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Tori in the Cremona groups

V. L. Popov

Abstract. We classify up to conjugacy all subgroups of certain types in

the full, affine and special affine Cremona groups and prove that the nor-

malizers of these subgroups are algebraic. As an application, we obtain

new results on the linearization problem by generalizing Bia lynicki-Birula’s

results of 1966–67 to disconnected groups. We prove fusion theorems for

n-dimensional tori in the affine and special affine Cremona groups of rank n,

and introduce and discuss the notions of Jordan decomposition and torsion

primes for the Cremona groups.
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To I. R. Shafarevich on his 90th birthday

§ 1. Introduction

This work arose from an attempt to solve a problem posed in [1], [2], where
we introduced the notions of a root α and a root vector δ of an affine algebraic
variety X with respect to an algebraic torus T ⊆ AutX. Namely, δ is a locally
nilpotent derivation of the coordinate algebra of X, and α is a character of T such
that t∗ ◦ δ ◦ (t∗)−1 =α(t)δ for all t∈T . These definitions are inspired by a natural
analogy with the classical definitions of the theory of algebraic groups. They mean
an attempt to apply to the (generally infinite-dimensional) group AutX a technique
that is important in the theory of ordinary algebraic groups.1

In [1], [2] we posed the following two problems in the classical case when X = An

and T = D∗n is a maximal diagonal torus preserving the standard volume form
(see formula (9) below).

(R) Find all roots and root vectors of the variety An with respect to D∗n.
(W) Describe the normalizer and centralizer of the torusD∗n in the group Aut∗An

of volume-preserving automorphisms of An.
1In [1], [2] we considered the case when X = An and T is the maximal diagonal torus that

preserves the standard volume form. However, this restriction plays no role in the definitions of
a root and a root vector.

This paper was written with the financial support of RFBR (grant no. 11-01-00185-a), the
President’s programme for the Support of Leading Scientific Schools (grant no. NSh-5139.2012.1)
and the programme ‘Contemporary problems of theoretical mathematics’ of the Branch of
Mathematics in the Russian Academy of Sciences.

AMS 2010 Mathematics Subject Classification. 14E07, 14L17, 14R10.
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Problem (R) was solved by Liendo [3], who obtained the following result. Let
x1, . . . , xn be the standard coordinate functions on An, and let ε1, . . . , εn be the
‘coordinate’ characters of the standard n-dimensional diagonal torus Dn in Aut An

(see formulae (7) and (10) below). Then, up to multiplication by a non-zero con-
stant, the root vectors are precisely all derivations δ of the form

xl1
1 · · ·xln

n

∂

∂xi
, (1)

where l1, . . . , ln are non-negative integers and li = 0. The root α corresponding to
the root vector (1) is the restriction to D∗n of the character

ε−1
i

n∏
j=1

ε
lj
j .

The problem mentioned at the beginning of this introduction is problem (W).
Clearly, it is aimed at getting a description of the ‘Weyl group’ of the root system in
problem (R). We solve it in the present paper. Namely, we prove (Theorems 6(ii)(a)
and 12) that the normalizer (centralizer) of the torus D∗n in Aut∗An coincides with
its normalizer (centralizer) in SLn, whence the Weyl group of D∗n in Aut∗An is the
same as that of D∗n in SLn: it is the group of all permutations of the characters
ε1, . . . , εn.

This result is in fact only a special case in a series of general results that we obtain
here. Namely, D∗n is only one of the infinitely many non-conjugate diagonalizable
algebraic subgroups G of dimension > n− 1 in the group Aut An. We shall prove
that the normalizer of G in Aut An is always an algebraic subgroup in Aut An

(Theorem 14). This property is characteristic for the dimensions specified: it does
not generally hold for diagonalizable subgroups of dimension 6 n−2. In the case of
the existence of non-constant G-invariant polynomial functions on An, we explicitly
describe the normalizer of G in Aut An. In particular, we show that in all cases but
one it coincides with the normalizer of G in a group conjugate to GLn (Theorem 6).

Using this information, we obtain new results on the linearization problem.
In 1966–67 Bia lynicki-Birula [4], [5] proved that every algebraic action on An of an
algebraic torus of dimension > n − 1 is equivalent to a linear action. We extend
this assertion to disconnected groups by proving that every algebraic action on An

of either an n-dimensional algebraic group whose connected component of identity
is a torus or an (n − 1)-dimensional diagonalizable group is equivalent to a linear
action (Theorems 11, 13).

We also obtain the following complete classifications.
(i) Classification of the diagonalizable subgroups in the group Affn of affine

transformations (see (6) below) up to conjugacy in the full Cremona group Crn =
Bir An (Theorem 1).

(ii) Classification of the n-dimensional diagonalizable subgroups of Aut An up to
conjugacy in Aut An (Theorem 9).

(iii) Classification of the (n−1)-dimensional diagonalizable subgroups of Aut∗An

up to conjugacy in Aut∗An (Theorem 10).
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(iv) Classification up to conjugacy in Aut∗An (resp. Aut An) of the maxi-
mal (n − 1)-dimensional (resp. n-dimensional) algebraic subgroups G in Aut∗An

(resp. Aut An) such that G0 is a torus (Theorems 12 and 11 respectively).
(v) Classification of the (n− 1)-dimensional diagonalizable subgroups of Aut An

up to conjugacy in Aut An (Theorem 13).
(vi) Classification of the diagonalizable subgroups of dimension > n−1 in Aut An

up to conjugacy in Crn (Theorems 9, 15).
(vii) Classification of the one-dimensional tori in Aut A3 up to conjugacy in

Aut A3 (Theorem 16).
For example, we prove that the set of conjugacy classes of diagonalizable

(n − 1)-dimensional subgroups of Aut An is bijectively parametrized by the set
of all non-decreasing non-zero sequences

(l1, . . . , ln) ∈ Zn (2)

such that (l1, . . . , ln) 6 (−ln, . . . ,−l1) in the lexicographic ordering. This para-
metrization associates the sequence (2) with the conjugacy class of the subgroup
ker εl1

1 · · · εln
n .

As another example, we show that the diagonalizable subgroups of Affn are
conjugate in Crn if and only if they are isomorphic. We also specify canonical
representatives of them. In particular (see Corollary 5), any two isomorphic finite
Abelian subgroups of Affn are conjugate in Crn (for finite cyclic subgroups, this
was proved in [6]).

Serre [7] proved a fusion theorem for the torus Dn in Crn. We shall prove and
use fusion theorems for n-dimensional tori in Aut An and Aut∗An+1 (Theorem 7).

In the final section, developing the theme of the analogy between the Cremona
groups and algebraic groups, we introduce and discuss the notions of Jordan decom-
position and torsion primes for the Cremona groups. In the course of the discussion,
we state some open problems.

I am grateful to J.-P. Serre for his comments.

§ 2. Notation and conventions

In what follows, ‘variety’ means ‘algebraic variety over a fixed algebraically closed
field k of characteristic zero’ in the sense of Serre [8].

Besides the standard notation and conventions in [9], [10], which will be used
without special reference, we also adopt the following: Matm×n(R) is the set of all
matrices with m rows, n columns and entries in R; NH(S) (resp. ZH(S)) is the
normalizer (resp. centralizer) of a subgroup S in a group H; µd is the subgroup of
order d in Gm; X(D) is the group of rational characters of a diagonalizable algebraic
group D; χ(X) is the Euler characteristic of a variety X with respect to the l-adic
cohomology (when k = C, it is equal by [11] to the Euler characteristic with respect
to ordinary cohomology with compact supports; see also [12], Appendix).

Let ϕ : G ×M → M be an action of a group G on a set M . Given any subsets
S ⊆ G and X ⊆ M , we denote the subset ϕ(S ×X) ⊆ M by S ·X (it will always
be clear from the context which ϕ is meant). In particular, the G-orbit of a point a
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is denoted by G · a. The G-stabilizer of a point a is denoted by Ga. We also write
x1, . . . , xn for the standard coordinate functions on An:

xi(a) := ai, a := (a1, . . . , an) ∈ An.

All algebraic groups are assumed to be affine, and all homomorphisms of such
groups are assumed to be algebraic. All tori and diagonalizable groups are also
assumed to be algebraic.

An action of a group G on a vector space V is said to be locally finite if, for
every vector v ∈ V , the linear span of the orbit G · v is finite-dimensional.

The group Crn := Bir An is called the Cremona group of rank n. The map
ϕ 7→ (ϕ∗)−1 identifies it with Autk k(x1, . . . , xn), and every birational isomorphism
X 99K An identifies it with BirX. For every g ∈ Crn, the functions

gi = g∗(xi) ∈ k(An) (3)

determine g by the formula

g(a) = (g1(a), . . . , gn(a)) if g is defined at a ∈ An, (4)

and we write
(g1, . . . , gn) := g. (5)

Using the notion of an ‘algebraic family’ S → Crn (see [13]), the group Crn is
endowed with the Zariski topology (see [7], [14]). If a homomorphism G→ Crn of
an algebraic group G is an algebraic family, then its image is called an algebraic
subgroup of Crn (see [15]).

The affine Cremona group of rank n is the following subgroup Aut An of Crn:

Aut An :=
{

(g1, . . . , gn) ∈ Crn | g1, . . . , gn ∈ k[An] = k[x1, . . . , xn]
}
.

It contains the algebraic subgroup of affine transformations

Affn :=
{

(g1, . . . , gn) ∈ Aut An | deg g1 = · · · = deg gn = 1
}
, (6)

and Affn contains the algebraic subgroup of linear transformations

GLn := {g ∈ Affn | g(0) = 0}.

If g = (g1, . . . , gn) ∈ Aut An (see (5)), then we put

Jac(g) := det
( ∂gi

∂xj

)
.

