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Abstract A model of learning from positive and negative examples is natu-
rally described in terms of Formal Concept Analysis (FCA). In these terms,
result of learning consists of two sets of intents (closed subsets of attributes):
the first one contains intents that have only positive examples in the corre-
sponding extents. The second one contains intents such that the correspond-
ing extents contain only negative examples. On the one hand, we show how
the means of FCA allows one to realize learning in this model with various
data representation, from standard object-attribute one to that with labeled
graphs. On the other hand, we use the language of FCA to give natural de-
scriptions of some standard models of Machine Learning such as version
spaces and decision trees. This allows one to compare several machine learn-
ing approaches, as well as to employ some standard techniques of FCA in
the domain of machine learning. Algorithmic issues of learning with con-
cept lattices are discussed. We consider applications of the concept-based
learning, including Structure-Activity Relationship problem (in predictive
toxicology) and spam filtering.

1 Introduction

Machine Learning is usually defined as a discipline “concerned with the question
of how to construct computer programs that automatically improve with experi-
ence” [46]. Methods of FCA [62, 23] were from the very beginning (viz., attribute
exploration and more later predicate, object and relational explorations) more ori-
ented to human-machine interaction, thus being more along the lines of knowledge
discovery: “The KDD process is interactive and iterative, involving numerous steps
with many decision being made by the user” [13] and similar principles were e.g.,
declared in [29,61]. However, in this paper we would like to relate FCA rather to
mathematical models of machine learning, which underlie methods of knowledge
discovery. The latter essentially consists in application-driven combination of vari-
ous learning models under supervision of human experts, which also perform data
selection at various stages of the discovery process.

From the very beginning, techniques related to extraction of knowledge from
data were among the mainstream of FCA research. Implications between sets of at-
tributes in formal contexts, as opposed to mathematically equivalent functional de-
pendencies in databases, are drawn from datasets, whereas in the DBMS paradigm [41]
the database dependencies are usually known in advance to a DB designer. Gener-
ating bases of implications from contexts can certainly be called a machine-learning
procedure, the same holds for generation of bases of partial implications [42], which
became known later as association rules in data mining.

One of the first models of machine learning that used lattices (closure systems)
was the JSM-method! of automated hypothesis generation [16,17]. In this model
positive hypotheses are sought among intersections of positive example descriptions
(object intents), same for negative hypotheses. Various additional conditions can

! called so in honor of the English philosopher John Stuart Mill, who introduced methods
of inductive reasoning in 19th century.



be imposed on these intersections. For example, in Section 2 we consider so-called
counterexample forbidding hypotheses, which are equivalent to implications with
the value of the target attribute (positive or negative) in the consequence and closed
set of attributes in the premise.

In terms of FCA, the system CHARADE described in [18] basically constructs
rules of the form A — A"”. With the use of properties of Galois connections a sort
of nonminimal base of implications is obtained. In system GRAND [50] learning
with lattices proceeded as follows: At input the system has training positive and
negative examples described by many-valued attributes. The system creates partial
description and orders them by generality, completes the partial order to a lattice
(which is known in the lattice theory as Dedekind-McNeille completion) and then
finds implications (in the FCA sense) with consequences being values of the target
attributes. In fact a base of implications with minimal premises is obtained, which
however is not minimal in the number of implications. Some machine learning sys-
tems, e.g., those described in [55,43] use various heuristics (based on allowances,
accuracy, confidence, support, entropy, etc.) for feature selection and reduction of
the number of possible concept-based dependencies learned from positive and nega-
tive examples. For example, Rulearner system [55] generates hypotheses (closed sets
of attributes that are subsets of only some positive examples) with largest extents,
which obviously belong to the set of minimal hypotheses. Among these the sys-
tem looks for hypotheses with smallest cardinality. Additionally to this, the system
deletes useless hypotheses, i.e., those that produce no classification of previously
unclassified examples. Then the system deletes those instances that result only in
useless hypotheses and repeat hypothesis generation for the new dataset. GALOIS
system described in [8] realized clustering (i.e., unsupervised learning) based on con-
cept lattices. For classifying a new object similarity between it and existing clusters
(concepts) is computed as the number of common attributes. In 1990s the idea of a
version space was elaborated by means of logical programming within the Inductive
Logical Programming (ILP), where the notion of a subsumption lattice plays an
important role [48]. In late 1990s the notion of a lattice of “closed itemsets” became
important in the data mining community, see [13,52].

