Hypotheses and Version Spaces

Bernhard Ganter! and Sergei O. Kuznetsov?

! Technische Universitit Dresden
2 VINITI Moscow

Abstract. We consider the relation of a learning model described in
terms of Formal Concept Analysis in [3] with a standard model of Ma-
chine Learning called version spaces. A version space consists of all possi-
ble functions compatible with training data. The overlap and distinctions
of these two models are discussed. We give an algorithm how to generate
a version space for which the classifiers are closed under conjunction.
As an application we discuss an example from predicitive toxicology. The
classifiers here are chemical compounds and their substructures. The ex-
ample also indicates how the methodology can be applied to Conceptual
Graphs.

1 Hypotheses and Implications

Our paper deals with a standard model of Machine Learning called version
spaces. But first, to make the paper self-contained, we introduce basic defini-
tions of Formal Concept. Analysis (FCA) [d]. We consider a set M of “structural
attributes”, a set G of objects (or observations) and a relation I C G x M such
that (g, m) € I if and only if object ¢ has the attribute m. Instead of (g, m) € I
we also write gI'm. Such a triple K := (G, M, I) is called a formal context. Using
the derivation operators, defined for A C G, B C M by

A" :=={me M | gIm for all g € A},
B :={g € G| gIm for all m € B},

we can define a formal concept (of the context K) to be a pair (4, B) satisfying
ACG, BCM,A =B,and B' = A. A is called the extent and B is called the
intent of the concept (A, B). These concepts, ordered by

(A1,B1) > (A2,By) <= A1 D Ay

form a complete lattice, called the concept lattice of K := (G, M, I).

Next, we use the FCA setting to describe a learning model from [2]. In
addition to the structural attributes of M, we consider (as in B]) a goal attribute
w ¢ M. This divides the set G of all objects into three subsets: The set G
of those objects that are known to have the property w (these are the positive
examples), the set G_ of those objects of which it is known that they do not
have w (the negative ezamples) and the set G, of undetermined examples, i.e.,

A. de Moor, W. Lex, and B. Ganter (Eds.): ICCS 2003, LNAI 2746, pp. 83-95, 2003.
(© Springer-Verlag Berlin Heidelberg 2003

84 Bernhard Ganter and Sergei O. Kuznetsov

of those objects, of which it is unknown if they have property w or not. This
gives three subcontexts of K = (G, M, I):

K, := (G4, M, 1), K_:=(G_,M,I), andK,:= (G, M,I),

where for ¢ € {+,—,7} we have I, := TN (Ge x M).

Intents, as defined above, are attribute sets shared by some of the observed
objects. In order to form hypotheses about structural causes of the goal attribute
w, we are interested in sets of structural attributes that are common to some
positive, but to no negative examples. Thus, a positive hypothesis for w is an
intent of K, that is not contained in the intent

g ={meM|(gm)el}

of any negative example g € G_. Negative hypotheses are defined accordingly.
These hypotheses can be used as predictors for the undetermined examples.
If the intent
g =={meM|(g.m)el}

of an object g € G, contains a positive, but no negative hypothesis, then g
is classified positively. Negative classifications are defined similarly. If ¢’ con-
tains hypotheses of both kinds, or if ¢’ contains no hypothesis at all, then the
classification is contradictory or undetermined, respectively.

In ﬂl_lﬂ we argued that the consideration can be restricted to minimal (w.r.t.
inclusion C) hypotheses, positive as well as negative, since an object intent obvi-
ously contains a positive hypothesis if and only if it contains a minimal positive
hypothesis, etc.

2 Version Spaces

The term “version space” was proposed in %], [Iﬁ] and became the name of
a certain class of Machine Learning models [14]. Version spaces can be defined
in different ways, e.g., Mitchell defined them in terms of sets of maximal and
minimal elements [19], [13]. In [20] they are defined in terms of minimal ele-
ments and sets of negative examples. They can also be defined in terms of some
matching predicate. These representations are equivalent, however transforma-
tions from one into another are not always polynomially tractable. We will use
the representation with matching predicates.

The next lines describe the basic notions of version spaces. We follow],
[2d], but with slightly modified terms, in order to avoid confusion when merging
this approache with that of Formal Concept Analysis. We need

— An example language L. by means of which the instances are described
(elsewhere also called instance language). For our purposes it is not relevant
to discuss how such a language is defined in detail. It suffices to assume that
it describes a set E of examples.

