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Abstract. For data given by binary object-attribute datatables For-
mal Concept Analysis (FCA) provides with a means for both convenient
computing hierarchies of object classes and dependencies between sets of
attributes used for describing objects. In case of data more complex than
binary to apply FCA techniques, one needs scaling (binarizing) data. Pat-
tern structures propose a direct way of processing complex data such as
strings, graphs, numerical intervals and other. As compared to scaling
(binarization), this way is more efficient from the computational point
of view and proposes much better vizualization of results. General def-
inition of pattern structures and learning by means of them is given.
Two particular cases, namely that of graph pattern structures and in-
terval pattern structures are considered. Applications of these pattern
structures in bioinformatics are discussed.

1 Introduction

Many problems of constructing domain taxonomies and ontologies, as well as
finding dependencies in data, can be solved with the use of the models based on
closure operators and respective lattices of closed sets within Formal Concept
Analysis (FCA) [21,9]. The main definitions of FCA start from a binary relation,
coming from applications as a binary object-attribute table. These tables (called
contexts in FCA) give rise to lattices whose diagrams give nice visualizations of
classes of objects of a domain. At the same time, the edges of these diagrams give
essential knowledge about objects, by giving the probabilities of cooccurrence
of attributes describing objects [17,18,19], this type of knowledge being known
under the name of association rules in data mining.

However in many real-world applications researchers deal with complex and
heteregeneous data different from binary datatables in involving numbers, strings,
graphs, intervals, logical formulas, etc. for making descriptions of objects from
an application domain. To apply FCA tools to data of these types, one needs
binarizing initial data or, in FCA terms, applying conceptual scaling. Many types
of scaling exist (see [9]), but do not always suggest the most efficient implemen-
tation right away, and there are situations where one would choose original or
other data representation forms rather than scaled data [7]. Although scaling
allows one to apply FCA tools, it may drastically increase the complexity of
representation and worsen the visualization of results.



Instead of scaling one may work directly with initial data descriptions defin-
ing so-called similarity operators, which induce semilattice on data descriptions.
In recent decades several attempts were done in defining such semilattices on
sets of graphs [12,16,13], numerical intervals [12,10], logical formulas [2,3], etc.
In [7] a general approach called pattern structures was proposed, which allows
one to extend standard FCA approaches to arbitrary partially ordered data de-
scriptions. In this paper we consider pattern structures for several data types
and applications, showing their advantages and application potential.

The rest of the paper is organized as follows: In Section 2 we recall basic
definitions of FCA, as well as related machine learning and rule mining models. In
Section 3 we present pattern structures and respective generalization of machine
learning and rule mining models. In Sections 4 and 5 we consider particular
pattern structures on sets of graphs and vectors of intervals and discuss their
applications in bioinformatics. In Section 6 we discuss computational issues of
pattern structures.

2 Concept Lattices and Concept-Based Learning

2.1 Main definitions

First we introduce standard FCA definitions from [9]. Let G and M be arbitrary
sets and I ⊆ G×M be an arbitrary binary relation between G and M . The triple
(G,M, I) is called a (formal) context. Each g ∈ G is interpreted as an object,
each m ∈M is interpreted as an attribute. The fact (g,m) ∈ I is interpreted as
“g has attribute m”. The two following derivation operators (·)′

A′ = {m ∈M | ∀g ∈ A : gIm} for A ⊆ G,

B′ = {g ∈ G | ∀m ∈ B : gIm} for B ⊆M

define a Galois connection between the powersets of G and M . For A ⊆ G,
B ⊆M , a pair (A,B) such that A′ = B and B′ = A, is called a (formal) concept.
Concepts are partially ordered by (A1, B1) ≤ (A2, B2) ⇔ A1 ⊆ A2 (⇔ B2 ⊆ B1).
With respect to this partial order, the set of all formal concepts forms a complete
lattice called the concept lattice of the formal context (G,M, I). For a concept
(A,B) the set A is called the extent and the set B the intent of the concept.

