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SIMILARITY IN THE GENERALIZED JSM METHOD
AND ITS GENERATION ALGORITHMS

S. M. Gusakova and 8. Q. Kuznetsov

The article considers generation of hypotheses in the "generalized" JSM method, which
consists in generation of "conditional" hypotheses about canse-and-effect relations for positive

+3 . and negative exampies. The conditionality of the hypotheses is that the causes about which the
hypotheses are advanced "operate” (cause the manifestation of a property) in the absence of
certain substructures called "brakes” of these causes. In contrast to "ordinary" negative
causes expressing similarities of negative exampies, the brakes possess some "canse-and-effect
structure,” bearing their own opposite: conditional positive causes. An aigebraic description
of similarity in the generalized JSM method is suggested, and aiso algorithms for generating
generalized hypotheses (together with analysis of computational complexity).

1. THE GENERALIZED METHOD AND SIMILARITY

The basic idea of the JSM method [12], to establish cause-and-effect relations between substructures of
structured objects and a subset of properties of these objects on the basis of determination of the objects’ essential
similarity, is naturally expanded in the generalized JSM method, the principle of which consists in taking into
account the context (in the structure of the object) when establishing the cause-and-effect relations.

Such consideration of context is due to realities of the problems to be solved wnh the help of the JSM
method from the field of chemistry, pharmacology, and sociology.

A formal definition of a generalized JSM predicate was suggested in [3]. Its mformal meaning amounts
to the following: in the presence of a description of some positive and acgative examples for some class of objects
{characterized by a particular property), "conditional” hypotheses are generated. Their conditionality is that the
causes "operate” (cause manifestation of the property) in the absence of certain substructures called "brakes” of
these causes. In contrast to "ordinary” (see [L2]) negative causes expressing similarities of negative examples, the
brakes possess some "causal (cause-and-effect) structure,” bearing their own opposite: conditional positive causes.
Thus, the binary relation V = ,W, which is read as "the subobject V is a cause of the presence of a set of properties
W,” of the simple JSM method is replaced by the ternary reladon T(V, x, W), which is read as "V is a cause of the
presence of a set of properties W in the absence of ‘brakes' «,” in the generalized JSM method.

Restrictions on the length of the article and the wish to avoid repeating the material set forth forces the
authors to refer readers unfamiliar with the JSM method who want to get to know it to [1-4], which contain ail of
the necessary information.

However, the minimum information, concepts, and notations necessary for reading the present work are
given below.

The JSM method of automatic hypothesis generation is used to analyze and process data represented in
a data base with incomplete information. The class of problems to be solved by the JSM method is characterized
by the foilowing conditions:

- the subject area’s data are well structured; o

- there is a set of objects and a set of properties in each of which certain operatlons are assngned
- in the set of objects, the rejation "to be a subobject of an object" is determined;
- in the product of sets of objects and properties, the partially determined refations “an object possesses
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a set of properties" {represented by ;b,) and "a subobject is the cause of a set of properties’ (represented by =)
are assigned;

- there is a set of positive and negative examples of the first relation, i.e., a set of pairs of the type (%, y),
where x is an object and y is a property, that satisfy and do not satisfy the relation;

The examples are obtained empirically.

The presence of properties of the objects or their absence is determined by “positive” (+) and "negative”
(=) causes, ie., the presence of some phenomenon is due to some set of (+) causes, and the absence of a
phenomenon is due either to the presence of (—) causes or the absence of corresponding ( +) causes.

As a rule, problems of this class arise in poorly formalized fields of knowledge.

The initial data for the JSM method are matrices of partially determined relations: =, and =>. The rows
of the matrices correspond to objects in the former case and subobjects in the latter; and the columns, to elementary

properties. At the intersection of the i-th row and the j-th column, there 1s +1if x;;:-y_: is fulfilled, —1if it is not
£
fulfilled, and t if it is not known whether or not .:¢="-y, {{ = 1, 2) takes place. The subrow of the matrix
&

correspondiog to all +1 (—1) is called a positive (negative) example. _
With the help of logical combinatorial algorithms, the simple JSM method generates hypotheses of the type

J(V-l) (C:‘A)l J(?.B) (6::-,‘4},
J(t.m (C=>|A} and J(‘-M {c-g:‘{}.

where J is a one-place operator; and v = (1, —1,0) and 1 are types of trath values denoting actual truth ( +1), actual
falsehood ( —~1), actual contradiction (0), and indeterminacy ().