Since g ∈ Aut An, we have Jac(g) ∈ k \ {0}. Therefore g 7→ Jac(g) is a homo-
morphism of Aut An into the multiplicative group of the field k. Its kernel

Aut∗An := {g ∈ Aut An | Jac(g) = 1}
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consists of those automorphisms of An that preserve the standard volume form and
is called the special affine Cremona group of rank n − 1 (concerning the ranks in
this terminology, see Theorems 2(i) and 4(i)). The last group contains an algebraic
subgroup

SLn := GLn ∩Aut∗An.

The embeddings Crn ↪→ Crn+1, (g1, . . . , gn) 7→ (g1, . . . , gn, xn+1), form a tower
Cr1 ↪→ Cr2 ↪→ · · · ↪→ Crn ↪→ · · · . Its direct limit Cr∞ is called the Cremona group
of infinite rank (see [15], Section 1).

In GLn we distinguish the ‘standard’ maximal torus

Dn := {(t1x1, . . . , tnxn) | t1, . . . , tn ∈ k} ⊂ GLn . (7)

Its normalizer in GLn is the group of all monomial transformations in GLn:

NGLn
(Dn) :=

{
(t1xσ(1), . . . , tnxσ(n)) | σ ∈ Sn, t1, . . . , tn ∈ k

}
⊂ GLn, (8)

where Sn is the symmetric group of degree n. The group Aut∗An contains the torus

D∗n := Dn ∩Aut∗An =
{

(t1x1, . . . , tnxn) | t1, . . . , tn ∈ k, t1 · · · tn = 1
}
. (9)

The ‘coordinate’ characters ε1, . . . , εn of the torus Dn are given by

εi : Dn → Gm, (t1x1, . . . , tnxn) 7→ ti. (10)

They form a basis of the (free Abelian) group X(Dn).

§ 3. Some subgroups of Crn

In what follows we regard elements of Zn as row-vectors of length n with integer
components. Then the rows of any matrix A = (aij) ∈ Matm×n(Z) are elements
of this group. We shall use the notation

RA := the subgroup of Zn generated by the rows of A, (11)

Dn(A) =
m⋂

i=1

kerλi, where λi := ε
ai,1
1 · · · εai,n

n . (12)

When m = 1, we write Dn(l1, . . . , ln) instead of Dn((l1 . . . ln)). In particular,

Dn(0, . . . , 0) = Dn, Dn(1, . . . , 1) = D∗n. (13)

Clearly, Dn(A) is a closed subgroup of Dn, and (see (11))

Dn(A) =
⋂

(l1,...,ln)∈R(A)

ker εl1
1 · · · εln

n . (14)

We recall some terminology to be used below (see, for example, [16] and [17]).
Every finite Abelian group G can be decomposed into a direct sum of cyclic

groups of orders d1, . . . , dm, where di divides di+1 for i = 1, . . . ,m− 1, and d1 > 1
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if |G| > 1. The numbers d1, . . . , ds are uniquely determined by G and are called
the invariant factors of G.

Every non-zero integer matrix A can be transformed by elementary transforma-
tions of rows and columns to a matrix S = (sij) whose only non-zero entries are sii

for i = 1, . . . , r and sii divides si+1,i+1 for i = 1, . . . , r−1. The integers s11, . . . , srr

are uniquely determined by A (sii = fi/fi−1, where fi is the greatest common
divisor of all the minors of order i of A and f0 := 1) and are called the invariant
factors of A. The matrix S is called the Smith normal form of A.

Lemma 1. If B is obtained from A ∈ Matm×n(Z) by elementary transformations
of rows and columns, then the subgroups Dn(A) and Dn(B) are conjugate in Crn.

Proof. Let τ1, . . . , τn be a basis of the group X(Dn). Then (see (12)) we have
λi = τ ci1

1 · · · τ cin
n for some cij ∈ Z and

Dn(A) =
m⋂

i=1

ker τ ci1
1 · · · τ cin

n . (15)

The group AutgrDn of automorphisms of the algebraic group Dn is naturally
identified with GLn(Z). Its natural action on the set of bases of the group X(Dn)
is transitive. Hence there is an automorphism

ϕ ∈ AutgrDn (16)

such that τi ◦ ϕ = εi for all i. Then it follows from (15) that

ϕ−1(Dn(A)) = Dn(C), where C = (cij) ∈ Matm×n(Z). (17)

Since the map of varieties Dn → An, (t1x1, . . . , tnxn) 7→ (t1, . . . , tn), is a birational
isomorphism, we can use it to identify the group Crn = Bir An with the group
of birational automorphisms of the underlying variety of the torus Dn. Then ϕ
becomes an element of Crn, and we easily deduce from (16) and (17) that the
following equality holds in this group:

ϕ−1Dn(A)ϕ = Dn(C).

Note that if a basis τ1, . . . , τn is obtained from the basis ε1, . . . , εn by an ele-
mentary transformation, then the matrix C is obtained from A by an elemen-
tary transformation of columns, and every elementary transformation of columns
of A is realizable in this way. Moreover, if the sequence ϕ1, . . . , ϕm ∈ X(Dn)
is obtained by an elementary transformation from the sequence λ1, . . . , λm, then
Dn(A) =

⋂m
i=1 kerϕi, the matrix (cij) defined by the equalities ϕi = εci1

1 · · · εcin
n

is obtained from A by an elementary transformation of rows, and every elemen-
tary transformation of rows of A is realizable in this way. Clearly, this proves the
lemma. �

Corollary 1. If S is the Smith normal form of A, then the subgroups Dn(A) and
Dn(S) are conjugate in Crn.
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Lemma 2. (i) If q16 · · ·6 qr are the invariant factors of a matrix A∈Matm×n(Z),
then the group Dn(A) is isomorphic to

µq1
× · · · × µqr

×Gn−r
m . (18)

(ii) The closed (n−m)-dimensional subgroups of Dn are nothing but all possible
subgroups Dn(A), where A ∈ Matm×n(Z) and rkA = m.

(iii) RA = {(l1, . . . , ln) ∈ Zn | Dn(A) ⊆ ker εl1
1 · · · εln

n } for every matrix A ∈
Matm×n(Z).

(iv) If A ∈ Mats×n(Z) and B ∈ Matt×n(Z), then the following assertions hold.
(a) Dn(A) = Dn(B) if and only if RA = RB .
(b) The following properties are equivalent :

(b1) Dn(A) and Dn(B) are conjugate in GLn;
(b2) Dn(A) and Dn(B) are conjugate in NGLn

(Dn);
(b3) there is a permutation of columns that transforms B into a matrix C

such that RA = RC .

Proof. (i) Let S= (sij) be the Smith normal form of A. Then s11 = q1, . . . , srr = qr,
and sij = 0 otherwise. Hence Dn(S) is isomorphic to the group (18). But Dn(A) is
isomorphic to Dn(S) by Corollary 1.

(ii) It follows from (i) that

dimDn(A) = n− rkA, (19)

whence dimDn(A) = n−m when rkA = m. Conversely, let H be a closed subgroup
of Dn with dimH = n −m. Then Dn/H is an m-dimensional torus ([9], p. 114)
and, therefore, there is an isomorphism α : Dn/H → Gm

m . Let λi ∈ X(Dn) be the
composite of the homomorphisms

Dn
π−→ Dn/H

α−→ Gm
m

pri−−→ Gm,

where π is the canonical projection and pri is the projection to the ith factor. Then
H =

⋂m
i=1 kerλi. We now deduce from (12) that H =Dn(A) and from (19) that

rkA=m.
(iii) It follows from (11), (12) that the left-hand side of the equality to be proved

is contained in the right-hand side. To prove the opposite inclusion, we consider
a character λ = εl1

1 · · · εln
n whose kernel contains Dn(A). Without changing Dn(A)

and RA, we can leave in A only rows that form a base of the group RA and remove
the others. This reduces us to the case when rkA = m. Then we consider the
characters λ1, . . . , λm as defined in (12) and the homomorphism

ϕ : Dn → Gm
m , g 7→ (λ1(g), . . . , λm(g)).

By (12) we have kerϕ = Dn(A). It follows from this and (19) that dimϕ(Dn) = m.
Therefore ϕ is a surjection. Hence Gm

m is the quotient of Dn by Dn(A), and ϕ is the
canonical homomorphism onto this quotient. Since the character λ is constant on
the fibres of ϕ, the universal property of quotients implies that there is a character
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µ : Gm
m → Gm such that λ = µ ◦ ϕ. Hence λ = λc1

1 · · ·λcm
m for some c1, . . . , cm ∈ Z.

This means that (l1, . . . , ln) ∈ RA.
(iv)(a) If Dn(A) = Dn(B), then RA = RB because of (iii). Conversely, if RA =

RB , then Dn(A) = Dn(B) because of (14).
(iv)(b) By the fusion theorem ([18], § 1.1.1), the subgroups Dn(A) and Dn(B) are

conjugate in GLn if and only if they are conjugate in NGLn
(Dn). But (8) and (12)

imply that Dn(A) and Dn(B) are conjugate in NGLn
(Dn) if and only if one can

transform B by a permutation of columns to a matrix C such that Dn(A) = Dn(C).
By (iii)(a), this equality is equivalent to the equality RC = RA. �

Corollary 2. (i) If (l1, . . . , ln) 6= (0, . . . , 0) and d := GCD(l1, . . . , ln), then
Dn(l1, . . . , ln) is isomorphic to µd × Gn−1

m . In particular, Dn(l1, . . . , ln) is con-
nected (and hence is a torus) if and only if d = 1.

(ii) The closed (n− 1)-dimensional subgroups of Dn are nothing but all possible
subgroups Dn(l1, . . . , ln) with (l1, . . . , ln) 6= (0, . . . , 0).

(iii) Dn(l1, . . . , ln) = Dn(l′1, . . . , l
′
n) if and only if

(l1, . . . , ln) = ±(l′1, . . . , l
′
n).

(iv) The following properties are equivalent.
(iv1) Dn(l1, . . . , ln) and Dn(l′1, . . . , l

′
n) are conjugate in GLn;

(iv2) Dn(l1, . . . , ln) and Dn(l′1, . . . , l
′
n) are conjugate in NGLn

(Dn);
(iv3) there is a permutation σ ∈ Sn such that

(l1, . . . , ln) = ±(l′σ(1), . . . , l
′
σ(n)).

