Constructions Of Elliptic Curves Endomorphisms

Alex Yu. Nesterenko*

June 26, 2013

Let $d<0$ be a square free integer, $\mathbb{K}=\mathbb{Q}(\sqrt{d})$ be an imaginary quadratic field. It's well known, see $[1, \mathrm{ch} .2, \S 7]$, that numbers $\{1, \tau\}$, where

$$
\tau=\left\{\begin{array}{rlll}
d, & \text { if } & d \equiv 2,3 & (\bmod 4) \\
\frac{1+\sqrt{d}}{2}, & \text { if } & d \equiv 1 & (\bmod 4)
\end{array}\right.
$$

form a basis of the ring of integers $\mathbb{Z}_{\mathbb{K}}$.
Let $p>3$ be a prime and

$$
E\left(\mathbb{F}_{p}\right): \quad y^{2} \equiv x^{3}+A x+B \quad(\bmod p), \quad A, B \in \mathbb{F}_{p}
$$

be an elliptic curve defined over the field \mathbb{F}_{p}. We assume that the ring of endomorphisms of this curve is isomorphic to the ring of integers $\mathbb{Z}_{\mathbb{K}}$. In this article we will describe an algorithm of constructing the endomorphism of the curve $E\left(\mathbb{F}_{p}\right)$, corresponding to the complex number τ. We consider the endomorphism corresponding τ, see [2, § 14.B], as a pair of rational functions over \mathbb{F}_{p}, i.e.

$$
\tau: E\left(\mathbb{F}_{p}\right) \rightarrow E\left(\mathbb{F}_{p}\right), \quad(x, y) \rightarrow(\varphi(x), y \psi(x)),
$$

where $\varphi(x), \psi(x) \in \mathbb{F}_{p}(x)$.
Some special cases were known before, see [3]. Our method allows to construct similar endomorphism for arbitrary imaginary quadratic field. Next, we describe the basic steps of the algorithm.

[^0]1. For given τ we calculate the value of the modular function $j(\tau)$, define the field $\mathbb{L}=\mathbb{Q}(\sqrt{d}, j(\tau))$ and the prime ideal \mathfrak{p} that is lying over p and contains $j(\tau)-j$, where j is the invariant of the curve $E\left(\mathbb{F}_{p}\right)$.
2. We construct numbers $g_{2}, g_{3} \in \mathbb{L}$ such that the invariant of the curve $y^{2}=4 x^{3}-g_{2} x-g_{3}$ is equal to $j(\tau)$, i.e. $j(\tau)=1728 \frac{g_{2}^{3}}{g_{2}^{3}-27 g_{3}^{2}}$.
3. Then we calculate coefficients c_{k} of the series for Weierstrass elliptic function

$$
\wp(z)=\wp\left(z, g_{2}, g_{3}\right)=\frac{1}{z^{2}}+\sum_{i=1}^{\infty} c_{i} z^{2(i-1)},
$$

and evaluate the rational function $\varphi_{\tau}(x)$ such that

$$
\wp(\tau z)=\varphi_{\tau}(\wp(z))=\frac{f(\wp(z))}{g(\wp(z))}
$$

for some polynomials $f(x), g(x) \in \mathbb{L}[x]$ and $\operatorname{deg} f(x)=N(\tau)$, $\operatorname{deg} g(x)=N(\tau)-1$.
4. By differentiation of the expression for $\wp(\tau z)$ we derive

$$
\tau \wp^{\prime}(\tau z)=\wp^{\prime}(z) \cdot \frac{f^{\prime}(\wp(z)) g(\wp(z))-f(\wp(z)) g^{\prime}(\wp(z))}{g(\wp(z))^{2}} .
$$

Next define the second rational function

$$
\psi_{\tau}(x)=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{\tau g(x)^{2}}
$$

Since $\wp(\tau z)$ satisfies the differential equation for Weierstrass function and $\wp(z)$ is transcendental, we derive

$$
\left(y \psi_{\tau}(x)\right)^{2}=4 \varphi_{\tau}(x)^{3}-g_{2} \varphi_{\tau}(x)-g_{3} .
$$