With the help of significantly more complex aigorithms, the generalized method, which reflects deeper
ideas about the nature of cause-and-effect relations, generates hypotheses of the type

Yoy T (€. % Aand 7 g T C. % A),

{t.n
where C and A are an object and a set of properties, respectively; C is a subobject; and x is a set of brakes. .

In various complicated versions, the logical combinatorial algorithms of the JSM method realize a simple
idea of J. S. Mill (hence the name JSM method): the cause of similarity of objects’ properties is similarity of their
structures.

Therefore, the concept of similarity is one of the central concepts of JSM theory, and determination of
essential similarity in specific applied problems and for specific data structures is one of the central problems of
creating an applied JSM system.

JSM systems use the operation of similarity to distinguish the causes of subobjects, and local (relation) and
global (family of sets) similaritics to construct algorithms.

In JSM methods, the similarity operation is understood as an idempotent, commutative, and associative
operation on pairs of objects. These propertics make it possible to unambiguously express similarity of a set of
objects in terms of pair similarities, regardiess of the order of the objects’ arrangement in the data base.

The operation of similarity is represented as 1. A strict definition of it can be found, for example, in [5].

Definition 1. Objects X, ..., X;_are locally similar if I[ X, ,* 2
Jml

Local similarity is an n-ary tolerance relation (see [6]).
Definition 2. Objects X;, ..., X, are globally similar if

(I[ X, =-u)&vx, ((f[ X, )]IX, -n)&
J-l jual 7 n
&(ﬁ‘j(m=f)).

Global similarity links all objects that contain a certain subobject (result of the similarity operation) and
therefore is not a relation.
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The structure of global similarity is described by a family of sets (M, G), where M is the set of objects
under consideration; G = {g;}; and g; is the subset of globally similar objects. We recommend [7.8] to readers who
want to familiarize themselves with the theory of global and local similarity.

For further exposition, it will be convenient for us to use the operational interpretation of local and global
similarity (see [5]), in accordance with which:

Definition 1. h is local similarity of X,, ..., X, from S (8§ is a set of objects}, if

n
O Xx,=na
F |

)

Definition 2’. (h, {X,, ..., X,})is global similarity, if X,, .., X, € S, - [ Xymp ,and VY e S\{X,, .., X},
YTTh # h takes place. el

The logical combinatorial algorithms realizing the simple JSM method are based on finding the global
similarity of objects possessing some property.

Algorithms for realizing the generalized JSM method seek triads in the relation T(V, x, W), The set of
triads of this relation is the region of truth of a generalized JSM similarity predicate, which is represented as M" .,
(we are considering the case of a positive predicate, remembering that all of the reasoning can be transferred 1o
the case of a negative predicate M ™, with no difficulty).

On the strength of the capaciousness of the indicated predicate’s formulation, we will give it here in a
simplified form. For an exact formulation, we refer the reader to [9], which is devoted to study of this predicate.

‘We will represent the predicate M, ,(V, %, W)} in the form of a conjunction of several parts, to which we
will give mnemonic notations for the sake of convenience:

M (Y, %, W) = EX&ED&CE&B/.
EX describes a set of examples of the type Ji, a){Xt=»Y;) which are the basis of a plausible deduction;
’

ED is an empirical dependence between V, W, and x expressing the fact that "V is a cause of W in the
absence of brakes x = {V, .., V.}.
This dependence has the form

VXYY((7a.m (x-‘bﬂ&VUUu, -|(X=:u- N+UsY&Vc
=X1& T (VicXV ...V VX))~ Wa V&AW ae o),

CE is the condition of exhaustibility, which provides for consideration of all suitable examples from the data
base:

]

B/ describes the set of examples that generate brakes and includes two parts, B/, and B/, which describe
sets of positive and negative examples, respectively:

Bi,: f-‘;.n W) (V. W )AWSY ))AVCZ),
Bly: (4 ZpW ) &) (WCW )&V EZ,,
{
Bl (Bz,vm.)&(v,a Nz, )avcv,.
oo . pmi TR .