The notion of dependency in data is captured in FCA by means of implica-
tions and partial implications (association rules). For A,B ⊆M the implication
A → B holds if A′ ⊆ B′ and the association rule (called partial implication

in [17]) A −→c,s B with confidence c and support s holds if s ≥ |A′∩B′|
|G| and

c ≥ |A′∩B′|
|A′| .

The language of FCA, as we showed in [6], is well suited for describing a model
of learning JSM-hypotheses from [4,5]. In addition to the structural attributes of
M , consider a target attribute ω /∈M . This partitions the set G of all objects into
three subsets: The set G+ of those objects that are known to have the property ω
(these are the positive examples), the set G− of those objects of which it is known



that they do not have ω (the negative examples) and the set Gτ of undetermined
examples, i.e., of those objects, of which it is unknown if they have property ω
or not. This gives three subcontexts of K = (G,M, I), the first two staying for
the training sample:

K+ := (G+,M, I+), K− := (G−,M, I−), and Kτ := (Gτ ,M, Iτ ),

where for ε ∈ {+,−, τ} we have Iǫ := I ∩ (Gε × M) and the corresponding
derivation operators are denoted by (·)+, (·)−, (·)τ , respectively.

Intents, as defined above, are attribute sets shared by some of the observed
objects. In order to form hypotheses about structural causes of the target at-
tribute ω, we are interested in sets of structural attributes that are common to
some positive, but to no negative examples. Thus, a positive hypothesis h for
ω (called “counter-example forbidding hypotheses” in the JSM-method [4,5]) is
an intent of K+ such that h+ 6= ∅ and h 6⊆ g− := {m ∈ M | (g,m) ∈ I−} for
any negative example g ∈ G−. Negative hypotheses are defined similarly. Various
classification schemes using hypotheses are possible, as an example consider the
following simple scheme from [5]: If the intent

gτ := {m ∈M | (g,m) ∈ Iτ}

of an object g ∈ Gτ contains a positive, but no negative hypothesis, then gτ

is classified positively. Negative classifications are defined similarly. If gτ con-
tains hypotheses of both kinds, or if gτ contains no hypothesis at all, then the
classification is contradictory or undetermined, respectively. In this case one can
apply standard probabilistic techniques known in machine learning and data
mining (majority vote, Bayesian approach, etc.). Notwithstanding its simplicity,
the model of learning and classification with concept-based hypotheses proved
to be efficient in numerous studies in bioinformatics [1,8,15].

A well-known application of concept lattices in data mining use the fact
that the edges of the lattice diagram make a basis of association rules for the
context [17,18,19]. In fact, each edge of a concept lattice diagram, connecting
a higher concept (A′, A) and a lower concept (B,B′), corresponds to a set of
association rules of the form (Y ) −→c,s B (where Y is minimal in the set {X ⊆
A | X ′′ = A}) and all other association rules may be obtained from rules of
these type by some inference [11].

2.2 Many-valued contexts and their interordinal scaling

Consider an object-attribute table whose entries are not binary. It can be given
by a quadruple K1 = (G,S,W, I1), where G, S, W are sets and I1 is a ternary
relation I1 ⊆ G×S×W . In FCA terms K1 = (G,S,W, I1) is called a many-valued
context.

Consider an example of analyzing gene expression data (GED) given by tables
of values. The names of rows correspond to genes. The names of the columns of
the table correspond to situations where genes are tested. A table entry is called
an expression value. A row in the table is called expression profile associated



to a gene. In terms of many-valued contexts, the set of genes makes the set of
objects G, the set of situations makes the set of many-valued attributes S, the
set of expression values makes the set W ⊂ R and I1 ⊆ G× S ×W . Then K1 =
(G,S,W, I1) is a many-valued context representing a GED. The fact (g, s, w) ∈ I1
or simply g(s) = w means that gene g has an expression value w for situation
s. The objective is to extract formal concepts (A,B) from K1, where A ⊆ G is
a subset of genes sharing “similar values” of W , i.e. lying in a same interval.
To this end, we use an appropriate binarization (scaling) technique to build a
formal context K2 = (G,S2, I2), called derived context of K1.