The paper is organized as follows. In Section 2 we recall basic definitions of FCA
and those related to concept-based hypotheses. In Section 3 we consider a learning
model for pattern structures, i.e., for data that cannot be directly described by
object-attribute matrices, but allow for a computable “meet” operation. In Section 4
we consider version spaces, a basic construction in machine learning, related to all
possible classifiers compatible with a training sample, from the viewpoint of FCA.
In Section 5 we show how decision trees can be naturally captured in terms of
FCA. In Section 6 we discuss algorithmic issues of concept-based learning. Finally,
in Section 7 we consider some applications of concept-based learning.

2 Basic definitions: concepts, implications, and hypotheses

First, to make the paper self-contained, we introduce standard definitions of Formal
Concept Analysis (FCA) [23]. We consider a set M of “structural attributes”, a set
G of objects (or observations) and a relation I C G x M such that (g,m) € I if and
only if object g has the attribute m. Such a triple K := (G, M, I) is called a formal
context. Using the derivation operators, defined for A C G, B C M by

A':={m e M | gIm for all g € A},
B':={g € G| gIm for all m € B},

we can define a formal concept (of the context K) to be a pair (A, B) satisfying
ACG,BCM,A =B,and B' = A. A is called the extent and B is called the



intent of the concept (A, B). These concepts, ordered by
(A1,B1) > (A2,Bs) <= A1 D Ay

form a complete lattice, called the concept lattice of K := (G, M, I).

Next, we use the FCA setting to describe JSM-hypotheses from [16,17]. In addi-
tion to the structural attributes of M, we consider (as in [36,19]) a target attribute
w ¢ M. This partitions the set G of all objects into three subsets: The set G of
those objects that are known to have the property w (these are the positive exam-
ples), the set G_ of those objects of which it is known that they do not have w (the
negative examples) and the set G, of undetermined examples, i.e., of those objects,
of which it is unknown if they have property w or not. This gives three subcontexts
of K= (G, M,I), the first two staying for the training sample:

Ky = (G4, M, 1), K :=(G_,M,I.), andK,:=(G,,M,I,),

where for € € {+, —, 7} we have I, := IN(G x M) and the corresponding derivation
operators are denoted by ()%, (-)7, (-)7, respectively.

Intents, as defined above, are attribute sets shared by some of the observed ob-
jects. In order to form hypotheses about structural causes of the target attribute w,
we are interested in sets of structural attributes that are common to some positive,
but to no negative examples. Thus, a positive hypothesis h for w (called “counter-
example forbidding hypotheses” in the JSM-method [16,17]) is an intent of K
such that h* 20 and h € g~ :={m € M | (g9,m) € I_} for any negative example
g € G_. An intent of K; that is contained in the intent of a negative example
is called a falsified (+)-generalization. Negative hypotheses are defined similarly.
Hypotheses can be used to classify the undetermined examples: If the intent

g ={meM]|(g,m) €L}

of an object g € G, contains a positive, but no negative hypothesis, then g” is
classified positively. Negative classifications are defined similarly. If ¢g” contains hy-
potheses of both kinds, or if ¢” contains no hypothesis at all, then the classification
is contradictory or undetermined, respectively. In this case one can apply standard
probabilistic techniques known in machine learning and data mining (majority vote,
Bayesian approach, etc.)

In [35,36] we argued that one can restrict to ménimal (w.r.t. inclusion C) hy-
potheses, positive as well as negative, since an object intent obviously contains a
positive hypothesis if and only if it contains a minimal positive hypothesis.

Example 1. Consider the following data table

G\ M |color form firm smooth|target
1 apple |yellowround no yes
2 grapefruit |yellow round no  no
3 kiwi green oval no no
4  plum blue oval no yes
5 toy cube |green cubic yes yes -
6 egg white oval yes yes —
7 tennis ball| white round no  no —

+++ +




This dataset or multivalued context can be reduced to a context of the form
presented above by scaling [23], e.g., as follows (scaling 1):

G\M |wyghb|f f|s §|r o oltarget
1 apple X X | % X —+
2 grapefruit| x x| X|X X +
3  kiwi X x| x| x +
4  plum x| x| X +
5 toy cube X |x |Xx x| -
6 egg X X X X -
7 tennis ball| x x| X|X -

Here we use the following abbreviations: “w” for white, “y” for yellow, “g” for green,
“b” for blue, “s” for smooth, “f” for firm, “r” for round, “o0” for oval, and “m” for
m € {w,y, g b, s, f, r,0,}. This context gives rise to the positive concept lattice in
Fig. 1, where we marked minimal (+)-hypotheses and falsified (+)-generalizations.
If we have an undetermined example mango with mango” = {y, f, s, o} then it is
classified positively, since mango” contains the minimal hypothesis {f, o} and does

not contain any negative hypothesis.