5. In conclusion we reduce the rational functions $\varphi_{\tau}, \psi_{\tau}$ modulo \mathfrak{p}, i.e. define

$$
\varphi \equiv \varphi_{\tau} \quad(\bmod \mathfrak{p}), \quad \psi \equiv \psi_{\tau} \quad(\bmod \mathfrak{p})
$$

To demonstrate correctness of our method we present an example. Let $d=-5$ and $p=3268853741$. Then elliptic curve

$$
E\left(\mathbb{F}_{p}\right): y^{2}=x^{3}+2843924127 x+947974709 \quad(\bmod 3268853741)
$$

has an endomorphism associated with $\tau=\sqrt{-5}$, which is represented as

$$
\tau: \quad(x, y) \rightarrow(\varphi(x), y \psi(x))
$$

where

$$
\begin{aligned}
& \varphi(x) \equiv 653770748(2887070511+x) \times \\
& \times \frac{\left(880882706+347136513 x+x^{2}\right)\left(3050687895+2347406494 x+x^{2}\right)}{\zeta^{2}(x)}(\bmod p), \\
& \psi(x) \equiv 2492690311 \times \\
& \frac{(319523693+x)(446480654+x)(647067904+x)(2275216235+x)(2321505934+x)(2362625857+x)}{\zeta^{3}(x)} \\
& (\bmod p),
\end{aligned}
$$

and $\zeta(x)=(2866433945+x)(3193226555+x)$. It's easy to check that these rational functions represent an endomorphism, see [4]. Let

$$
P_{1}=(1789807873,336773927), \quad P_{2}=(2701258086,1160593737)
$$

are two random points on curve $E\left(\mathbb{F}_{p}\right)$. Then

$$
\tau\left(P_{1}+P_{2}\right)=\tau\left(P_{1}\right)+\tau\left(P_{2}\right)=(3122761229,457809648) .
$$

In cryptography applications we can use endomorpisms mentioned below for accelerating a group operation. Let P be a point of order q on elliptic curve $E\left(\mathbb{F}_{p}\right)$. We define G cyclic subgroup generated by P and suppose ${ }^{1}$ $\tau(P) \in G$. Then exists an integer t satisfying

$$
\tau(P)=[t] P=\underbrace{P+\cdots+P}_{t \text { times }}
$$

[^1]We can find t as a root of characteristic polynomial of τ modulo q, i.e.

$$
\left\{\begin{array}{rl}
x^{2}-d \equiv 0 & (\bmod q), \\
x^{2}-x+\frac{1-d}{4} \equiv 0 & (\bmod q), \\
x^{2}-w e n & d \equiv 2,3 \quad(\bmod 4), \\
& d \equiv 1 \quad(\bmod 4) .
\end{array}\right.
$$

Let k be an integer, $0<k<q$. For calculating a sum $[k] P$ we can represent $k=k_{0}+k_{1} t+\cdots+k_{n-1} t^{n-1}$, where $0 \leq k_{0}, k_{1}, \ldots, k_{n-1}<\sqrt[n]{q}$ and n is a minimal integer such $q<t^{n}$. Now we can calculate $[k] P$ as follows.

1. Let $R=P$ and calculate $Q=k_{0} R$.
2. For $i=1$ to $n-1$ calculate $R=\tau(R)$ and $Q=Q+k_{i} R$.

After all we find that $Q=[k] P$.

References

[1] Borevich Z.I., Shafarevich I.R. Number Theory. - Academic Press, 1966. - 436 pp.
[2] Cox D. Primes of the form $x^{2}+n y^{2}$: Fermat, Class Field Theory and Complex Multiplication. - J.Wiles and Sons. - 1989. - 363 p.
[3] Galant R., Lambert R., Vanstone S. Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms // CRYPTO 01 - Proceedings of the 21st Annual International Conference on Advances Of Cryptology. - 2001. - pp. 190-200.
[4] http://axelkenzo.ru/downloads/endocheck.nb

[^0]: *National Research University Higher School Of Economics.

[^1]: ${ }^{1}$ Generally, τ can map a points of elliptic curve $E\left(\mathbb{F}_{p}\right)$ between various subgroups of $E\left(\mathbb{F}_{p}\right)$.