A scale is a formal context (cross-table) taking original attributes of K1 with
the derived ones of K2. As attributes do not take necessarily same values, each
of them is scaled separately. Let Ws ⊆W be the set of all values of the attribute
s. The following interordinal scale (see pp. 42 in [9]) can be used to represent all
possible intervals of attribute values:

IWs
= (Ws,Ws,≤)|(Ws,Ws,≥).

The operation of apposition of two contexts with identical sets of objects,
denoted by |, returns the context with the same set of objects Ws and the set
of attributes corresponding to the disjoint union of attribute sets of the original
contexts. In our case this operation is applied to two contexts (Ws,Ws,≤) and
(Ws,Ws,≥)), the table below gives an example for Ws = {4, 5, 6}.

s1 ≤ 4 s1 ≤ 5 s1 ≤ 6 s1 ≥ 4 s1 ≥ 5 s1 ≥ 6
4 × × × ×
5 × × × ×
6 × × × ×

The intents given by interordinal scaling are value intervals.

3 Pattern Structures

3.1 Main definitions and results

Let G be a set (interpreted as a set of objects), let (D,⊓) be a meet-semi-lattice
(of potential object descriptions) and let δ : G −→ D be a mapping. Then
(G,D, δ), where D = (D,⊓), is called a pattern structure, provided that the set

δ(G) := {δ(g) | g ∈ G}

generates a complete subsemilattice (Dδ,⊓) of (D,⊓), i.e., every subset X of
δ(G) has an infimum ⊓X in (D,⊓) and Dδ is the set of these infima.

Elements of D are called patterns and are naturally ordered by subsumption
relation ⊑: given c, d ∈ D one has c ⊑ d ⇐⇒ c ⊓ d = c. A pattern structure
(G,D, δ) gives rise to the following derivation operators (·)⋄:

A⋄ =
l

g∈A

δ(g) for A ⊆ G,

d⋄ = {g ∈ G | d ⊑ δ(g)} for d ∈ (D,⊓).



These operators form a Galois connection between the powerset of G and (D,⊑).
⊓ is also called a similarity operator. The pairs (A, d) satisfying

A ⊆ G, d ∈ D, A⋄ = d, and A = d⋄

are called the pattern concepts of (G,D, δ), with extent A and pattern intent d.
For a, b ∈ D the pattern implication a → b holds if a⋄ ⊆ b⋄, and the pattern

association rule a −→c,s b with confidence c and support s holds if s ≥ |a⋄⊓b⋄|
|G|

and c ≥ |a⋄⊓b⋄|
|a⋄| . Like in case of association rules, pattern association rules may

be inferred from a base that corresponds to the set of edges of the diagram of
the pattern concept lattice.

Operator (·)⋄⋄ is an algebraical closure operator [9] on patterns, since it is

idempotent: d⋄⋄⋄⋄ = d⋄⋄,
extensive: d ⊑ d⋄⋄,
monotone: d⋄⋄ ⊑ c⋄⋄ for d ⊑ c.

In [6] we showed that if (D,⊓) is a complete meet-semi-lattice (where infi-
mums are defined for arbitrary subsets of elements), in particular a finite semi-
lattice, there is a subset M ⊆ D with the following interesting property: The
concepts of the formal context (G,M, I) where I is given as gIm : ⇔ m ⊑ δ(g),
called a representation context for (G,D, δ), are in one-to-one correspondence
with the pattern concepts of (G,D, δ). The corresponding concepts have the
same first components (called extents). These extents form a complete lattice,
which is isomorphic to the concept lattice of (G,M, I). This result is proved by a
standard application of the basic theorem of FCA (which allows one to represent
every lattice as a concept lattice) [21,9] and shows the way of binarizing complex
data representation given by a pattern structure. The cost of this binarization
may be a large amount attributes of the representation context and hence, the
space needed for storing this context.

3.2 Learning with pattern structures

The concept learning model described in the previous section for standard object-
attribute representation (i.e., formal contexts) is naturally extended to pattern
structures. Suppose we have a set of positive examples E+ and a set of negative
examples E− w.r.t. a target attribute.

A pattern h ∈ D is a positive hypothesis iff

h⋄ ∩E− = ∅ and ∃A ⊆ E+ : A⋄ = h.