Hypotheses and Version Spaces 85

— A classifier language L. describing the possible classifiers (elsewhere called
concepts). Again, for us it is not necessary to discuss a precise definition of
L.. We assume that it describes a set C of classifiers and a (partial) order
C on C, called the subsumption order.

— A matching predicate M(c,e) that defines if a classifier ¢ does or does not
match an example e: We have M(c, e) iff e is an example of classifier ¢. The
matching predicate must be compatible with the subsumption order in the
following sense: for ¢1,co € L.,

¢1 deg = Veer M(cr,e) = M(co,e).

— Sets £ and E_ of positive and negative examples of a goal attribute with
E, N E_ = (. The goal attribute is not explicitly given.

On the basis of these data one defines a

— consistency predicate cons(c):
cons(c) holds if for every e € E the matching predicate M (e, e) holds and
for every e € E_ the negation —M(c,e) holds. The set of all consistent
classifiers is called the version space

VS(LCa L, M(Ca 6), E+, E—)'

The learning problem is then defined as follows:

Given L., L., M(c,e), B, E_.
Find the version space VS(L, L., M (c,e), E4, E_).

In the sequel, we shall usually fix L., L., and M(c, e), but work with varying
sets of positive and negative examples. We therefore sometimes write

VS(E,,E_) orevenjust VS

for short.

Version spaces are often considered in terms of their boundary sets, as pro-
posed in . These can be defined if the language L. is admissible, i.e., if every
chain in the subsumption order has a minimal and a maximal element. In this
case,

G(VS) := MAX(VS) :={ce VS| =3;,evs ¢ < c1},
S(VS) := MIN(VS) :={c e VS| -3;,cvs c1 < c}.

According to ﬂﬂ], the ideal result of learning a goal attribute is the case where
the version space consists of a single element. Otherwise, the goal attribute is
said to be learned partially.

It was said above that the goal attribute is not given explicitely. The elements
of the version space can be used as potential classifiers for the goal attribute: A
classifier ¢ € VS classifies an example e positively if ¢ matches e and negatively
else. Then, all positive examples are classified positively, all negative examples

86 Bernhard Ganter and Sergei O. Kuznetsov

are classified negatively, and undetermined examples may be classified either
way. If it is assumed that £, and E_ carry sufficient information about the goal
attribute, we may expect that an undetermined example is likely to have the
goal attribute if it is classified positively by a large precentage of the version
space (cf. l1__4|]) We say that example e is a-classified if no less than a - | VS|
classifiers classify it positively.

3 Version Spaces in Terms of Galois Connections

We show that basic notions for version spaces can smoothly be expressed in the
terminology of Formal Concept Analysis, more precisely, using the derivation
operators. Let us remark that these form a Galois connection [3].

Consider the formal context (E, C, I), where E is the set of examples contain-
ing the disjoint sets of observed positive and negative examples: £ 2O E, U FE_,
E,NE_ =10, C is the set of classifiers and relation I corresponds to the match-
ing predicate M(c,e): for ¢ € C, e € E the relation elc holds iff M(c,e) =
TRUE. The complementary relation, I, corresponds to the negation: el¢ holds iff
M (c,e) = FALSE.

Proposition 1.
VS(E,,E_)=E, ' nE_"

Proof. The set of classifiers that match all positive examples is FE’. Since
I = (E x C)\ I, the relation I corresponds to the predicate “classifier ¢ does
not match example e” and the set of classifiers that do not match any negative
examples is E_T. The version space is by definition the set of classifiers that
match all positive examples and do not match any negative examples, i.e., is the
intersection £,/ N E_".]

From this Proposition we immediately get a result from ﬂ] about merging
VETsion spaces:

Corollary 1. For fized L., L., M(c,e) and two sets Ex1,E_1 and E1o, E_5 of
positive and negative examples one has

VS(E_H UE, E 1 U E_Q) = VS(E+1, E_l) n VS(E+2, E_Q).
Proof. This follows from Proposition [and the relation (AU B) = A’ N B,
which holds for an arbitrary derivation operator (-)". O
Proposition 2. The set of all 100%-classified examples defined by the version

space VS(E4, E_) is given by

(B nE_D

Hypotheses and Version Spaces 87

Proof. By the previous proposition, the version space given by the set of pos-
itive examples F and the set of negative examples E_ is E_{_ N E_T, therefore
the set of all examples that are classified positively by all elements of the version
space is (B, "N E_T)!. O

The next proposition explains what it means when the set £ of all positive
examples is closed with respect to (-)71.