The following lemma gives an effective numerical criterion for the equality
RA = RB in Lemma 2(iii).

Suppose that A ∈ Matm×n(Z), rkA = m. For every strictly increasing m-tuple
of integers i1, . . . , im belonging to the interval [1, n] we put

pi1,...,im(A) := detAi1,...,im , (20)

where Ai1,...,im
is the submatrix of A formed by intersecting the rows with num-

bers 1, . . . ,m and the columns with numbers i1, . . . , im (it is natural to call the
pi1,...,im

(A) the Plücker coordinates of A).

Lemma 3. For any two matrices A,B ∈ Matm×n(Z) of rank m, the following
properties are equivalent.

(i) RA = RB .
(ii) Two conditions hold :

(a) either pi1,...,im
(A) = pi1,...,im

(B) for all i1, . . . , im, or pi1,...,im
(A) =

− pi1,...,im
(B) for all i1, . . . , im;

(b) for every sequence i1, . . . , im with pi1,...,im
(A) 6= 0, we have

Bi1,...,im
(Ai1,...,im

)−1 ∈ Matm×m(Z). (21)
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Proof. Since rkA = rkB = m, the rows of A and B form bases in RA and RB

respectively. Therefore RA = RB if and only if there is a matrix Q ∈ GLm(Z) such
that

A = QB. (22)

Suppose that RA = RB . Then (22) implies that

Ai1,...,im
= QBi1,...,im

(23)

for all i1, . . . , im and, therefore, pi1,...,im
(A) = detQpi1,...,im

(B) by (20). Since
Q ∈ GLm(Z), we have detQ=±1. Hence condition (ii)(a) holds. If pi1,...,im

(A) 6= 0,
then we also have pi1,...,im

(B) 6= 0, whence Bi1,...,im
is non-singular and (23) says

that Q = Ai1,...,im
(Bi1,...,im

)−1. Hence condition (ii)(b) holds. This proves the
implication (i)⇒(ii).

To prove the reverse implication, we regard Zn as a subset of the coordinate
vector space (of rows) Qn. Condition (ii)(a) shows that the Q-linear spans of the
subsetsRA andRB in Qn have the same Plücker coordinates. Hence these spans are
equal to the same vector subspace L (see, for example, [19], Theorem 10.1). Since
the rows of A and the rows of B form two bases of L, there is a matrix P ∈ GLm(Q)
such that A = PB. Hence Ai1,...,im

= PBi1,...,im
for all i1, . . . , im and, therefore,

P = Ai1,...,im
(Bi1,...,im

)−1 if pi1,...,im
(B) 6= 0. It then follows from (ii)(b) that

P ∈ GLn(Z). Therefore RA =RB . This proves the implication (ii)⇒(i). �

Remark 1. The proof of Lemma 3 shows that (ii)(a) actually implies that the matrix
Bi1,...,im

(Ai1,...,im
)−1 is independent of the choice of a sequence i1, . . . , im with

pi1,...,im
(A) 6= 0. Therefore (ii)(b) follows from (ii)(a) provided that (21) holds for

at least one such sequence.

Remark 2. If m = 1, then condition (ii)(b) of Lemma 3 follows from (ii)(a) (but
this is not the case for m > 1).

Theorem 1 (classification of diagonalizable subgroups of Affn up to conjugacy
in Crn). (i) Two diagonalizable subgroups of Affn are conjugate in Crn if and only
if they are isomorphic.

(ii) Any diagonalizable subgroup G of Affn is conjugate in Crn to a unique closed
subgroup of Dn of the form

ker εd1
r+1 ∩ · · · ∩ ker εds

r+s ∩ ker εr+s+1 ∩ · · · ∩ ker εn, (24)

where 0 6 r 6 n, 0 6 s 6 n, r + s 6 n, 2 6 d1 and di divides di+1 for
every i < s. The integers that determine the subgroup (24) have the following
meaning : r = dimG, and d1, . . . , ds are the invariant factors of the finite Abelian
group G/G0.

Proof. Since all maximal reductive subgroups of an algebraic group are conjugate
(see [20], § 5.1) and GLn is one of them in Affn, we see that every diagonalizable
subgroup of Affn is conjugate to a subgroup of GLn. In its turn, every diago-
nalizable subgroup of GLn is conjugate to a subgroup of the torus Dn (see [9],
Ch. I, § 4.6). In view of Lemma 2(ii), this shows that it suffices to prove (i) for
the subgroups Dn(A) and Dn(B) of the torus Dn. Adding zero rows if necessary,
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we may assume that A and B have the same number of rows. Suppose that the
groups Dn(A) and Dn(B) are isomorphic. Then their dimensions are equal, and
the groups Dn(A)/Dn(A)0 and Dn(B)/Dn(B)0 have the same invariant factors.
This and Lemma 2(i) yield that the matrices A and B have the same invariant fac-
tors (which are obtained by adding equal numbers of ones to the invariant factors
of the previous groups). Hence the Smith normal forms of A and B coincide. By
Corollary 1, it follows that Dn(A) and Dn(B) are conjugate in Crn. This proves (i).

Clearly, the integers that determine the subgroup (24) have the meaning specified
in (ii). Since every diagonalizable group is a direct product of a finite Abelian group
and a torus, it is uniquely determined (up to isomorphism) by its dimension and the
invariant factors of the group of connected components. This and (i) yield (ii). �

Corollary 3. The subgroups Dn(A) and Dn(B) are conjugate in Crn if and only
if A and B have the same invariant factors.

Corollary 4. Every torus T in Affn is conjugate in Crn to the torus Dr , where
r = dimT .

Proof. This follows from Theorem 1(ii). �

Corollary 5. Any two isomorphic finite Abelian subgroups of Affn are conjugate
in Crn.

Proof. Since char k = 0, every element of finite order in Affn is semisimple. There-
fore every finite Abelian subgroup of Affn is reductive and hence conjugate in Affn

to a subgroup of GLn (see the proof of Theorem 1). But every commutative sub-
group of GLn containing only semisimple elements is diagonalizable (see [9], Propo-
sition 4.6(b)). The desired assertion now follows from Theorem 1 (i).

Corollary 6 ([6], Theorem 1). Any two elements of the same finite order in Affn

are conjugate in Crn.

§ 4. Tori in Crn, Aut An and Aut∗An

Theorem 2 (tori in Crn). (i) Crn contains no tori of dimension > n.
(ii) Every r-dimensional torus in Crn for r = n, n− 1, n− 2 is conjugate to the

torus Dr .
(iii) If n > 5, then there are (n−3)-dimensional tori in Crn that are not conjugate

to subtori of Dn.
(iv) Every r-dimensional torus in Crn is conjugate in Crn+r to the torus Dr .
(v) Every r-dimensional torus in Cr∞ is conjugate to the torus Dr .

Proof. Part (i) is proved, for example, in [21] (see also [15], Corollary 2.2).
By [4], Corollary 2 (see also [15], Corollary 2.4(b)), every r-dimensional torus

in Crn for r = n, n− 1, n− 2 is conjugate to a subtorus of Dn. Therefore part (ii)
follows from Corollary 4.

Part (iii) is proved in [15], Corollary 2.5.
By [15], Theorem 2.6, every r-dimensional torus in Crn is conjugate in Crn+r to

a subtorus of Dn+r. Therefore part (iv) follows from Corollary 4.
Part (v) follows from part (iv). �
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Corollary 7. (i) Every n-dimensional torus in Crn is maximal.
(ii) There are no maximal (n− 1)- or (n− 2)-dimensional tori in Crn.
(iii) For n > 5 there are maximal (n− 3)-dimensional tori in Crn.

Remark 3. For n 6 3, Theorem 2 yields a classification of all tori in Crn up to conju-
gacy: the classes of conjugate non-trivial tori are exhausted by those of D1, . . . , Dn.

Let (l1, . . . , ln) ∈ Zn be a non-zero element with GCD(l1, . . . , ln) = 1. We easily
see that the homomorphism

Gm → Dn, t 7→ (tl1x1, . . . , t
lnxn), (25)

is an embedding, and every embedding Gm ↪→ Dn is of this form. We denote the
image of the embedding (25) by T (l1, . . . , ln). It is a one-dimensional torus in Dn,
and all one-dimensional tori in Dn are of this form.

Lemma 4. The following properties are equivalent :
(i) T (l1, . . . , ln) = T (l′1, . . . , l

′
n);

(ii) (l1, . . . , ln) = ±(l′1, . . . , l
′
n).

Proof. (i)⇒(ii). This is clear.
(ii)⇒(i). Suppose that (i) holds. Take an element t ∈ Gm of infinite order. It

follows from (i) and the definition of T (l1, . . . , ln) that there is an element s ∈ Gm

such that tli = sl′i for all i = 1, . . . , n. Hence tlil
′
j = sl′il

′
j = tlj l′i for any distinct

integers i, j in the interval [1, n]. Since the order of t is infinite, it follows that
lil
′
j − lj l′i = 0. Hence,

rk
(
l1 . . . ln
l′1 . . . l′n

)
= 1.

Therefore (l1, . . . , ln) = γ(l′1, . . . , l
′
n) for some γ ∈ Q or, equivalently, p(l1, . . . , ln) =

q(l′1, . . . , l
′
n), where p, q ∈ Z, GCD(p, q) = 1. Hence p (resp. q) divides each of the

integers l′1, . . . , l
′
n (resp. l1, . . . , ln). Since the integers in each of these groups are

coprime, we have γ = ±1, that is, (ii) holds. �

Theorem 3 (tori in Aut An). (i) Every n-dimensional torus in Aut An is conju-
gate to the torus Dn.

(ii) Up to conjugacy in Aut An, the (n − 1)-dimensional tori in Aut An are
exhausted by the groups Dn(l1, . . . , ln), where (l1, . . . , ln) 6= (0, . . . , 0) and
GCD(l1, . . . , ln) = 1.