Again, a positive hypothesis is a similarity (or least general generalization of
descriptions) of positive examples, which is not contained in (does not cover) any
negative example. A negative hypothesis is defined analogously, by interchanging
+ and −.

The meet-preserving property of projections implies that a hypothesis Hp in
data under projection ψ corresponds to a hypothesis H in the initial represen-
tation for which the image under projection is equal to Hp, i.e., ψ(H) = Hp.



Hypotheses are used for classification of undetermined examples along the lines
of [5]. The corresponding definitions are similar to those from Section 2, one just
needs to replace ⊆ with ⊑.

3.3 Projections and learning in projections

For some pattern structures (e.g., for the pattern structures on sets of graphs
with labeled vertices) even computing subsumption of patterns may be NP-hard.
Hence, for practical situations one needs approximation tools, which would re-
place the patterns with simpler ones, even if that results in some loss of informa-
tion. To this end we use a mapping ψ : D → D that replaces each pattern d ∈ D
by ψ(d) such that the pattern structure (G,D, δ) is replaced by (G,D,ψ ◦ δ).
To distinguish two pattern structures, which we consider simultaneously, we use
the symbol ⋄ only for (G,D, δ), not for (G,D,ψ ◦ δ). Under some natural al-
gebraic requirements (that hold for all natural projections in particular pattern
structures we studied in applications) the meet operation ⊓ is preserved:

ψ(X ⊓ Y ) = ψ(X) ⊓ ψ(Y ).

This property of projection allows one to relate hypotheses in the original rep-
resentation with those approximated by a projection.

This helped us to describe [6] how the lattice of pattern concepts changes
when we replace (G,D, δ) by its approximation (G,D,ψ ◦ δ). First, we note that
ψ(d) ⊑ δ(g) ⇔ ψ(d) ⊑ ψ ◦ δ(g). Moreover, for pattern structures (G,D, δ1)
and (G,D, δ2) one has δ2 = ψ ◦ δ1 for some projection ψ of D iff there is
a representation context (G,M, I) of (G,D, δ1) and some N ⊆ M such that
(G,N, I ∩ (G × N)) is a representation context of (G,D, δ2). Thus, the basic
theorem of FCA helps us not only to “binarize” the initial data representation,
but to relate binarizations of different projections.

Pattern structures are naturally ordered by projections: (G,D, δ1) ≥ (G,D, δ2)
if there is a projection ψ such that δ2 = ψ ◦ δ1. In this case, representation
(G,D, δ2) can be said to be rougher than (G,D, δ1) and the latter to be finer
than the former. In comparable pattern structures implications are related as
follows: If ψ(a) → ψ(b) and ψ(b) = b then a → b for arbitrary a, b ∈ D. In par-
ticular, if ψ(a) is a positive (negative) hypothesis in projected representation,
then a is positive (negative) hypothesis in the original representation.

4 Pattern Structures on Closed Sets of Labeled Graphs

In [12,13] we proposed a semi-lattice on sets of graphs with labeled vertices and
edges. This lattice is based on a natural domination relation between pairs of
graphs with labeled vertices and edges. Consider an ordered set P of connected
graphs1 with vertex and edge labels from the set L partially ordered by �. Each

1 Omitting the condition of connectedness, one obtains a similar, but computationally
much harder model.



labeled graph Γ from P is a quadruple of the form ((V, l), (E, b)), where V is
a set of vertices, E is a set of edges, l : V → L is a function assigning labels to
vertices, and b : E → L is a function assigning labels to edges. In (P,≤) we do
not distinguish isomorphic graphs.
For two graphs Γ1 := ((V1, l1), (E1, b1)) and Γ2 := ((V2, l2), (E2, b2)) from P we
say that Γ1 dominates Γ2 or Γ2 ≤ Γ1 (or Γ2 is a subgraph of Γ1) if there exists
an injection ϕ : V2 → V1 such that it

– respects edges: (v, w) ∈ E2 ⇒ (ϕ(v), ϕ(w)) ∈ E1,
– fits under labels: l2(v) � l1(ϕ(v)), if (v, w) ∈ E2 then b2(v, w) � b1(ϕ(v), ϕ(w)).