The rest of the fragments of the predicate M,,, characterize the conditions of exhaustibility and
imaginariness for the brakes.

The essence of the predicate M, is that a subobject found as operational similarity of objects X, ..., X,
is a cause of the property W, if none of the indicated objects contains brakes from x = {V,, ..., V,}, Vo V,i=1,
.., . The brakes, in turn, are found from objects Z,, ..., Z,, for negative, as well as positive examples containing V,
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but not possessing the property W.

If brakes for V cannot be extracted from the examples available in the data base, then V is not a cause of
the property W in the generalized sense,

At the algorithmic level, the main difficuities are due to the fact that when actions checking the conditions
of the predicate are performed in succession a subobject V found as a candidate for a cause of the property W may
be thrown out. The next step in this case will be conducted on a set of objects X, ..., X, without the objects that
contain brakes, and this can lead to the appearance of a new candidate for a cause, which, in turn, entails a search
for new brakes. The presence in the predicate M7, , of a condition according to which brakes are also sought
among positive examples that do not possess the property W complicates the algorithm even more.

Investigation of the properties determined in a set of objects by a predicate of gencralized similarity
provides the opportunity to distnguish different sitnations that arise depending on the structure of the data base,
and among these situations to find those for which the algorithm realizing the generalized JSM method is simpler
than in the general case.

Therefore, we will start this investigation,

Analyzing the predicate M",,,, of generalized similarity from the point of view of the nature of similarities
generated by it in a set of objects (so-called procedural similarities), we must note the following significant points:

1) procedural similarities in a set of objects are global similarities, on the strength of the condition ot
exhaustibility;

2) procedural similarity determining a cause is some composite of simple similarities. This follows from
the trinariness of the predicate and the relations between v and x.

Ve will introduce the folloewing netations:

W = {w, .., w,} is a set of elementary properties.

W =2 = (%, .., GE} is the set of all subsets of the set W.

G=&g t=1,..., B I=1, ..c, & o=(+, =, £}

z'.= (f‘:g’. § &'} is global similarity, with 3y consisting of objects taken from the subset of positive examples

R £
of the type J, o(X =, W), S;' of objects from the subset of negative examples also for the property &, and S&' of
objects from the subset of positive, as well as negative exampies of this property.

Thus, {h’ils the set of all maximum positive "intersections” {or rather, the results of the similarity
operation); and { h'}, of all negative ones, i.e.,

W= 1 X §k¢={X,.|(J<1‘0)(X,,=>lY)&

X654
&7, )Y
Dilaldbl), m=1,...m & j=1,...5
t j; WISW;
dhlm (R, $81Y B= T X

quS' +J

Sl {Xn (7 (1,0 Xnam? &S )V
VI 10y (Xpotd ) &(W,SY 1)},

Le, 8"’commmofob]ectsmh:n&ompmm:nmplesforpmpemesw;andwj,mhw¢w
~ The need to consider the property D" is determined by the part of the predicate B/, for secking brakes.
We will define two ternary predicates:

- %
CI (}-‘lv gu': gﬂ.‘)_
_]#I"CE,,‘)&(;“’=§M’)&VI_[ (;I‘CERI); 1
;l (gt' nr d‘. )
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=l ( Bl )& (Bl =h%!) &vir (B ALY .

It is clear that £, and C, are equal to 0 if even one of the terms of the conjunction is equal to zero (1 and

0 are the truth values "truth" and "falsehood").
. .. $ o+ + o+

We will define global similarity P!={py'}, where ps'={va', Z4") as follows:
ol =R,
+, + £, — +, -, £
2= SN[ U BanEa 1 @ &l End=1)U
(.9, (5532 Lo (b &, i) =1)]

+ +
=@, & (VaVml (£, Zat Eu)=0)&

+, - + . +
& (Va'¥m's, (84, &/, ab/)=0)var G¥=$.

Proposition 1. For any p1‘={t?t‘. K }, T (val, %, W1)==1 takes place, where

x-{{iﬂt l EMC; (Eilt 8-'.1!- gﬂ’)- l} U
U {amt, (8, &L, alf)=1)}}

Prof.