Proposition 3. If E.'1 = E., then there cannot be any 100%-classified unde-
termined example, no matter what E_ is.

Proof. By the previous propositions, E+I is the set of all classifiers that match
positive examples and E+I I'is the set of all examples matched by these classi-
fiers. If E.'7 = F. , then, independent of any possible examples, these classifers
do not match any “new” examples (i.e., those outside E). a

Proposition 4. The set of examples that are classified positively by at least one
element of the version space VS(Ey, E_) is given by

E\(E.S nE_D.

Proof. By Proposition 1, (E,' N E_') is the version space given by exam-
ples £, and E_. The set of all examples that are not matched by any classifier
from this version space is (B4 N E_T)T. Therefore, the set of examples that are
matched by at least one classifier is its complement w.r.t. the set of all possible
examples, i.e., B\ (B, I nE_1)T, O

4 Classifier Semilattices

In the preceding section we have described version spaces in the language of
Formal Concept Analysis. But for many examples this description is too simple,
because it does not assume any additional structure for the set of classifiers. We
have mentioned that for version spaces the classifiers are given in terms of some
language L., and it is therefore natural to consider the case when the ordered
set (C, <) of classifiers is a meet-semilattice. Let M denote the meet operation
of this semilattice.

This is not an inept assumption. Classifiers given as logical formulae form
a meet semilattice when the set of these formulae is closed under conjunction.
Classifiers given as attributes show the same effect if arbitrary attribute combi-
nations are allowed as classifiers, too. This also covers the case of attributes with
values. In the setting of], for example, each attribute takes one of possible
values, either constant or “wildcard” x, the latter being the shortcut for univer-
sal quantification over constant values of this attribute. Examples are given by

88 Bernhard Ganter and Sergei O. Kuznetsov

conjunctions of attribute values. A classifier ¢ matches example e if all attribute
values of ¢ that do not coincide with the corresponding values of e are wildcards.

Formal Concept Analysis offers scaling techniques ﬂﬂ] that reduce the case
of many-valued attributes to the case of plain “one-valued” ones. We then may
assume that each classifier ¢ corresponds to a subset S, of a fixed set of attributes,
and ¢ matches an example e if and only if e has each of the attributes in S.. The
subsumption order then corresponds to the set inclusion:

c1 C ey <— Scl - SCZ.

If M makes a complete semilattice (e.g., when the semilattice is finite), then the
dual join operation U can be (uniquely) defined. This operation on classifiers
corresponds to the intersection of attribute sets: ¢; L ¢o matches exactly those
examples that are matched by both ¢; and cs.

Proposition 5. If the classifiers, ordered by subsumption, form a complete U-
semi”-lat”-tice, then the version space is a complete subsemilattice for any sets
of examples E4 and E_.

Proof. Recall that a classifier belongs to the version space iff it matches all
positive and no negative examples. If ¢; and co satisfy this condition, then ¢y Ucs,
being more specific than ¢; and ¢y, does not match any negative examples. On
the other hand, the join ¢y Ucy covers the intersection of sets of examples covered
by ¢1 and co. Since all positive examples are covered by both ¢; and co, their
join ¢1 U ¢y covers all positive examples too. O

In M] we have introduced a variant of Formal Concept Analysis based on
so-called pattern structures. Here we use a slightly restricted form of them. First
we assume that the set of all possible classifiers forms a complete semilattice
(C, 1), which allows us to define a dual join operation L. A pattern structure is
a tuple (E, (C,M),d), where E is a set (of “examples”), ¢ is a mapping

6:FE—C,

d(E) :={d(e) | e € E}. The subsumption order can be reconstructed from the
semilattice operation:
cCd < chNd=c.

For such a pattern structure (E, (C, M), d) we can define derivation operators
as we did for formal contextd!] by

A® :=Teecad(e) for ACE

and
¢:={e€eFE|cCdle)} for c e C.

The pairs (A4, ¢) satisfying
ACE, ceC, A°=c¢c, c*=4A

! In fact, pattern structures can be represented as formal contexts.

Hypotheses and Version Spaces 89

are called the pattern concepts of (E,(C,M),), with extent A and pattern intent
c. The pattern concepts form a complete lattice.