(iii) Up to conjugacy in Aut A3, the one-dimensional tori in Aut A3 are exhausted
by the groups T (l1, l2, l3).

Proof. By [4] (resp. [5]), every r-dimensional torus in Aut An with r = n (resp. r =
n−1) is conjugate to a subtorus of Dn. This and Corollary 2 yield parts (i) and (ii).

By [22], every one-dimensional torus in Aut A3 is conjugate to a subtorus of D3.
This proves (iii). �

Theorem 4 (tori in Aut∗An). (i) Aut∗An contains no tori of dimension > n− 1.
(ii) Every (n−1)-dimensional torus in Aut∗An is maximal and conjugate to D∗n

(see (9)).
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Proof. (i) If Aut∗An contains an n-dimensional torus T , then Theorem 3(i) yields
an element g ∈ Aut An such that

T = gDng
−1. (26)

Replacing g by gz, where z ∈ Dn is any element with Jac(z) = det z = 1/ Jac(g),
we may assume that g ∈ Aut∗An. This and (26) imply that Dn ⊂ Aut∗An,
a contradiction.

(ii) Let S be an (n − 1)-dimensional torus in Aut∗An. By Theorem 3(i) and
Corollary 2(ii) there are g ∈ Aut An and (l1, . . . , ln) ∈ Zn such that

S = gDn(l1, . . . , ln)g−1. (27)

As in the proof of (i), we may assume that g ∈ Aut∗An. Then (27) yields that
Dn(l1, . . . , ln) ⊂ Aut∗An. Since Dn ∩ ker Jac = D∗n := Dn(1, . . . , 1), it follows
that Dn(l1, . . . , ln) ⊆ D∗n. By Corollary 2(i), both sides of this inclusion are
(n− 1)-dimensional tori. Hence the inclusion is an equality. �

Remark 4. In contrast to Crn (see Corollary 7(iii)), nothing is currently known
regarding the existence of maximal tori of non-maximal dimension in Aut An and
Aut∗An. This problem is intimately related to the cancellation problem: is there an
affine variety X non-isomorphic to Am, m = dimX, such that X×Ad is isomorphic
to Am+d for some d? If the answer is positive, then Aut An and Aut∗An for n =
m+ d contain a maximal torus T of non-maximal dimension. Indeed, multiplying
X × Ad by A1 if necessary, we may assume that d > 2. Let λ be the character
t 7→ t of the torus Gm. We consider a linear action of Gm on Ad with precisely
two isotypic components: (d − 1)-dimensional of type λ and one-dimensional of
type λ1−d. It determines the action of Gm on X ×Ad via the second factor and,
therefore, an action of Gm on An. Consider the torus in Aut An which is the image
of Gm under the homomorphism determined by this action. By construction, this
torus lies in Aut∗An. Let T (resp. T ′) be a maximal torus in Aut An (resp. Aut∗An)
containing this image. If T is n-dimensional (resp. T ′ is (n−1)-dimensional), then it
is conjugate to a subtorus of Dn by Theorem 3(i) (resp. Theorem 4) and, therefore,
the action of T (resp. T ′) on An is equivalent to a linear action. Hence the action
of Gm on An is also equivalent to a linear action and, therefore, the set F of its
fixed points is isomorphic to an affine space. However, by construction, there is
only one Gm-fixed point in Ad, whence F is isomorphic to X, a contradiction.2

§ 5. Orbits and stabilizers of the action of Dn(l1, . . . , ln) on An

Here we establish some properties (used in what follows) of orbits and stabilizers
of the natural action on An of the group

G := Dn(l1, . . . , ln). (28)

2Added on August 2, 2012. Theorems 3, 4 and Remark 4 remain valid in the case when the
characteristic p of the ground field k is positive. The preprint [23] posted today asserts that

the hypersurface X given by the equation xm
1 x2 + xpe

3 + x4 + xsp = 0 in A4, where m, e, s are
positive integers with pe - sp and sp - pe, is not isomorphic to A3, but X × A1 is isomorphic
to A4. By Remark 4, it follows that for char k > 0 and every n > 5 there are maximal tori of
non-maximal dimension in AutAn and Aut∗An.
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Clearly, every coordinate hypersurface

Hi := {a ∈ An | xi(a) = 0} (29)

is G-invariant.

Lemma 5. The G-stabilizer of every point of An \
⋃n

i=1Hi is trivial.
(i) If (l1, . . . , ln) = (0, . . . , 0), then An\

⋃n
i=1Hi is a G-orbit, and the dimension

of the G-stabilizer of every point of
⋃n

i=1Hi is positive.
(ii) If (l1, . . . , ln) 6= (0, . . . , 0), then dimG · a = n − 1 for every point a ∈

An \
⋃n

i=1Hi.

Proof. This follows from (28), (12), (4) and Lemma 2. �

We now consider the case

(l1, . . . , ln) 6= (0, . . . , 0).

Lemma 6. If li 6= 0, then the open subset Oi :=Hi \
⋃

j 6=iHj of Hi is a G-orbit.

Proof. Since Oi is G-invariant, it suffices to prove that Oi is contained in a G-orbit.
Since li 6= 0, the equation xli = α has a solution for any α ∈ k, α 6= 0. This and
(28), (12) imply that for any two points

b = (b1, . . . , bi−1, 0, bi+1, . . . , bn), c = (c1, . . . , ci−1, 0, ci+1, . . . , cn) ∈ Hi \
⋃
j 6=i

Hj

there is an element g = (t1x1, . . . , tnxn) ∈ G such that tj = b−1
j cj for every j 6= i.

We now obtain from (4) that g · b = c, as required. �

Lemma 7. The following properties are equivalent :
(i) the numbers l1, . . . , ln are non-zero and have the same sign ;
(ii) the G-orbit of any point of An \

⋃n
i=1Hi is closed in An;

(iii) the G-orbit of some point of An \
⋃n

i=1Hi is closed in An.

Proof. Consider a point

a = (a1, . . . , an) ∈ An \
n⋃

i=1

Hi.

Assume that (i) holds. Suppose that the G-orbit of a is not closed in An.
Then its boundary is accessible by a one-parameter subgroup, that is, one can find
a homomorphism ϕ : Gm → G such that there is a limit

lim
t→0

ϕ(t) · a = b ∈ G · a \G · a (30)

(see [10], Theorem 6.9). Formula (30) means that the morphism Gm=A1\{0}→An,
t 7→ ϕ(t) ·a, extends to a morphism A1 → An that maps 0 to the point b. Since ϕ is
algebraic, there is a vector (d1, . . . , dn) ∈ Zn such that ϕ(t) = (td1x1, . . . , t

dnxn)
for every t ∈ Gm. Since ϕ(t) · a = (td1a1, . . . , t

dnan) and ai 6= 0 for every i, the
existence of the limit above means that

d1 > 0, . . . , dn > 0. (31)
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On the other hand, since ϕ(t)∈G, it follows from (28) and (12) that td1l1+···+dnln = 1
for every t, that is,

d1l1 + · · ·+ dnln = 0. (32)

But (31), (32) and condition (i) imply that d1 = · · · = dn = 0. Hence b = a
contrary to (30). This contradiction proves that (i)⇒(ii).

For the converse, suppose that (i) does not hold, that is, the n-tuple l1, . . . , ln
contains either two non-zero numbers of different signs, or a zero. In the first
case let, say, l1 > 0, l2 < 0. Then it follows from (12) that the image of the
homomorphism ϕ : Gm → Dn, t 7→ (t−l2x1, t

l1x2, x3, . . . , xn), lies in G. Since

lim
t→0

ϕ(t) · a = (0, 0, a3, . . . , an) /∈ G · a,

this shows that the orbit G · a is non-closed. In the second case we may assume
that a1 = 0. Then G contains the image of the homomorphism ϕ : Gm → Dn,
t 7→ (tx1, x2, . . . , xn) and, since

lim
t→0

ϕ(t) · a = (0, a2, . . . , an) /∈ G · a,

the orbit G · a is non-closed. This proves the implication (iii)⇒(i). �

The following corollary is a consequence of Lemmas 5–7.

Corollary 8. If l1, . . . , ln are all non-zero and have the same sign, then An con-
tains precisely n non-closed (n − 1)-dimensional G-orbits : the orbits O1, . . . ,On

in Lemma 6.

Remark 5. We recall from [24] that an action of an algebraic group on an algebraic
variety is said to be stable if the orbits of points in general position are closed.
Lemma 7 shows that the following properties are equivalent:

(i) l1, . . . , ln are all non-zero and have the same sign;
(ii) the action of G on An is stable.

Lemma 8. Assume that none of l1, . . . , ln is equal to ±1. Then the following
properties of a point a = (a1, . . . , an) ∈ An are equivalent :

(i) a has a non-trivial G-stabilizer;
(ii) a ∈

⋃n
i=1Hi.

Proof. The implication (i)⇒(ii) follows from Lemma 5. We now assume that (ii)
holds. Then there are i1, . . . , is, s> 1, such that aj = 0 for j=i1, . . . , is and aj 6= 0 for
the other j. It follows from (4), (28) and (12) that an element (t1x1, . . . , tnxn)∈Dn

lies in the G-stabilizer of a if and only if tj = 1 for j 6= i1, . . . , is and

t
li1
i1
· · · tlis

is
= 1. (33)

Since none of the numbers l1, . . . , ln is equal to ±1 and k is an algebraically
closed field of characteristic zero, it follows that (33) (regarded as the equation
in ti1 , . . . , tis) has at least two solutions. Hence the G-stabilizer of a is non-trivial.
This proves that (ii)⇒(i). �
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Lemma 9. If the n-tuple l1, . . . , ln contains two non-zero numbers of different
signs, then the closure of every G-orbit contains (0, . . . , 0).

Proof. To be definite, assume that

l1 > 0, l2 > 0, . . . , ls > 0, ls+1 < 0, ls+2 6 0, . . . , ln 6 0.

Let d be a large positive integer such that

q := l2 + · · ·+ ls + dls+1 + ls+2 + · · ·+ ln < 0.