({1,2,3,4}, {f}) {71}~ = {w,f5r}

minimal (+)-hypotheses T~ — falsifled (+)-géneralizations

({12}, {wfrh) ({3,4}.{f.0})

({1}, {135 ({4}, {4}1)

(0M)

Fig. 1. Positive concept lattice for scaling 1

For this scaling we have two minimal negative hypotheses: {w} (supported by
examples egg and tennis ball and {f, s} (supported by examples toy cube and
egg. The context can be scaled differently, e.g. in this way (scaling 2):



G\M |wygbwyghb|f f|s S|r oT o|target
1 apple X X X X| X|X X +
2 grapefruit| x X X X| X| X[x X +
3  kiwi X XX X| x| x| xx +
4  plum X X X X X X X —+
5 toy cube X XX X X X| -
6 egg X X X X|X |X X -
7 tennis ball|x X X X| X| X|x X —

This scaling gives rise to another positive concept lattice, all intents of which are
(+)-hypotheses. The unique minimal hypothesis (corresponding to the top element
of the concept lattice) is {W,f, o}. Two minimal negative hypotheses are {,b,T, f,
s} (supported by examples 5 and 6) and {¥,g,b, w, o} (supported by examples 6
and 7).

3 Learning in Pattern Structures

3.1 Pattern Structures and Hypotheses Therein

Learning with descriptions given by logical formulas is systematically studied in
ILP [48], with applications to learning with molecular graphs described by logical
formulas [60, 6]. In FCA community several authors have considered the case where
instead of having attributes the objects satisfy certain logical formulas [2,9,14] or
they are described by labeled graphs [35,37,40]. In case of logical formulas shared
attributes are replaced by common subsumers of the respective formulas. In [20] we
showed how such an approach is linked to the general FCA framework.

Let G be some set, let (D,M) be a meet-semilattice and let § : G — D be a
mapping. Then (G, D, ) with D = (D,N) is called a pattern structure, provided
that the set

5(G) = {8(g) | g € G}
generates a complete subsemilattice (Dg,M) of (D, M), i.e., every subset X of §(G)
has an infimum NX in (D, M) and Ds is the set of these infima. Each such complete
semilattice has lower and upper bounds, which we denote by 0 and 1, respectively.
There are two natural situations where the condition on the complete subsemilattice
is automatically satisfied: when (D, M) is complete, and when G is finite.

If (G, D,4) is a pattern structure, we define the derivation operators as

A® :=Tyead(g) for ACG
and
d°:={ge€G|dCd(g)} ford e D.
The elements of D are called patterns. The natural order on them is given, as usual,
by
cCd: <= cNd=c,

and is called the subsumption order?. The operators ¢ obviously make a Galois
connection between the power set of G and (D, C). The pairs (A, d) satisfying

ACG, deD, A°=d, and A=d°

2 Note that subsumption order on patterns defined in this way (a larger pattern subsumes
a smaller pattern), being “intentional,” is inverse to definitions of subsumption in logics,
where it is “extensional” (a more general formula, covering more ground facts, subsumes
a less general formula).



are called the pattern concepts of (G, D, ), with extent A and pattern intent d. For
a,b € D the pattern implication a — b holds if a® C b°. Similarly, for C, D C G the
object implication C — D holds if C° C D°.

Since (Ds,M) is complete, there is a (unique) operation L such that (Dg,M,L)
is a complete lattice. It is given by

UX :=M{c € D5 | Vzex = C c}.

A subset M of D is U-dense for (Ds,MN) if every element of Dy is of the form
UX for some X C M. If this is the case, then with

ld:={eeD|eCd}

we get
c=U({lenM) for every ¢ € Ds.

Of course, M := Dy is always an example of a L-dense set.

If M is U-dense in (Dg,M), then the formal context (G, M,I) with I given as
gIm:<& m C 0(g) is called a representation context for (G,D,d). The following
result from [20] can be proved by a standard application of the basic theorem of
FCA [23].

Theorem 1 Let (G, D, ) be a pattern structure and let (G, M,I) be a representa-
tion context of (G,D,0). Then for any A C G, B C M and d € D the following
two conditions are equivalent

1. (A,d) is a pattern concept of (G,D,0) and B =, dN M.
2. (A, B) is a formal concept of (G, M,I) and d =||B.