Not all classifieres are pattern intents, and it may be the case that many
classifiers describe the same extent A. Only one of them, namely A®, then is a
pattern intent. Let us call two classifiers ¢; and ¢y equivalent if ¢§ = ¢5. We then
observe that for every classifier ¢ the equivalence class of ¢ contains a unique
pattern intent, ¢°°. This is the representing pattern intent for c.

If, as above, F; and E_ are disjoint subsets of E representing positive and
negative examples for some goal attribute, we can define a positive hypothesis h
as a pattern intent of (E4, (C,M),d) that is not subsumed by any classifier from
0(E_) (for short: not subsumed by any negative example). Formally, h € C is a
positive hypothesis iff

RNE_=0 and EIA§E+A°:h.

A disappointing situation is when the version space is empty, i.e., when there
are no classifiers at all separating all positive examples from all negative ones.
This happens, for example, if there are hopeless positive examples, by which we
mean elements e, € E, that have a negative counterpart e_ € E_ such that
every classifier which matches e also matches e_. An equivalent formulation of
the hopelessness of e is that (e)**NE_ # (.

Theorem 1. Suppose that the classifiers, ordered by subsumption, form a com-
plete meet-semilattice (C, M), and let (E, (C,M),d) denote the corresponding pat-
tern structure. Then the following are equivalent:

1. The version space VS(E4, E_) is not empty.

2. (EL)**NE_=0.

3. There are no hopeless positive examples and there is a unique minimal pos-
itive hypothesis by .

In this case, hyy;, = (E4)° and the version space is represented by a convex
set in the lattice of all pattern intentd with mazimal element Nonin:

Proof. The version space consists of precisely those classifiers ¢ that satisfy
E, C ¢® and ¢ N E_ = (). The join m of all such classifiers has the same
property; it therefore is the maximal element of the version space and the only
element of S(VS). From F; C m® we get that (E,)°® C m?® and therefore
(EL)°NE_ =10.

Suppose (E4)°°NE_ = (), then h := (E+)° is a positive hypothesis subsumed
by every positive hypothesis A°, A C E,. If e, € E4 the (e4)®® C (F4)°°. Thus,
if (E4)°° N E_ =), then there cannot be any hopeless positive examples.

If there is a unique minimal hypothesis, hy,;;,, then E; C A := h?nin' Sup-
pose not, then there is some positive example e € Ey, e ¢ A. Since e is not
hopeless, e° is a hypothesis, and this hypothesis is incomparable to h;;,, a con-
tradiction. Thus hy;;, is the maximal element of the version space. (Il

2 ordered by subsumption

90 Bernhard Ganter and Sergei O. Kuznetsov

The theorem gives access to an algorithm for generating the version space.
To be more precise: our algorithm will not generate the version space, but the
set of representing pattern intents. A well-known algorithm for generating all
formal concepts of a formal context can be modified to only generate a convex
set of the type described in Theorem [l This can easily be described here, but
without proof. For the latter we refer to B]

Fix a linear order < on the set G of all examples in such a way that all positive
examples come first, then all negative ones, and the other elements come last.
Let nmax denote the maximal negative example in this order. Also with respect
to this order, we reformulate two elementary notations from ﬂa]

— For A, B C G and i € GG define
A<;,B:<= i1€B,i¢ A, and (j€ A < je Bforall j <i).
— For ACG and i € G, i ¢ A, define
Adi={itu{jeAlj<i})®.

Now the pattern intents representing the version space are recursively given
as follows:

1. The first element is hpy i, = (E4)°, provided that (E4)°° N E_ = (. Other-
wise, the version space is empty.

2. If an element h of the version space has been computed, then the “next”
element hy eyt is computed as follows: Let A := h®, and let 7 be the largest
element that is greater than nmax and that satisfies

A<, ADi.
Then hyext = (A @ 14)°. If no such 7 exists, the algorithm terminates.

Corollary 2. If the classifiers, ordered by subsumption, form a finite meet-
semi”-lat”-tice, then a system of representatives for the version space can be
computed using the algorithm described above.

5 Boundary Sets, Hypotheses, and Predictors

According to [H] a subset A C M is a proper premise of an attribute m € M if
me A, me A’ and for any A; C A one has m ¢ AY. It would be useful to know
the proper premises of the goal attribute w. But as long as there are undecided
examples, i.e., as long as the set E. is not empty, our information does not
suffice to determine these. We therefore generalize the notion to describe good
candidates for such premises:

Definition 1 We call d € L, a positive proper predictor with respect to example
sets E,, FE_ if the following conditions are satisfied:

Hypotheses and Version Spaces 91

1. d°NE_ =19,
2. d°NE; #0,
3. if d 3 dy and d # dy then d§ N E_ # ().