Since −ql1 + l1l2 + · · · + l1ls + l1dls+1 + l1ls+2 + · · · + l1ln = 0, it follows from
(28) and (12) that the image of the homomorphism

ϕ : Gm → Dn, t 7→ (t−qx1, t
l1x2, . . . , t

l1xs, t
l1dxs+1, t

l1xs+2, . . . , t
l1xn), (34)

lies in G. On the other hand, since the numbers −q, l1 and d are positive, it follows
from (4) that for every point a ∈ An the limit limt→0 ϕ(t) · a exists and is equal
to (0, . . . , 0). �

We now consider the case when the n-tuple l1, . . . , ln contains 0 and ±1, at least
two of the li are non-zero, and all of them have the same sign. By (12) there is no
loss of generality in assuming that this sign is positive. Conjugating the group G
by an element of NGLn(Dn), we may assume that

l1 = · · · = lp = 1, lp+1 > 2, . . . , lq > 2, lq+1 = · · · = ln = 0,

p > 1, n > q > p, q > 2.
(35)

Lemma 10. Suppose that (35) holds. Take a point a= (a1, . . . , an)∈An. Then the
following assertions hold.

(i) If a /∈
⋃n

i=1Hi, then the orbit G · b, where b = (a1, . . . , aq, 0, . . . , 0), lies
in the closure of the orbit G · a, is closed, and dimG · b = q − 1.

(ii) If a ∈ Hi, then the group Ga

(a) is trivial for 1 6 i 6 p and a ∈ Oi (see Lemma 6);
(b) is non-trivial and finite for p+ 1 6 i 6 q and a ∈ Oi;
(c) has positive dimension for i > q.

Proof. It follows from (28), (12) and (35) that the image of the homomorphism

ϕ : Gm → Dn, t 7→ (x1, . . . , xq, txq+1, . . . , txn),

lies in G. Hence the point

lim
t→0

ϕ(t) · a = (a1, . . . , aq, 0, . . . , 0) = b (36)

lies in the closure of G · a.
Assume that a /∈

⋃n
i=1Hi. If the orbit G · b is non-closed, then, as in the proof

of Lemma 7, there is a homomorphism

ψ : Gm → G, t 7→ (td1x1, . . . , t
dnxn), (37)
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such that c := limt→0 ψ(t)·b ∈ G · b\G·b. It follows from (36) that d1> 0, . . . , dq > 0,
and it follows from (35), (28), (12) that d1l1 + · · · + dqlq = 0. Since l1, . . . , lq are
positive, we conclude that d1 = · · · = dq = 0. By (36) this means that ψ(t) · b = b
for every t and, therefore, c = b, a contradiction. Thus the orbit G · b is closed.
Since a1, . . . , aq are non-zero, it follows from (28), (12), (4), (35) and (36) that an
element (t1x1, . . . , tnxn) ∈ Dn lies in Gb if and only if t1 = · · · = tq = 1. This
proves (i).

Arguing as in the proof of Lemma 8, we get (ii). �

We finally consider the case when one of the numbers l1, . . . , ln is equal to ±1
(by (12) there is no loss of generality in assuming that it is equal to 1) and the
others are equal to 0.

Lemma 11. Suppose that li = 1 and lj = 0 for j 6= i. For every s ∈ k let H(s)
be the hyperplane in An given by the equation xi + s = 0. Then the following
assertions hold.

(i)
⋃

j 6=iHj is the set of all points with non-trivial G-stabilizer (which automat-
ically has positive dimension).

(ii) The open subset H(s) \
⋃

j 6=iHj of H(s) is an (n− 1)-dimensional G-orbit,
and all (n− 1)-dimensional G-orbits are of this form.

Proof. Part (i) follows immediately from (4), (28) and (12). Part (ii) follows
from (i), the invariance of H(α) and the equality dimG = dimH(α) = n − 1. �

§ 6. The group NAut An(Dn(l1, . . . , ln))

We start by proving several general assertions on the normalizers of actions
on arbitrary affine varieties.

Lemma 12. Let X be an irreducible affine variety and G an algebraic subgroup
of AutX . Then the following properties are equivalent :

(i) NAut X(G) is an algebraic subgroup of AutX ;
(ii) the natural action of NAut X(G) on k[X] is locally finite.

Proof. (i)⇒(ii). This follows from the fact that the natural action on k[X] of any
algebraic subgroup of AutX is locally finite (see [9], Proposition 1.9).

(ii)⇒(i). Assume that (ii) holds. Then one can find an NAut X(G)-invariant
finite-dimensional k-vector subspace V in k[X] such that V contains a set of gen-
erators of the k-algebra k[X]. Hence the homomorphism

ρ : NAut X(G)→ GL(V ∗)

determined by the action of NAut X(G) on V is an embedding. Consider the
NAut X(G)-equivariant map

ι : X → V ∗, ι(x)(f) := f(x) ∀x ∈ X, f ∈ V.

A standard argument (see [9], Proposition 1.12) shows that ρ|G is a morphism
of algebraic groups and ι is a closed embedding. We identify X with ι(X) by
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means of ι, and NAut X(G) with ρ(NAut X(G)) by means of ρ. Then X is a closed
subvariety of V ∗, and NAut X(G) and G are subgroups of GL(V ∗). Moreover, G is
closed and

NAut X(G) ⊂ NGL(V ∗)(G) ∩ TranGL(V ∗)(X,X), (38)

where
TranGL(V ∗)(X,X) := {g ∈ GL(V ∗) | g ·X ⊂ X}. (39)

We claim that g · X = X on the right-hand side of (39). Indeed, since X is
irreducible and closed in V ∗ and g ∈ AutV ∗, we see that g · X is an irreducible
closed subset of X whose dimension is equal to that of X. Hence TranGL(V ∗)(X,X)
(as well as NGL(V ∗)(G)) is a subgroup of GL(V ∗) and, therefore, the right-hand side
of (38) is a subgroup of GL(V ∗). Its elements normalize G and their restrictions
to X are automorphisms of X. Hence they lie in NAut X(G). Therefore,

NAut X(G) = NGL(V ∗)(G) ∩ TranGL(V ∗)(X,X). (40)

Since G is closed in GL(V ∗) and X is closed in V ∗, we obtain respectively that
NGL(V ∗)(G) and TranGL(V ∗)(X,X) are closed in GL(V ∗) (see [9], Proposition 1.7).
This and (40) imply that NAut X(G) is closed in GL(V ∗). Thus NAut X(G) is an
algebraic subgroup of AutX. �

Theorem 5. Let X be an irreducible affine variety and G a reductive algebraic
subgroup of AutX such that

k[X]G = k. (41)

In either of the following cases, NAut X(G) is an algebraic subgroup of AutX :
(i) G has a fixed point in X ;
(ii) G0 is semisimple.

Proof. Take f ∈k[X]. We shall prove that the k-linear span of the orbit NAut X(G)·f
is finite-dimensional in both cases. Then the theorem will follow from Lemma 12.

Let M(G) be the set of isomorphism classes of simple algebraic G-modules.
Given an algebraicG-module L, we denote its isotypic component of type µ ∈M(G)
by Lµ.

Since G is reductive, we have (see [10], Section 3.13)

k[X] =
⊕

µ∈M(G)

k[X]µ . (42)

The group NAut X(G) permutes the isotypic components of the G-module k[X].
Since k[X]µ is a finitely generated k[X]G-module (see [10], Theorem 3.24), it

follows from (41) that
dimk k[X]µ <∞ ∀µ. (43)

In view of (42) there are µ1, . . . , µs ∈M(G) such that

k[X]µi
6= 0 ∀ i, f ∈ k[X]µ1 ⊕ · · · ⊕ k[X]µs

. (44)
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(i) Assume thatX contains aG-fixed point a. SinceG-invariant regular functions
separate closed orbits (see [10], Theorem 4.7), it follows from (41) that there are
no other fixed points in X. Hence a is also fixed by NAut X(G). Therefore the ideal

ma := {f ∈ k[X] | f(a) = 0}

is NAut X(G)-invariant. Hence every member of the decreasing filtration

ma ⊃ · · · ⊃ md
a ⊃ md+1

a ⊃ · · · (45)

is NAut X(G)-invariant. This filtration has the following property (see [25], Corol-
lary 10.18): ⋂

d

md
a = 0. (46)

In view of (45) we have a decreasing system of nested vector subspaces
{k[X]µ ∩ md

a | d = 1, 2, . . . }. Since they are finite-dimensional (see (43)), there is
a number dµ such that k[X]µ ∩md

a = k[X]µ ∩md+1
a for all d > dµ. Then (46) yields

that actually
k[X]µ ∩md

a = 0 ∀ d > dµ. (47)

Take l ∈ Z, l > max{dµ1 , . . . , dµs}. It follows from (47) that

k[X]µi
∩ml

a = 0 ∀ i = 1, . . . , s. (48)

Since the natural projection π : k[X]→k[X]/ml
a is an epimorphism of G-modules,

we have π(k[X]µ) = (k[X]/ml
a)µ for every µ ∈M(G). Since

dimk k[X]/ml
a <∞

(see [25], Proposition 11.4), we obtain the finiteness of the set of µ∈M(G) such that

k[X]µ 6= 0, k[X]µ ∩ml
a = 0. (49)

Let {λ1, . . . , λt} be this set. Since (49) holds for µ = µ1, . . . , µs (see (44), (48)),
we may assume that

λi = µi, i = 1, . . . , s. (50)

The group NAut X(G) permutes the isotypic components of the G-module k[X] and
sends ml

a to itself. Hence this group permutes k[X]λ1 , . . . , k[X]λt
and we see that

k[X]λ1 ⊕ · · · ⊕ k[X]λt
is an NAutAn(G)-invariant subspace of k[X]. By (43), (44)

and (50), it is finite-dimensional and contains f . Hence the k-linear span of the
orbit NAut X(G) · f is finite-dimensional, as required.