1. From the definition of similarity G‘ it follows that for sach i and k the set Sa constitutes exactly the
set of examples described in the part Ex of the predicate M',,,. The condition of exhaustibility (CE) is provided
by the globailness of the similarity . Consequentiy, val==hy satisfies the conditions of M., since it is the
. maximum operational similarity of positive exampies.

2. From the definition of g, it follows that b, is the mazimum operational similarity of negative examples.

The condition of minimality h,’ with respect to embedding, which is imposed on the brakes, is provided
by fuifillment of the predicate Z,.

3. From the definition of d,;¥ it follows that If is the maximum operational smﬂanty of positive examples
that do not possess the property %,.

4. From the definition of 2‘ it follows that
VaVXER ) (FalCX) & Vi VX 63y ALX7).

Fulfillment of conditions (1-4) provides for T (Jg‘. %, w;)=1 with % described in the formulation of the
proposition.
Now-we will show that if T(v', ', &) = L, then 3k o'-=h.

MVMHJI"JM'R'=={{;.¢‘ |54 (&t‘. En‘. §m1}= ny
U{L |G (&4 22, aki/)=1))).
By the definition of the relation T, v is the maximum operational similarity of some subset of positive
examples, but ail such similarities are inctuded in the global similarity G*, consequently gk oweity!. -
Reasoning analogously, we find that |
Vox’ (A (og=Fa0)V (3/30" (vg=HL}).

a9 +
Fulfiflment of the predicates , and ; follows from the definition of similarities @ and P.
Strictly speaking, proposition 1 follows directly from the definition of the relation T, the predicate M",,
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4 -
and the similarities @ and P, which we can see directly from the proof.
Thus, the global similarity Bt is generated by all those and only those objects the operational similarity
of which is expressed by the cause # of the property W in the absence of brakes x.

As we can see from the definition, the global similarity -2 depends sigmificantly on the property &,
therefore the structure of the set of properties in the data base largely determines the complexiry of the algorithmic

procedure for finding A*. So, it is obvious that for the case W = {w}, W = W this procedure is significantly
simplified. In fact, the predicate f similarity M",_, is primarily simplified, since the addition B/, is removed from
it,

For this case, the similarity #=(7;} takes the form

Bmtimis fmin
£ = +, =, &
\(EUE(SMI\S!!‘) 1% (g;". Eq, gmt)z' 1 }

P is formed with the help of similarities G= {é}} » G={&,} and tGu--{fm}-
If the similarity P is found, then all of the triads {v, %, w} satisfying the predicate T are found.

2. ALGORITHMS FOR CONSTRUCTING GENERALIZED HYPOTHESES
In essence, the way the definition of similarity P is copstructed incorporates algorithm 1 for finding it,

which consists in a sequence of the following actions:

+ -
1. Finding similarities ¢ and G, which is done with the help of the so-called algorithm of maximum
mtersections realized in the version of the JSM system for the simple method.
2. Verification of the predicate ,.

3. Construction of the similarity 5.

4. Verification of the conditionVr (y» 9.

‘We will demonstrate the algorithm’s operation for the case of one property on the following example:

A set of objects: {x;, .., Xu}: " = {x, %, %5, X, %}, 27 = {X, Xy, ooy Xy }; % = v, X, = vbhdd', xs =
vdb'd"m, x, = vd'cm, X, = vd"¢’'m, X; = vae, x, = vae', X, = vbdf, 5, = vbdf, x,, = vd'eg’, x,, = vd'gg".

We find the similarity G from positive examples:

E, {0 Xy, Xy, Xyy Koy L3):
Eymfoba’; x,, “h
E.-{M': Xoy Xy, T)
Eomiom; 2, 20 5}

Eym (0d™m; 20, 24}

We find the similarity G from negative examples:

&y {05 Xy 21, Koo Too Tyer 2uli
Fe=e{o®; x, E A

E,Q-{oﬁd; Xos Kok

Eom{0d’2; Xyey X2)e

The similarity O is represented in the following way:
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%
£y ={t] Xy, ooy Xk

+

Gr=={va; %y, %y, X1};

&

Z,={v8; %1, Xy, *n La};

+

g, ={vbd’; xy, x,);