Thus, a positive proper predictor matches no negative example (due to Con-
dition 1), at least one positive example (Condition 2), and is a most general
classifier with these properties (Condition 3). The set of all such predictors for
a pattern structure IT = (E, (C,M),) and example sets F; and E_ is denoted
by].D]?_;,_(.I]7 E+, E_)

Our next proposition describes the interplay between the set of predictors
of a pattern structure IT := (FE, (C,M),0) with example sets F, and E_, the
set Hy (I, EL, E_) of its positive hypotheses and the boundary sets G(VS) and
S(VS) of the corresponding version space. For a set X C C of classifiers let
ming (X) denote the minimal elements:

minc (X):={rze X |yZzforaly#zin X}.

Proposition 6. Let I = (E,(C,M),08) be a pattern structure and E = Ey U
E,UE_. Then

1. PPy (11, By, B-) = ming (Up, cp, GIVSUL Py, E-))),
2. H+(H7 EJraE*) = UFQE+ S(VS(Ha F+7E*))‘

Proof. 1. Consider a positive proper predictor p w.r.t. examples F, and E_.
Let Fi:={g € E, | pC ¢°}. By Condition 3 of Definition [d, no element of the
version space VS(F, E_) can be more general than p. Hence, by the definition
of G(VS), we have p € G(VS(II, Fy,E_)),

PP (II,Ey,E_)C | J G(VSUIL Fy E_)).

FyCEy

Moreover, p should be among the most general elements of

U Gvsur,Fy E)),
FLCEy

since otherwise, there should have existed a positive classifier more general than
p and p could not have been a positive proper predictor w.r.t. ., E_.
In the other direction, let p be a maximal element of the set

U Gvsur Fy E)).
FyCE,

Then, by the definition of a version space, for some Fy C E,, we have Fy C p°,
E_ & p°, and hence p® C E, U E,, thus Condition 1 of Definition [[]is satisfied.
Condition 2 is also satisfied, since for all ¢ € F'y C E one has g € p°. Condition
3 is satisfied, since otherwise, for some F' in the version space V.S(II, F, E_)

92 Bernhard Ganter and Sergei O. Kuznetsov

there had existed a classifier p; J p, which contradicts the assumption that p is
maximal w.r.t. subsumption C in UF+QE+ G(VS(II, Fy, E_)). Therefore, p is a
positive proper predictor w.r.t. examples £, F_, and E..

2. For each Fy C E., if VS(II, Fy, E_) is not empty then, by Theorem 1, the
unique element of the set S(VS(II, Fy, E_)) is a minimal hypothesis for the
pattern structure IT and sets of examples F'y, F_. Thus,

H.(IILE{,E_)2> | S(VS(II,F. E_)).
FCE,

In the other direction, each positive hypothesis H w.r.t. (II,E,,E_) is a
minimal positive hypothesis w.r.t. (II, Fy, E_) for F. = H° N E,. Hence, H is
a unique element of S(VS(I1,Fy, E_)) and

H+(H,E+,E_)g U S(VS(H7F+5E—))
FCE,

6 An Example

The 12th European Conference on Machine Learning was held jointly with the
5th European Conference on Principles of Knowledge Discovery in Databases.
The program included a workshop on Predictive Toxicology Challenge [@L which
consisted in a competition of machine learning programs for generation of hy-
pothetical causes of toxicity from positive and negative examples of toxicity.
The learning program presented in El] turned out to be Pareto-optimal among
all classification rules generated by learning models participating in the com-
petition in terms of the relative number of false and true positive and negative
classifications made by hypotheses generated by a learning program (see

for details). Their learning program is based on the JSM-method and generates
minimal hypotheses along the lines of definitions in Section[l It can be viewed
as an instance for the methods of this article.