(ii) Assume that G0 is semisimple. Since the index [G : G0] is finite, it follows
from Weyl’s formula for the dimension of a simple G0-module that, up to isomor-
phism, there are only finitely many simple algebraic G-modules whose dimension
does not exceed a preassigned constant. Thus we obtain the finiteness of the set
of µ ∈M(G) such that

k[X]µ 6= 0, dimk k[X]µ 6 max
i

dimk k[X]µi
.

Let {λ1, . . . , λt} be this set. We may assume that (50) holds. Since NAut X(G) per-
mutes the isotypic components and preserves their dimensions, k[X]λ1⊕· · ·⊕k[X]λt

is invariant under NAut X(G). The proof can now be completed as in case (i). �
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Corollary 9. Suppose that X and G are as in Theorem 5 and k = C. Assume
that X is simply connected and smooth and χ(X) = 1. Then NAut X(G) is an
algebraic subgroup of AutX .

Proof. By a corollary of the étale slice theorem (see [26], Pt. III, Corollary 2, [10],
Theorem 6.7), it follows from (41) and the smoothness of X that X is a homoge-
neous vector bundle over the unique closed G-orbit O in X. Hence O is simply
connected and χ(X) = χ(O). Being affine, O is isomorphic to G/H for some
reductive subgroup H (see [10], Theorem 4.17). Since G/H is simply connected
and χ(G/H) = 1, it follows that G = H (see [12], Section 5.1). Hence O is a fixed
point. The desired assertion now follows from Theorem 5(i). �

Corollary 10. Suppose that G is a reductive algebraic subgroup of Aut An and
k[An]G = k. Then NAutAn(G) is an algebraic subgroup of Aut An.

Proof. Since char k = 0, we may assume by Lefschetz’ principle ([27], Section 15.1)
that k = C. Since An is simply connected and smooth and χ(An) = 1, the desired
assertion follows from Corollary 9. �

Remark 6. The following example shows that condition (41) alone does not gener-
ally imply that NAut X(G) is an algebraic subgroup (for an irreducible affine X and
reductive G).

Example 1. Let G be an algebraic torus of dimension n > 2. We take X to be
the underlying variety of the algebraic group G. The automorphism group AutgrG
is embedded in AutX and is isomorphic to GLn(Z). The action of G on X by
left translations embeds G in AutX. These two subgroups generate AutX. More
precisely, AutX = AutgrG n G. Therefore NAut X(G) = AutX. Let g ∈ AutgrG
be an element of infinite order, and let f1, . . . , fn ∈ k[X] be a basis of X(G). Then
gd ·fi ∈ X(G) for every d ∈ Z and all i = 1, . . . , n, and the set Ci := {gd ·fi | i ∈ Z}
is finite if and only if the stabilizer of fi with respect to the cyclic group generated
by g is non-trivial. Assume that all the sets C1, . . . , Cn are finite. Then there is
d ∈ Z, d 6= 0, such that gd ·fi = fi for every i = 1, . . . , n. Since f1, . . . , fn is a basis
of X(G), this means that the automorphism gd is trivial, contrary to our assumption
that g is an element of infinite order and d 6= 0. Hence Ci is infinite for some i.
Since different characters are linearly independent over k (see [9], Lemma 8.1),
it follows that the k-linear span of Ci (and hence of the orbit NAut X(G) · fi)
is infinite-dimensional.

The information obtained above will now be used to prove that the groups
NAutAn(Dn(l1, . . . , ln)) are algebraic.

Theorem 6. The subgroups NAutAn(Dn(l1, . . . , ln)) of Aut An are algebraic for
all l1, . . . , ln. Moreover, the following assertions hold.

(i) NAutAn(Dn) = NGLn
(Dn).

(ii) If (l1, . . . , ln) 6= (0, . . . , 0), then

NAutAn(Dn(l1, . . . , ln)) ⊆ NGLn
(Dn) (51)

in any of the following cases :
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(a) l1, . . . , ln are all non-zero and have the same sign ;
(b) none of the numbers l1, . . . , ln is equal to ±1;
(c) the n-tuple l1, . . . , ln contains 0 and +1 or −1, there are at least two

non-zero numbers, and the non-zero numbers have the same sign.
(iii) If li = 1 and lj = 0 for j 6= i, then the group NAutAn(Dn(l1, . . . , ln)) is

isomorphic to NGLn−1(Dn−1) × Aff1 and consists of all (g1, . . . , gn) ∈ Affn of the
form

gj =

{
tjxσ(j) for j 6= i,

tjxj + s for j = i,
(52)

where t1, . . . , tn, s ∈ k and σ is a permutation of the set {1, . . . , i− 1, i+ 1, . . . , n}.

Proof. If G is a subgroup of Aut An and g ∈ NAutAn(G), a ∈ An, then

g(G · a) = G · g(a), gGag
−1 = Gg(a), g(G · a) = g(G · a)

and, if G is algebraic, dimG · a = dim g(G · a).
(53)

Suppose that G = Dn. Lemma 5(i) implies that
⋃n

i=1Hi is the set of points
whose G-stabilizer has positive dimension. This set is g-invariant by (53). Since the
restriction of g to the variety

⋃n
i=1Hi is an automorphism of this variety, g permutes

the irreducible components H1, . . . ,Hn. In other words, there is a permutation
σ ∈ Sn such that

g(Hi) = Hσ(i) ∀ i = 1, . . . , n. (54)

Since the ideal in k[An] determined by Hi is generated by xi, this shows that the
polynomial g∗(xi) divides xσ(i), whence g∗(xi) = tixσ(i) for some non-zero ti ∈ k.
Therefore g ∈ NGLn(Dn) (see (3), (8)). This proves (i).

We now suppose that G = Dn(l1, . . . , ln), (l1, . . . , ln) 6= (0, . . . , 0).
Assume that condition (a) holds. Then (53) and Corollary 8 imply that g per-

mutes the orbits O1, . . . ,On (see Lemma 6). In other words, there is a permutation
σ ∈ Sn such that g(Oi) = Oσ(i) for every i. By Lemma 6 and (53) it follows that
g possesses property (54), whence (as shown above) g ∈ NGLn(Dn). This proves
(51) in the case when condition (a) holds.

Suppose that condition (b) holds. Then the g-invariance of
⋃n

i=1Hi follows from
(53) and Lemma 8. Now the same argument as for G = Dn completes the proof
of (51) in the case when condition (b) holds.

Suppose that condition (c) holds. To prove (51), we may replace G by the group
conjugate to G by an appropriate element of NGLn(Dn) and assume that (35) holds.
The set {a ∈ An | dimGa > 0} is closed (see [10], § 1.4). It is g-invariant by (53),
and Lemmas 5, 10(ii) imply that its (n − 1)-dimensional irreducible components
are Hq+1, . . . ,Hn. Hence g permutes Hq+1, . . . ,Hn. Furthermore, it follows from
Lemmas 5, 10(ii) that Op+1, . . . ,Oq are all G-orbits O in An with the property
that the stabilizer Ga is finite and non-trivial for a ∈ O. Then we see from (53)
that g permutes Op+1, . . . ,Oq and, therefore, permutes their closures Hp+1, . . . ,Hq.
Finally, in view of Lemmas 5, 10(ii), all G-orbits O in An such that Ga is trivial
for a ∈ O are exhausted by the orbits O1, . . . ,Op and G · a, where a /∈

⋃n
i=1Hi.

Since G is reductive, the closure of every G-orbit in An contains a unique closed
G-orbit (see [10], Corollary on Russian p. 189). By Lemma 6, for each of the
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orbits O1, . . . ,Op this closed orbit is the fixed point (0, . . . , 0). On the other hand,
by Lemma 10(i), the closed orbit lying in G · a for a /∈

⋃n
i=1Hi has dimension

q − 1 > 1 and, therefore, is not a fixed point. Hence g permutes O1, . . . ,Op

and, therefore, permutes their closures H1, . . . ,Hp. This proves that (54) holds for
a certain permutation σ ∈ Sn. As above, this enables us to conclude that (51) holds
in case (c). This proves part (ii).

We now assume that li = 1 and lj = 0 for j 6= i. It follows from (53) and
Lemma 11(i) that the closed set

⋃
j 6=iHj is invariant under g. Hence g permutes

its irreducible components H1, . . . ,Hi−1,Hi+1, . . . ,Hn. Then we conclude as above
that for j 6= i we have gj = tjxσ(j) for some tj ∈ k and some permutation σ of the
set {1, . . . , i− 1, i+ 1, . . . , n}. Furthermore, (53) and Lemma 11 yield that g(Oi) is
an orbit which is open in some hyperplane H(c) (see the notation in Lemma 11).
Since Oi = Hi, and xi and xi + c are, respectively, the generators of the ideals of
the hyperplanes Hi and H(c), we conclude that gi = g∗(xi) differs from xi + c only
by a non-zero constant factor: gi = tixi + s for some ti, s ∈ k, ti 6= 0. Thus g is of
the form (52). Conversely, it is easy to see that every element g ∈ Aut An of the
form (52) normalizes G. This proves (iii).

Finally, we claim thatNAutAn(Dn(l1, . . . , ln)) is an algebraic subgroup of Aut An

for any numbers l1, . . . , ln. Indeed, parts (i)–(iii) show that this is the case if either
(l1, . . . , ln) = (0, . . . , 0), or (l1, . . . , ln) 6= (0, . . . , 0) and any of conditions (a), (b), (c)
of part (ii) or the condition of part (iii) holds. The only case not covered by these
conditions occurs when the n-tuple l1, . . . , ln contains numbers of different signs.
But then Lemma 9 yields that there are no non-constant Dn(l1, . . . , ln)-invariant
regular functions on An. Hence we conclude by Corollary 10 that the group
NAutAn(Dn(l1, . . . , ln)) is algebraic. �

§ 7. Fusion theorems for tori in Aut An and Aut∗An

Fusion theorems describe the subgroups that control the fusion of subsets under
conjugation. Namely, let G be an abstract group, and let H be a subgroup of G. We
say that NG(H) controls the fusion of subsets of H under conjugation by elements
of G if the following property holds.