+

Zy=={obd;, x3, xue Xoh

+

gy=={Od’; £y, X4y Tar K10 Xui)t
+

Er={vd"m; Xy, Xs};

+
Ge=m{vd’g; X140, Xy}

We will let Th, represent the set of triads {E;. E}. ?,,} for which f is true.
In the given example, it is the following:

+ - - £ — *
Tﬁ:={(gll gla gl)u (El! gla gl)l (E'" g{l gl')s
+ - E
(8w &¢ Za)})e
Now we can construct the similarities lg :

ﬁ:={": El {{xs, x5, x40, x4, 2nd{r 2. 2Ny, U
Ulrs, 20 19\t a3l {xrer Xer N\ Kyey )]} =
-{xll a1 xl}}'
But since §,=§.,then 5;={3-
ﬁl=g! Si-ncc VJ-‘ (ECE}) j=1| uey 4.
;0"‘{"4'; El{{xh e X\ [t1ee X \Xyey 20}} = (X2 Xy, x4
Yi 'ﬁ.qb:h {{=1, ..., §), consequently ;',qbo.

;.=ﬁ and Py=@ for the same reason that Pi=a"

As a result of the algorithm’s operation, we find one triad: {vd’, » = vd'g, w} that satisfies the predicate
M’,., and, consequently, belongs to the relation T.

An increase in the set of elementary properties even to two clements entails a significant increase in the
diversity of situations and, consequently, complication of the algorithm.

We will figure an upper estimate of the number of computer operations necessary to generate generalized
hypotheses with the help of the indicated procedure for an arbitrary set of positive examples €Y7, set of negative
examples 27, and set of elementary structures U (subsets of which are positive and negative examples). [n [5], the
ZO algorithm was suggested for seeking intersections (similarities), the time requirement of which is linear in
relation to the number of intersections generated. Supposing that similarities (intersections) are sought with the

help of the ZO algorithm, we will determine that finding the set 5- of all positive similarities requires spending
0(1G1-1U]-1a+])

computer operations; finding the st G of all negative similarities requires spending
o161V |19-1)

& .
computer operations; and finding the set of similarities G of all examples (positive and negative) requires spending

0(81U1-42*[+]a- )=
=0( GI-| G| U|-4 Q|+ 12~1)

17
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. . % .
computer operations. In the worst case, generating each set 2, requires

+
0 (G, 11 81-pol, QU, |9+, |G- )=
=( G| T Ppoly U, [0+, |2~))

computer operations, where pol,(-} is some small-degree poiynomial depending on |U|, |€27], and |27 and
determined by a computer model
We can suggest more efficient algorithms for constructing generalized hypotheses. The speed of these
algorithms depends significantly va the type of similarity operation (even if one considers the time required to
perform such operations to be the same). First we will give a description of such an algorithm for constructing
generalized positive hypotheses in the case of representation of data by sets and the presence of just one property.
Algorithm 2
1. All (+) intersections are constructed with the help of the ZO algonthm [5].
2. For each (+) intersecticn V-
2.1. Negative exampies containing it are found.
2.2. Allintersections of negative examples that are minimal with respect to embedding and contain
V (i.e., brakes) are sought: Let N be the union of all negative examples containing V. Then the arbitrary minimal
intersection of negative exampies containing V has the form X*= [;]X,, ywhere X € X, = {X{X e 2", (VU {q})

¢ X}, where q; € N. Naturally, EJX” is determined, if j = 2.

In order to rule out generation of the same intersections and thus to accelerate the process of generating
them, in constructing the pext set %JX 17, the corresponding "addition” to v can be chosen pot from N, but from N

minus all of the preceding "additions” and generated intersections, or formally, ¥ ey =N\ ({gas2}U E]X, )

2.3. From the set of (+) examples containing V, all of those that contain any brakes are removed.
and the remaining { +) examples are reintersected. If the resuit coincides with V, then V, together with the minimal
intersections found, is the generalized hypothesis; if not, then no ( +) generalized hypothesis exists in relation to the
intersection V, and we move on to the next {+) intersection,

The time complexity for constrcting one generalized positive hiypothesis for a ﬁmd | (+) intersection V in
steps 2.1-2.3 of this algorithm is

O(N-|Q-]).
Thus, the complexity of constructing all positive generalized hypotheses is
0(1Gt-¥-127]).