The “examples” in the toxicology challenge were chemical compounds; the
goal attribute was toxicity. In the original representation the goal attribute was
not binary, however obviously positive examples, i.e., those known to be certainly
toxic and negative examples, i.e., those known to be certainly nontoxic, were
isolated. In the toxocology challenge we used a standard representation by formal
contexts. If we want to represent the chemical substances more properly, we can
associate to each chemical compound g € G as a corresponding pattern 6(g)
its molecular graph. As classifiers we use these graphs and their subgraphs and,
more generally, subgraph combinations. The use of subgraph combinations leads
to a semilattice of classifiers, as treated in Section [l which is a subsemilattice of
the lattice of order ideals of the ordered (w.r.t. subgraph isomorphism relation,
see below) set of labeled graphs. This approach has already been used in u]

Hypotheses and Version Spaces 93

It has to be specified precisely what we mean by a subgraph. A useful defini-
tion corresponds to that of the injective specialization relation [16] or injective
morphism [15] used for Conceptual Graphs.

Let P be the set of all finite graphs with vertex and edge labels from L, up
to isomorphism. A typical such graph is of the form I := ((V,1,), (E,l.)), with
vertex set V', edge set E, and label assignments [,, . for vertices and edges,
respectively. We say that

I = ((‘/27 lv2)7 (E27 le2))

is isomorphic to a subgraph of

I = ((Vi,l1), (B1,leq)),

or for short, Iy is a subgraph of I3, denoted by Ib < I7, if there exists a
one-to-one mapping ¢ : Vo — V; that (for all v,w € V3)

— respects edges: (v,w) € Ey = (¢(v), p(w)) € EY,
— fits under labels: 1,5 (v) = 1,1 (p(v)), lea(v, W) = le1 (p(v), p(w)).

Obviously, < is an order relation. A more general definition, which takes into
account ordering of labels (a label can be less or more “general” than another
one) can be found in [J], . [4].

Having defined < we define a lattice on graph sets along the lines of E] In
terms of lattice theory, FCA, and pattern structures, this can be described as
follows. First, the lattice of order ideals LI(P, <) of the order < is given by
Birkhoff’s theorem (see E], Theorem 39). This gives us infimum and supremum
operations M and U. Then we define a pattern structure (G, (LI(P,<),U),J),
where ¢ takes each object g € G to an element of the lattice of order ideals on
graphs described above. Using this pattern structure we generate hypotheses as
described in Section [above.

The vertex labels in case of molecular graphs corresponding to atom types
(e.g., C, N,Cl staying for carbon, nytrogene, chlorine, respectively) and edges
are labeled by bond types (single bond, double bond, triple bond, aromatic bond,
etc.). An aromatic bond in cyclic components of a molecular graph is usually
denoted by a circle inside a cycle.

Consider the disconnected graph in Figure 1. It turns out that this is a
minimal hypothesis for toxicity. The connected component to the right belongs
to the version space, whereas the connected component to the left is not a premise
of the goal attribute at all, since it is a subgraph of some graphs representing
negative examples.

7 Discussion and Relation to Other Work

The major drawback of the version spaces, where classifiers (also called “con-
cepts” in some publications on version spaces) are defined syntactically, is the
very likely situation when - in case of too restrictive choice of the classifiers -

94 Bernhard Ganter and Sergei O. Kuznetsov

NH

C C

Fig. 1. Two connected components of a hypothesis

there is no classifier that matches all positive examples (so-called “collapse of
the version space”). This can easily happen for example when classifiers are just
conjunctions of attribute value assignments and “wildcards”, a case mentioned
above. In other words: The situation discussed in Theorem [I, which presupposes
that there are classifiers that match all positive and no negative examples, is too
narrow.

If the expressive power is increased syntactically, e.g., by introducing dis-
junction, then the version space tends to become trivial, while the most specific
generalization of positive examples becomes “closer” to or just coincide with the
set of positive examples.

As a remedy, we suggest to use sets of hypotheses as we defined them in
terms of patterns structures. They offer in fact a sort of “context-restricted” dis-
junction: not all disjunctions are possible, but only those of minimal hypotheses.

Clearly, the relation of our work with that in Inductive Logic Programming
ILP should be realized. In ILP (see, e.g.,) the definition of a version space
is specified by taking the < relation to be the inference relation in logic and the
set of classifiers as a subset of the set of logical programming formulas.

As the origin of the < order can be arbitrary, one can use the above con-
structions for learning of “generalized” descriptions from descriptions of positive
and negative examples given in a description logic, by conceptual graphs, etc.
One should just specify an initial “more general than or equal to” relation <.