(F) For any subset S ⊆ H and any element g ∈ G with gSg−1 ⊆ H there is an
element w ∈ NG(H) such that gsg−1 = wsw−1 for all s ∈ S.

If the pair (G,H) possesses property (F), we say that the fusion theorem holds
for H in G. Note that the action of NG(H) on H by conjugation boils down to the
action of the ‘Weyl group’ NG(H)/ZG(H).

Example 2. The fusion theorem holds for H in G in the following cases.
1) G is a finite group and H is an Abelian Sylow p-subgroup of G. (This is

a classical result of Burnside.)
2) G is an affine algebraic group and H is a maximal torus in G. (This is a clas-

sical result of the theory of algebraic groups; see, for example, [18], Section 1.1.1.)
3) G = Crn and H = Dn. (This is a result of Serre [7], Theorem 1.1.) Since every

n-dimensional torus in Crn is maximal and conjugate to Dn (see Theorem 2 (i), (ii)),
one can replace Dn by any n-dimensional torus.
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We also recall that there are (n− 3)-dimensional maximal tori in Crn for n > 5
(see Corollary 7(iii)).

Question 1. Does the fusion theorem hold when Dn is replaced by such a torus?

We now prove that the fusion theorem holds for all n-dimensional tori in Aut An

and (n− 1)-dimensional tori in Aut∗An.

Lemma 13. For every element g = (g1, . . . , gn) ∈ Aut An there is an element
g′ ∈ SLn such that if s, gsg−1 ∈ GLn, then

gsg−1 = g′s(g′)−1. (55)

Proof. Write gi = g
(0)
i + g

(1)
i + · · · , where g(s)

i is a form of degree s in x1, . . . , xn.
Since Jac(g) ∈ k, we have Jac(g) = det(∂gi/∂xj |x1=···=xn=0). But the right-hand
side of this equality is equal to det(∂g(1)

i /∂xj). Hence,

g(1) :=
(
g
(1)
1 , . . . , g(1)

n

)
∈ GLn . (56)

The automorphism g(1) is the differential of the automorphism g at the point
(0, . . . , 0). It follows from (56) that

(a) g = g(1) if g ∈ GLn;
(b) (ga)(1) = g(1)a and (ag)(1) = ag(1) if a ∈ GLn.
Let s and t := gsg−1 be elements of GLn. By (56) we have g(1) ∈ GLn. Since

gs = tg, it follows from (a), (b) that g(1)s = tg(1). Therefore the product of g(1) by
a constant α ∈ k with αn det g(1) = 1 can be taken as g′. �

Theorem 7. The following pairs (G,H) possess property (F):
(i) (fusion theorem for n-dimensional tori in Aut An)

(G,H) = (Aut An, an n-dimensional torus);

(ii) (fusion theorem for (n− 1)-dimensional tori in Aut∗An)

(G,H) = (Aut∗An, an (n− 1)-dimensional torus).

Proof. (i) Suppose that G = Aut An, H is a torus and dimH = n. By Theorem 3
we may assume that H is a maximal torus in GLn. We preserve the notation in
the statement of property (F). By Lemma 13 there is an element g′ ∈ GLn such
that equality (55) holds for every s ∈ S. Therefore g′S(g′)−1 = gSg−1 ⊆ H. Since
g′ ∈ GLn, this shows that

H ′ := (g′)−1Hg′ (57)

is another maximal torus in GLn containing S. The tori H and H ′ lie in the closed
([9], Ch. I, Section 1.7) subgroup ZGLn

(S) of the group GLn and, therefore, are
maximal tori in this subgroup. Since maximal tori in any affine algebraic group
are conjugate ([9], Ch. IV, Section 11.3), there is an element

z ∈ ZGLn
(S) (58)
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such that
H ′ = zHz−1. (59)

It follows from (57) and (59) that w := g′z ∈NGLn(H). It follows also from (58) and
(55) that gsg−1 = wsw−1 for every s ∈ S.

(ii) The same argument applies in the case when G = Aut∗An, H is a torus and
dimH = n− 1: we only replace GLn by SLn, use Theorem 4 instead of Theorem 3
and note that the element g′ may be chosen to lie in SLn by Lemma 13. �

§ 8. Applications: classification of classes of conjugate subgroups

The results obtained above are used in this section to derive the classifications
mentioned in the introduction. In particular, we prove a generalization to discon-
nected groups of Bia lynicki-Birula’s theorems [4], [5] on the linearization of actions
on An of tori of dimension > n− 1.

Theorem 8. Let G be an algebraic subgroup of Aut An such that G0 is a torus.
Then the following assertions hold.

(i) If dimG = n or dimG = n− 1, then there is an element g ∈ Aut An such
that gGg−1 ⊂ GLn and gG0g−1 ⊂ Dn.

(ii) If G ⊂ Aut∗An and dimG = n − 1, then there is an element g ∈ Aut∗An

such that gGg−1 ⊂ SLn and gG0g−1 = D∗n (see (9)).

Proof. (i) Since all maximal tori in GLn are conjugate, it suffices to prove the
existence of g ∈ Aut An such that gGg−1 ⊂ GLn.

The group G is reductive. Therefore, by a corollary of the étale slice theorem
([26], Corollary 2, p. 98), the desired assertion holds when k[An]G = k (here we only
use the reductivity of G, and not the stronger condition that G0 is a torus). In what
follows we may thus assume that k[An]G 6= k. This is equivalent to the condition

k[An]G
0
6= k. (60)

Replacing G by a conjugate group, we may assume by Theorem 3 and (13) that

G0 = Dn(l1, . . . , ln) ⊂ GLn . (61)

The existence of g will be proved if we show that (61) and (60) imply the inclusion

G ⊂ GLn . (62)

Let F be a finite subgroup of G that intersects every connected component of G.
Such a subgroup exists (see [20], Lemme 5.11). Then

G = FG0. (63)

Since G0 is a normal subgroup of G, we have F ⊂ NAutAn(Dn(l1, . . . , ln)). By
Theorem 6 we obtain that

F ⊂ NGLn
(Dn) ⊂ GLn (64)
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if either (l1, . . . , ln) = (0, . . . , 0), or (l1, . . . , ln) 6= (0, . . . , 0) and any of conditions
(a)–(c) in part (ii) of Theorem 6 holds. By (61) and (63), this proves (62) for these
(l1, . . . , ln). Now Lemma 9 and (60) yield that it remains to consider only one
possibility for (l1, . . . , ln): the case when li = 1 and lj = 0 for j 6= i (with some
fixed i). We consider this case and take any element g ∈ F . By Theorem 6(iii) we
have equalities (52). Since F is finite, the order of g is finite. It follows that s = 0
in (52). This and (8) mean that embeddings (64) (and hence (62)) hold in the case
under consideration.

(ii) The proof is the same as in (i). We only replace Aut An by Aut∗An, GLn

by SLn = GLn ∩Aut∗An, and Dn(l1, . . . , ln) by D∗n, use Theorem 4 instead of
Theorem 3 and take into account that D∗n is a maximal torus in SLn. �

Theorem 9 (classification of n-dimensional diagonalizable subgroups of Aut An

up to conjugacy in Aut An). Up to conjugacy in Aut An, the torus Dn is the
unique n-dimensional diagonalizable subgroup of Aut An.

Proof. By Theorem 8, this follows from the fact that every diagonalizable subgroup
of GLn is conjugate to a subgroup of the torus Dn (see [9], Ch. 3, § 8.2, Proposi-
tion, (d)). �

Theorem 10 (classification of (n − 1)-dimensional diagonalizable subgroups of
Aut∗An up to conjugacy in Aut∗An). Up to conjugacy in Aut∗An, the torus D∗n
is the unique (n− 1)-dimensional diagonalizable subgroup of Aut∗An.

Proof. By Theorem 8, this follows from the fact that every diagonalizable subgroup
of SLn is conjugate to a subgroup of the torus D∗n (this follows easily from [9], Ch. 3,
§ 8.2, Proposition, (d)). �

Theorem 11 (classification up to conjugacy in Aut An of maximal n-dimensional
algebraic subgroups G of Aut An such that G0 is a torus). Up to conjugacy in
Aut An, the subgroup NGLn

(Dn) (see (8)) is the unique maximal algebraic subgroup
of Aut An whose connected component of the identity is an n-dimensional torus.

Proof. By Theorem 8, this follows from the fact that Dn = NGLn(Dn)0. �

Theorem 12 (classification up to conjugacy in Aut∗An of maximal (n − 1)-
dimensional algebraic subgroups G of Aut∗An such that G0 is a torus). Up to
conjugacy in Aut∗An, the subgroup

NSLn
(D∗n) = NGLn

(Dn) ∩ SLn

is the unique maximal algebraic subgroup of Aut∗An whose connected component
of the identity is an (n− 1)-dimensional torus.

Proof. By Theorem 8, this follows from the fact that D∗n = NSLn(D∗n)0. �

We write Ln for the additive monoid of all (l1, . . . , ln) ∈ Zn such that
(a) l1 6 · · · 6 ln,
(b) (l1, . . . , ln) 6 (−ln, . . . ,−l1) with respect to the lexicographic ordering on Zn.
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Theorem 13 (classification of (n − 1)-dimensional diagonalizable subgroups of
Aut An up to conjugacy in Aut An). (i) Every (n− 1)-dimensional diagonalizable
subgroup of Aut An is conjugate in Aut An to a unique subgroup of the form

Dn(l1, . . . , ln), (l1, . . . , ln) ∈ Ln \ {(0, . . . , 0)}. (65)

(ii) Every subgroup (65) is an (n− 1)-dimensional diagonalizable group.