We will consider the algorithm’s action for the sets of positive and negative examples given above. In this
case,theset NisN = {a,b,d, d', e,/ /, g, &, &', v}. Suppose that in the second stage of the algorithm’s action we
chose the (+) mtersection v. Then the minimal intersections of { =) examples congaining v are found as

Xoem (X, whors Xy Xam( KEQ- {0, AT X (0, 2

Ny N\{a)={b, d, &’ &, &’f, /', 8. 8, &)
X’- ij’, whmeXfﬁX.-{XEﬂ'l {9' bm-{ul &, d}'

N|_N!\{ss d}a{d'b e, "fs f’, g, g'n g’}-
The intersection corresponding to {v, d}iénotgenerated,sinceinthisstepd e N.
X' ;}xj',mx}'exd. ={XEQ-|{v, d'})CX}=

{0, d’, &), Ne=Ny\(d", E}mie. ¢'1, ', &, £,
X X8 here X 96 K= (XEQ™ | 0, ),

X* is not determined, Ny=N,N\{e}=={e'f, f’, &', &'}
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Xt = r}x;',wnmx;'ex,,-{xenﬂ {v, e’}=X},
X®' isnotdetermined, N,=N{\{e'l={f, ', &', g'}

Xl Qx,!,wnemx,fex,={xeg— |{v, £},

X/ isnot determined. No==N\{f}={f', &, 2"}
Xx'= {}]X“",whr.m X €X, ={Xeq-|{v, r'}CX},

X" isnot determined, Ny=No\{f'}={(€’, &").
The minimal intersection, which corresponds to {v, g}, is not generated, since g & Ny,
X8 = Txf’, when:Xf'EXg,={XEQ' [{v, &’}X),

X% is not determined, Ny=Nf&’')}={&"}
X8 {;]Xf,whcm)ffexz.= {XEQ- | {v, 21X},

X% is not determined, Na=N\{8)=0.

Actions relating to step 2.3 remain to be carried out. From the set of (+) examples containing the
intersection v, Le., from {x,, %, %, X, X}, we will remove all examples containing the minimal intersections {—):
examples containing v, ie., va, vbd, and vd'gg’. Such (+) examples will be x, = vaa’ and x, = vbdd'. We wil
intersect the remaiming { +) examples, i.e., X, X,, and x,, and get vm # v. Hence, there will be no generalized { +)
hypothesis corresponding to the similarity of ( +) examples v.

We will carry out the computations of steps 2.1-2.3 for the (+) intersection vd’. The {—) examples
containing it will be x,, = vd'gg’ and x;, = vd'gg”. Hence, the sole minimal intersection of { ~) examples containing
vd’ willbe vd'g’. Since none of the ( + ) examples contain it, in step 2.3 none of the ( + ) examples will be thrown cut.
and the triad {vd’, k = vd'g, w} will be accepted as a generalized (+) hypothesis.

As we already said above, algorithm 2 is intended for data represented by sets. This circumstance makes
it possible to accomplish step 2.2 very efficiently When the data are represented by objects from an arbitrary
semilattice with similarity operation IT, the situation is worse: we cannot form an intersection of ( —) exampies that
is minimal with respect to embedding and contains the given intersection of { +) examples v by "building up" v with
atoms of the lattice of (—) intersections (for information about the lattice of intersections, see, for example, [3]) -
we simply cannot know these atoms. Thus, for an arbitrary similarity operation, instead of step 2.2 of ulgorithm 2
we must seek the minimal intersections "from the top down:" by taking the intersections of a growing number of
(=) examples containing v. As soon as the intersection of { -) examples becomes equal to v in the next step, we
fall back on the preceding intersection of ( —) examples: it will be minimal among those containing v. [n this case,
the upper estimate of the number of computer operations necessary to generate all of the minimal intersections
containing v will be O(]G | pol([U|, |€2"|, |€2"|); consequently, the algorithm’s overall complexity willbe O(jG{-

|g]pﬁlg” uQ|,ia+{,|8-1), where pol,{-) is some small-degrec polynomial depending on |U|, |2}, and |$27] and
determined by a computer model
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