References

1. V.G. Blinova, D.A. Dobrynin, V.K. Finn, S.O. Kuznetsov, and E.S. Pankratova,
Toxicology Analysis by Means of the JSM-Method, Bioinformatics, 2003.

2. V. K. Finn, Plausible Reasoning in Systems of JSM Type, Iltogi Nauki i Tekhniki,
Seriya Informatika, 15, 54-101, 1991 [in Russian].

3. B. Ganter and S. Kuznetsov, Formalizing Hypotheses with Concepts, Proc. 8th
Int. Conf. on Conceptual Structures, ICCS’00, G. Mineau and B. Ganter, Eds.,
Lecture Notes in Artificial Intelligence, 1867, 2000, pp. 342-356.

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

Hypotheses and Version Spaces 95

. B. Ganter and S.O. Kuznetsov, Pattern Structures and Their Projections, Proc.
9th Int. Conf. on Conceptual Structures, ICCS’01, G. Stumme and H. Delugach,
Eds., Lecture Notes in Artificial Intelligence, 2120, 2001, pp. 129-142.

B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Foundations,
Springer, 1999.

C.A. Gunter, T.-H. Ngair, D. Subramanian, The Common Order-Theoretic Struc-
ture of Version Spaces and ATMSs, Artificial Intelligence 95, 357-407, 1997.

H. Hirsh, Generalizing Version Spaces, Machine Learning 17, 5-46, 1994.

H. Hirsh, N. Mishra, and L. Pitt, Version Spaces Without Boundary Sets, in
Proc. of the 14th National Conference on Artificial Intelligence (AAAI97), AAAI
Press/MIT Press, 1997.

S.0. Kuznetsov, JSM-method as a machine learning method, Itogi Nauki
Tekhniki, ser. Informatika, 15, pp.17-50, 1991 [in Russian].

S.0. Kuznetsov, Learning of Simple Conceptual Graphs from Positive and Negative
Examples. In: J. Zytkow, J. Rauch (eds.), Proc. Principles of Data Mining and
Knowledge Discovery, Third Furopean Conference, PKDD’99, Lecture Notes in
Artificial Intelligence, 1704, pp. 384-392, 1999.

S.0. Kuznetsov and V.K. Finn, On a model of learning and classification based
on similarity operation, Obozrenie Prikladnoi i Promyshlennoi Matematiki 3, no.
1, 66-90, 1996 [in Russian].

T. Mitchell, Version Space: An Approach to Concept Learning, PhD thesis, Stan-
ford University, 1978.

T. Mitchell, Generalization as Search, Artificial Intelligence 18, no. 2, 1982.

T. Mitchell, Machine Learning, The McGraw-Hill Companies, 1997.

M.-L. Mugnier and M. Chein, Représenter des connaissances et raisonner avec des
graphes, Revue d’Intelligence Artificielle, 10(1), 1996, pp. 7-56.

M.-L. Mugnier, Knowledge Representation and Reasonings Based on Graph Ho-
momorphisms, in Proc. 8th Int. Conf. on Conceptual Structures, ICCS’2000, G.
Mineau and B. Ganter, Eds., Lecture Notes in Artificial Intelligence, 1867, 2000,
pp. 172-192.

S.-H. Nienhuys-Cheng and R. de Wolf, Foundations of Inductive Logic Program-
ming, Lecture Notes in Artificial Intelligence, 1228, 1997.

M. Sebag, Using Constraints to Building Version Spaces, in L. de Raedt and F.
Bergadano, eds., Proc. of the European Conference on Machine Learning (ECML-
94), pp. 257-271, Springer, 1994.

M. Sebag, Delaying the Choice of Bias: A Disjunctive Version Space Approach,
in L. Saitta ed., Proc. of the 13th International Conference on Machine Learning,
pp. 444-452, Morgan Kaufmann, 1996.

E.N. Smirnov and P.J. Braspenning, Version Space Learning with Instance-Based
Boundary Sets, in H. Prade, ed., Proceedings of the 13th Furopean Conference on
Artificial Intelligence, J. Wiley, Chichester, 460-464, 1998.

The web-site on Predictive Toxicology:
http://www.predictive-toxicology.org/ptc/

	Hypotheses and Version Spaces
	1 Hypotheses and Implications
	2 Version Spaces
	3 Version Spaces in Terms of Galois Connections
	4 Classifier Semilattices
	5 Boundary Sets, Hypotheses, and Predictors
	6 An Example
	7 Discussion and Relation to Other Work

	References