Obviously, (P,≤) is a partially ordered set. Now a similarity operation ⊓ on
graph sets can be defined as follows: For two graphs X and Y from P

{X} ⊓ {Y } := {Z | Z ≤ X,Y, ∀Z∗ ≤ X,Y Z∗ 6≥ Z},

i.e., {X} ⊓ {Y } is the set of all maximal common subgraphs of graphs X and
Y . Similarity of non-singleton sets of graphs {X1, . . . , Xk} and {Y1, . . . , Ym} is
defined as

{X1, . . . , Xk} ⊓ {Y1, . . . , Ym} := MAX≤(∪i,j({Xi} ⊓ {Yj})),

where MAX≤(X) returns maximal (w.r.t. ≤) elements of X .
The similarity operation ⊓ on graph sets is commutative: X ⊓ Y = Y ⊓ X

and associative: (X ⊓ Y ) ⊓ Z = X ⊓ (Y ⊓ Z). A set X of labeled graphs from
P for which ⊓ is idempotent, i.e., X ⊓X = X holds, is called a graph pattern.
For patterns we have MAX≤(X) = X . For example, for each graph g ∈ P the
set {g} is a pattern. On the contrary, for Γ1, Γ2 ∈ P such that Γ1 ≤ Γ2 the set
{Γ1, Γ2} is not a pattern. Denote by D the set of all patterns, then (D,⊓) is a
semi-lattice with infimum (meet) operator ⊓. The natural subsumption order on
patterns is given by c ⊑ d⇔ c ⊓ d = c.

Let E be a set of object names, and let δ : E → D be a mapping, taking each
object name to {g} for some labeled graph g ∈ P (thus, g is “graph description”
of object e). The triple (E, (D,⊓), δ) is a particular case of a pattern structure.

A set of graphs X is called closed if X⋄⋄ = X . This definition is related to the
notion of a closed graph in data mining and graph mining, which is important for
computing association rules between graphs. Closed graphs are defined in [20]
in terms of “counting inference” as follows.

Given a graph dataset E, support of a graph g or support(g) is a set (or
number) of graphs in E that have subgraphs isomorphic to g. A graph g is
called closed if no supergraph f of g (i.e., a graph such that g is isomorphic to
its subgraph) has the same support.

In terms of pattern structures, E is a set of objects, each object e ∈ E
having a graph description δ(e), support(g) = {e ∈ E | δ(g) ≤ e}. Note that the
definitions distinguish between a closed graph g and the closed set {g} consisting
of one graph g. Closed sets of graphs form a meet semi-lattice w.r.t. ⊓. Closed
graphs do not have this property, since in general, there are closed graphs with



no infimums. However, closed graphs and closed sets of graphs are intimately
related, as shown in the following

Proposition 1 Let a dataset described by a pattern structure (E, (D,⊓), δ) be
given. Then the following two properties hold:

1. For a closed graph g there is a closed set of graphs G such that g ∈ G.

2. For a closed set of graphs G and an arbitrary g ∈ G, graph g is closed.

Proof. 1. Consider the closed set of graphs G = {g}⋄⋄. Since G consists of all
maximal common subgraphs of graphs that have g as a subgraph, G contains as
an element either g or a supergraph f of g. In the first case, property 1 holds. In
the second case, we have that each graph in G that has g as a subgraph also has
f as a subgraph, so f has the same support as g, which contradicts with the fact
that g is closed. Thus, G = {g}⋄⋄ is a closed set of graphs satisfying property 1.

2. Consider a closed set of graphs G and g ∈ G. If g is not a closed graph, then
there is a supergraph f of it with the same support as g has and hence, with the
same support as G has. Since G is the set of all maximal common subgraphs of
the graphs describing examples from the set G⋄ (i.e, its support), f ∈ G should
hold. This contradicts the fact that g ∈ G, since a closed set of graphs cannot
contain as elements a graph and a supergraph of it (otherwise, its closure does
not coincide with itself). �

Therefore, one can use algorithms for computing closed sets of graphs, e.g.,
the algorithm described in [13], to compute closed graphs. With this algorithm
one can also compute all frequent closed sets of graphs, i.e., closed sets of graphs
with support above a fixed threshold (by introducing a slightly different back-
track condition).