Proof. Let G be an (n− 1)-dimensional diagonalizable subgroup of Aut An. Using
Theorem 8(i) and the conjugacy in GLn of every diagonalizable subgroup of this
group to a subgroup of Dn and also Corollary 2(ii), we conclude that G is conjugate
in Aut An to a subgroup of the form Dn(l1, . . . , ln), (l1, . . . , ln) 6= (0, . . . , 0). By
the definition of Ln and Corollary 2(iv), we may assume that (l1, . . . , ln) ∈ Ln.
Suppose that G is also conjugate in Aut An to a subgroup Dn(l′1, . . . , l

′
n) with

(l′1, . . . , l
′
n) ∈ Ln. Then Dn(l1, . . . , ln) and Dn(l′1, . . . , l

′
n) are conjugate in Aut An,

whence Theorem 7(i) yields that they are conjugate in NGLn
(Dn). It follows

by Corollary 2(iv) and the definition of Ln that (l1, . . . , ln) = (l′1, . . . , l
′
n). This

proves (i).
Part (ii) follows from Corollary 2(ii). �

We deduce the following theorem from Theorems 6, 9 and 13.

Theorem 14. If G is a diagonalizable subgroup of Aut An of dimension > n− 1,
then NAutAn(G) is an algebraic subgroup of Aut An.

Remark 7. It is easy to see that n−1 in Theorem 14 cannot be replaced by a smaller
integer.

Theorem 15 (classification of (n − 1)-dimensional diagonalizable subgroups of
Aut An up to conjugacy in Crn). (i) Two diagonalizable (n− 1)-dimensional sub-
groups of Aut An are conjugate in Crn if and only if they are isomorphic.

(ii) Every (n − 1)-dimensional diagonalizable subgroup of Aut An is conjugate
in Crn to a unique closed subgroup of Dn of the form ker εd

n, d ∈ Z.

Proof. This follows from Theorem 13(i) and Corollary 2(i). �

For n 6 3, Theorems 2(i), 9, 13 yield a classification of all tori in Aut An up to
conjugacy in Aut An except for the one-dimensional tori in Aut A3, whose classifi-
cation is given in the following theorem.

Theorem 16 (classification of one-dimensional tori in Aut A3 up to conjugacy
in Aut A3). Every one-dimensional torus in Aut A3 is conjugate in Aut A3 to
a unique torus of the form T (l1, l2, l3), where (l1, l2, l3) ∈ L3.

Proof. Let G be a one-dimensional torus in Aut A3. By Theorem 3, it is conjugate
in Aut A3 to some torus T (l1, l2, l3). Using (8) and the equality T (l1, l2, l3) =
T (−l1,−l2,−l3), we may assume that (l1, l2, l3) ∈ L3. Suppose that G is also
conjugate in Aut A3 to a torus T (l′1, l

′
2, l

′
3) with (l′1, l

′
2, l

′
3) ∈ L3. Then T (l1, l2, l3)

and T (l′1, l
′
2, l

′
3) are conjugate in Aut A3, whence Theorem 7(i) yields that they are

conjugate in NGL3(D3). Using Corollary 2(iv), the definition of Ln and Lemma 4,
we now easily deduce that (l1, l2, l3) = (l′1, l

′
2, l

′
n). �
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§ 9. Jordan decomposition in Crn.
Torsion primes of the Cremona group

Although the Cremona groups are infinite-dimensional (this has a precise mean-
ing; see [13]), the analogies between them and algebraic groups catch the eye:
they have the Zariski topology, algebraic subgroups, tori, roots, Weyl groups, . . . .
Serre ([7], Section 1.2) writes about the analogy

“groupe de Cremona de rang n←→ groupe semi-simple de rang n”.

Here we briefly touch upon two topics demonstrating that these analogies extend
further. The second topic is intimately related to tori in the Cremona groups.

9.1. Jordan decomposition in Crn. Let X be an algebraic variety. ‘Algebraic
families’ endow BirX with the Zariski topology ([13], [14], Section 2, [7], Sec-
tion 1.6): a subset of BirX is closed if and only if its inverse image under every
algebraic family S → BirX is closed. For every algebraic subgroup G in BirX and
any subset Z of G, the closure of Z in this topology coincides with its closure in
the Zariski topology of G. In particular, G is closed in BirX.

An element g ∈ BirX is said to be algebraic if there is an algebraic subgroup G
of BirX containing g. This is equivalent to saying that the closure in BirX of the
cyclic subgroup generated by g is an algebraic subgroup. If G is affine, then we
have the Jordan decomposition of g in G (see [9], Pt. I, Section 4):

g = gsgn. (66)

We claim that gs and gn depend only on g, not on the choice of G. Indeed,
let G′ be another affine algebraic subgroup of BirX containing g and let g =
g′sg

′
n be the Jordan decomposition in G′. Since G ∩ G′ is a closed subgroup of G

and G′, there is a Jordan decomposition g = g′′s g
′′
n in G∩G′. Applying the theorem

on the preservation of the Jordan decomposition under homomorphisms (see [9],
Theorem 4.4(4)) to the embeddings G ←↩ G ∩ G′ ↪→ G′, we see that gs = g′′s ,
gn = g′′n, g′s = g′′s , g′n = g′′n. Hence if we call (66) the Jordan decomposition in
BirX, we get a well-defined notion.

By [28], every algebraic subgroup of Crn is affine. Therefore every algebraic
element of Crn admits a Jordan decomposition.

The Jordan decompositions in algebraic groups have a number of well-known
properties ([29], [9]). Here are some examples.

(a) Every semisimple element of a connected group lies in a torus of this group.
(b) The set of all unipotent elements is closed.
(c) The conjugacy class of every semisimple element of a connected reductive

group is closed.
(d) The closure of the conjugacy class of every element g in a connected reductive

group contains gs.
We recall that Crn is connected and, for n = 1, 2, simple [14]. Moreover, the

groups Aut An, Aut∗An are connected and Aut∗An is simple [30], [31]. We natu-
rally encounter the following question.
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Question 2. Are there analogues or modifications of the properties listed above
for the groups Crn, Aut An and Aut∗An ?

For example, property (a) holds for Crn when n = 1, but fails when n > 1.
Indeed, if n > 2, then by Theorem 4.3 in [15] the group Crn contains a semisimple
element of order two which does not lie in any connected algebraic subgroup of Crn.
If n = 2, then our Theorem 2(ii) and Corollary 5 yield that the elements of order
d <∞ in Crn which can be included in tori constitute a single conjugacy class while,
for example, for even d the set of all elements of order d is a union of infinitely many
conjugacy classes [32]. On the other hand, property (a) holds for the groups Aut A2

and Aut∗A2 because the action of any finite group on A2 is linearizable [33].

9.2. Torsion primes of the Cremona group. Let G be a connected reductive
algebraic group and let p be a prime. We recall (see [18], Section 1.3 and the
references therein) that p is called a torsion prime of the group G if there is a finite
Abelian p-subgroup of G not contained in any torus of G. The set Tors(G) of all
torsion primes of G admits various interpretations. For example, p ∈ Tors(G) for
k = C if and only if

⊕
i Hi(G,Z) contains an element of order p (this explains the

terminology). The task of calculating Tors(G) reduces to the case when G is simply
connected. For every simple group G, the set Tors(G) is explicitly described.

Since we can speak of tori in groups like BirX, where X is an algebraic variety,
we get a well-defined notion by replacing G in the definition above by (a subgroup
of) BirX. In particular, we can replace G by Crn, Aut An or Aut∗An. This gives
us a definition of the torsion primes of these groups. We denote the corresponding
sets of torsion primes by Tors(Crn), Tors(Aut An) and Tors(Aut∗An) respectively.
It is natural to ask the following question (concerning Tors(Crn), it was posed and
discussed in [34]).

Question 3. What are the sets Tors(Crn), Tors(Aut An) and Tors(Aut∗An)?

Since Cr1 = PGL2, we have

Tors(Cr1) = {2}. (67)

By [32], for d = 2, 3, 5 there are infinitely many conjugacy classes of elements of
order d in the group Cr2. On the other hand, as already stated at the end of § 9.1,
the elements of order d in Cr2 that are contained in tori form only one conjugacy
class. Hence 2, 3 and 5 are torsion primes of the group Cr2. Consider a prime
p > 5. By Theorem E in [35], every element g ∈ Cr2 of order p lies in a subgroup
isomorphic to Aut P2 = PGL3. Hence g lies in a torus. Finally, according to [36],
Theorem B, p. 146, there is a unique (up to conjugacy) non-cyclic finite Abelian
p-group in Cr2. This group is denoted by 0.mn and lies in a maximal torus of
a subgroup isomorphic to (Aut(P1 × P1))0 = PGL2×PGL2. Thus we conclude
that the torsion primes of Cr2 are equal to those of the exceptional simple algebraic
group E8:

Tors(Cr2) = {2, 3, 5}. (68)

Since Aut A1 = Aff1, it follows from [33] that every finite subgroup of Aut An

(resp. Aut∗An) for n 6 2 is contained in a subgroup isomorphic to GLn (resp. SLn).
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Therefore,
Tors(Aut An) = Tors(Aut∗An) = {∅} for n 6 2.

For n > 3 there is no comprehensive information about the sets Tors(Crn),
Tors(Aut An) and Tors(Aut∗An). It follows from Theorem 4.3 in [15] and (67),
(68) that

Tors(Crn) = {2, . . . } ∀n. (69)

By [37], there is a 3-elementary Abelian subgroup of rank 3 in Cr2 (hence this
subgroup is isomorphic to (µd)3). Since Cr1 contains a cyclic subgroup of order 3
and one can embed the direct product of Cr2 and n − 2 copies of Cr1 in Crn for
n > 3, we see that there is a 3-elementary Abelian subgroup G of rank n + 1
in Crn. But Lemma 2(i) yields that for every prime p, the rank of any elementary
Abelian p-subgroup of an r-dimensional torus does not exceed r. Using this and
Theorem 2(i), we see that G is not contained in a torus of Crn. By (68) and (69),
it follows that

Tors(Crn) = {2, 3, . . . } ∀n > 2.

Question 4. What is the minimal n such that 7 lies in one of the sets Tors(Crn),
Tors(Aut An) and Tors(Aut∗An)?

Question 5. Are these sets finite?
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