains



Nash-2 equilibrium

(4) E > (4) E > GTM2014, June 26

< A >

3

14 / 15

Related references

- d'Aspremont C., Gabszewicz J., Thisse J.-F. On Hotelling's "Stability in Competition" // Econometrica. 1979. Vol. 47. No. 5. P. 1145-1150.
- Iskakov M., Iskakov A. Equilibrium in secure strategies // CORE Discussion Paper 2012/61.

Related references

- d'Aspremont C., Gabszewicz J., Thisse J.-F. On Hotelling's "Stability in Competition" // Econometrica. 1979. Vol. 47. No. 5. P. 1145-1150.
- Iskakov M., Iskakov A. Equilibrium in secure strategies // CORE Discussion Paper 2012/61.

Thank you for your attention!

Marina Sandomirskaia (EMI, CMSSE)