The learning model based on graph pattern structures along the lines of the
previous section was successfully used in series of applications in bioinformatics,
namely in problems where chemical substructures causing particular biological
activities (like toxicity) were investigated [8,15]. In many cases the proposed
graph representation resulted in better predictive accuracy as compared to that
obtained with standard attribute-type languages used for the analysis of biolog-
ical activity of chemicals.

5 Pattern Structures on Intervals

5.1 Main definitions

To define a semilattice operation ⊓ for intervals that would be analogous to
the set-theoretic intersection or meet operator on sets of graphs, one should
realize that “similarity” between two real numbers (between two intervals) may
be expressed in the fact that they lie within some (larger) interval, this interval
being the smallest interval containing both two.



Thus, for two intervals [a1, b1] and [a2, b2], with a1, b1, a2, b2 ∈ R, we define
their meet as

[a1, b1] ⊓ [a2, b2] = [min(a1, a2),max(b1, b2)].

This operator is obviously idempotent, commutative and associative, thus defin-
ing a pattern structure on intervals. The counterintuitive observation that the
meet operator takes two intervals to a larger one (in contrast to set intersection
and meet on graph sets which take sets to smaller ones) fails after realizing that a
larger interval, like in case of smaller sets and smaller sets of graphs, correspond
to a larger set of objects, whose descriptions fall in the interval.

The natural order relation (subsumption) on intervals is given as follows:

[a1, b1] ⊑ [a2, b2]

⇐⇒ [a1, b1] ⊓ [a2, b2] = [a1, b1]

⇐⇒ [min(a1, a2),max(b1, b2)] = [a1, b1]

⇐⇒ a1 ≤ a2 and b1 ≥ b2.

Again, contrary to usual intuition, smaller intervals subsume larger intervals
that contain the former. A next step would be considering vectors of intervals. An
interval p-vector is a p-dimensional vector of intervals. The meet ⊓ for interval
vectors is defined by component-wise interval meets. Interval p-vector patterns
are p-dimensional rectangular parallelepipeds in Euclidean space. Another step
further would be made by allowing any type of patterns for each component.
The general meet operator on a vector like that is defined by component-wise
meet operators.

5.2 Interval patterns and interordinal scaling

For a many-valued context (G,M,W, I) with W ⊂ R consider the respec-
tive pattern structure (G, (D,⊓), δ) on interval vectors, the interordinal scaling
IWs

= (Ws,Ws,≤) | (Ws,Ws,≥) from the previous Section, and the context
KI resulting from applying interordinal scaling IWs

to (G,M,W, I). Consider
usual derivation operators (·)′ in context KI . Then the following proposition
establishes an isomorphism between the concept lattice of KI and the pattern
concept lattice of (G, (D,⊓), δ).

Proposition 2 Let A ⊆ G, then the following statements 1 and 2 are equivalent:

1. A is an extent of the pattern structure (G, (D,⊓), δ) and A⋄ =
〈[mi,mi]〉i∈[1,p]

2. A is a concept extent of the context KI so that for all i ∈ [1, p] mi is the
largest number n such that the attribute si ≥ n is in A′ and mi is the smallest
number n such that the attribute si ≤ n is in A′.



Proof. 1 → 2 Let A ⊆ G be a pattern extent. Given δi(g) the mapping
that returns the ith interval of the vector describing object g. Since A⋄ =
〈[mi,mi]〉i∈[1,p], for every object g ∈ A one has mi ≤ δi(g) ≤ mi and there
are objects g1, g2 ∈ A such that δi(g1) = mi, δi(g1) = mi. Hence, in context KI

one has

A′ = ∪i∈[1,p]{si ≥ nmin, . . . , si ≥ n1, si ≤ n2, . . . , si ≤ nmax}

where
nmin ≺ . . . ≺ n1 ≤ n2 ≺ . . . ≺ nmax

and n1 = mi, n2 = mi. Hence, mi is the largest number n such that the attribute
si ≥ n is in A′ and mi is the smallest number n such that the attribute si ≤ n
is in A′. Suppose that A is not an extent of KI . Hence, A ⊂ A′′ and there is
g ∈ A′′ \ A and g′ ⊇ A′. This means that for all i mi ≤ δi(g) ≤ mi. Therefore,
g ∈ A⋄⋄ and A 6= A⋄⋄, a contradiction. The proof 2 → 1 is similar. �

The larger is a pattern concept, the more there are elements in its extent,
and the more there are intervals in its intent. However, the main goal in appli-
cations like analysis of gene expression data is extracting homogeneous groups
of objects (e.g., genes), i.e. groups of objects having similar expression values.
Therefore, descriptions of homogeneous groups should be composed of inter-
vals with “small” sizes where size([a, b]) = b − a. Consider parameter maxsize

that specifies the maximal admissible size of any interval composing an interval
vector. In our gene expression data analysis [10] we restricted to pattern con-
cepts with pattern intents d = 〈[ai, bi]〉i∈[1,p] ∈ (D,⊓) satisfying the constraint:
∃i ∈ [1, p] (bi − ai) ≤ maxsize, for any a, b ∈ R, or a stricter constraint like
∀i ∈ [1, p] (bi − ai) ≤ maxsize, where maxsize is a parameter. Since both con-
straints are monotone (if an intent does not satisfy it, than a subsumed intent
does not satisfy it too), the subsets of patterns satisfying any of these constraints
make an order filter (w.r.t. subsumption on intervals ⊑) of the lattice of pattern
intents and can be computed by an ordinary FCA algorithm with a modified
backtracking condition.

Interval pattern structures were successfully applied to gene expression data
analysis [10], where classes of situations with similar gene expressions were gen-
erated.

5.3 Computing in pattern structures

Many algorithms for generating formal concepts from a formal context are
known, see e.g. a performance comparative [14]. Experimental results of [14]
highlight several best algorithms for dense and large contexts, which is the case
of interordinal derived formal contexts. Worst-case upper bound time complex-
ity of these algorithms computing the set of all concepts of the context (G,M, I)
is O(|G|2 · |M | · |L|), where L is the set of generated concepts [14].

Several algorithms for computing concept lattices, like NextClosure and CbO,
may be adapted to computing pattern lattices in bottom-up way (starting from



intersecting individual object descriptions and proceeding by intersecting more
and more object descriptions). The worst-case time complexity of computing
all pattern concepts of a pattern structure (G,D, δ) in the bottom-up way is
O((α + β|G|)|G||L|), where α is time needed to perform ⊓ operation and β is
time needed to test ⊑ relation. In case of graphs, even β may be exponential wrt.
the number of graph vertices, that is why approximations (like those given by
projections) are often needed. In experiments with many chemical rows in [15] we
used projections to graphs with about 10 vertices to be able to process datasets
with hundreds of chemical substances.

The worst-case time complexity of computing the set of interval pattern
structures is O(|G|2 · |M | · |L|). If a many-valued context (G,M,W, I) is given,
the worst-case complexity of computing the set of all concepts of its interordinally
scaling is O(|G|2 · |W | · |L|), which may be fairly large if the cardinality of the
set of attribute values |W | is much larger than that of the set of attributes |M |.
The worst case |W | = |G|×|S| is attained when attribute values are different for
each object-attribute pair. In [10] several algorithms for computing with interval
patterns were compared. The experimental comparison shows that when the
number of attribute values w.r.t. |G| × |S| is very low, computing concepts in
representation contexts is more efficient. For large datasets with many different
attribute values, it is more efficient to compute in pattern structures.

6 Conclusion

Pattern structures propose a universal means of analyzing hierarchies of classes
and dependencies in case of data given by complex ordered descriptions. As
compared to binarization techniques, computing with pattern structures often
gives more efficiency and better vizualization. Pattern projections allows one
to reduce representation dimension to attain even better computer efficiency.
Future research on pattern structure will be concerned with new complex data
types, interesting projections and new applications. The use of pattern structures
for mining association rules in complex data will also be studied.
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