Thus, the pattern concepts of (G, D, d) are in 1-1-correspondence with the for-
mal concepts of (G, M, I). Corresponding concepts have the same first components
(called extents). These extents form a closure system on G and thus a complete
lattice, which is isomorphic to the concept lattice of (G, M, I).

An approach to generating pattern concepts and implications between objects
can be made in lines of a procedure proposed in [2]. This procedure, called the object
exploration, is the dual of the attribute exploration algorithm, which is standard in
Formal Concept Analysis [23]. In the beginning of the exploration process one has
the empty set of object implications and the set of extents E, consisting at the
initialization step of the empty extent. One considers the set of implications of the
form A — A" for A € F in the lexicographical order and asks an expert whether each
particular implication holds. If the expert says yes, then either the set of implications
or the set of extents are updated (dependent on the fact whether a set of objects
is pseudoclosed or closed), if not, the expert should provide a counterexample that
updates the current set of objects.

As the result of object exploration one obtains the context with the same concept
lattice as the lattice of the subsumption hierarchy (in case of description languages
this is given by the lattice of least common subsumers) and the stem base of object
implications. The procedure proposed in [2] also applies to the general setting with
an arbitrary semilattice D.

In [36,37,19] we considered a learning model from [17] in terms of Formal Con-
cept Analysis. This model assumes that the cause of a target property resides in
common attributes of objects that have this property.

For pattern structures this can be formalized as follows. Let (G, D, §) be a pat-
tern structure together with an external target property w. As in the case of standard
contexts, the set G of all objects is partitioned into three disjoint sets w.r.t. w: the



sets G, G_, G of positive, negative, and undetermined examples. This gives three
pattern substructures of (G, D, ¢): (G+,D,0), (G—,D,9), (G,,D,?).

A positive hypothesis h is defined as a pattern intent of (G4, D,d) that is not
subsumed by any pattern from §(G_) (for short: not subsumed by any negative
example). Formally: h € D is a positive hypothesis iff

h°NG_ =0 and JA C Gy : A° = h.

A negative hypothesis is defined accordingly.

A hypothesis in the sense of Section 2 [19] is obtained as a special case of this
definition when (D,M) = (2™ N) for some set M. Hypotheses can be used for
classification of undetermined examples as introduced in [17] in the following way.
If g € G is an undetermined example, then a hypothesis h with h C §(g) is for the
positive classification of g if h is positive and for the negative classification of g if it
is a negative hypothesis. Classification of an example g € G is defined in the same
way as in Section 2 (with C replaced by C).

Example 2. Consider a pattern structure based on the following ordered set P of
graphs with labels from the set £ with partial order <. Each labeled graph I" from
P is a triple of the form ((V,1), E), where V is a set of vertices, E is a set of edges
and I: V — L is a label assignment function, taking a vertex to its label.

For two graphs I := ((V1,11), E1) and I := ((V2,12), E2) from P I} dominates
Iy or Iy < I7 if there exists a one-to-one mapping ¢: Vo — V; such that it

— respects edges: (v,w) € E2 = (¢(v), p(w)) € Ei,
— fits under labels: I2(v) <11 (p(v)).

For example, if £ = {C, NH,, CH3, OH, 2} we can have

C—CHs; CHz3 —(C —OH T C z NH; —C—OH
¢ < ¢ o < &
NHz/ c/ \HQ Nl-g/ XH C/ \Hs

vertex labels are unordered z < A for any vertex label A € £

A meet operation M on graph sets can then be defined as follows: For two graphs
X and Y from P

{Xyn{Y}y:={Z|2Z<X,)Y, VZ.<X,Y Z.% Z},
ie., {X}N{Y} is the set of all maximal common subgraphs of X and Y up to substi-
tution of a vertex label by a vertex label smaller w.r.t. <. The meet of nonsingleton
sets of graphs is defined as

{Xl, . ,Xk} I {Yi, . ,Ym} = MAXS(U,,J({XI} 1 {Y_}}))

for details see [35,37,20]. Here is an example of applying M defined above:



CH;;—H—OH CH3—C—Cl CHs—E—Cl E—CH;;

C/ st |—I O/ \Cl — O/ \Cl

Let positive examples be described by graphs I7,I5, I3, [y and negative examples
be described by graphs I, [, 7:

CHs —C —OH CHz; —C—OH CHz3 —C —OH CHs; —C—Cl

I: C Is: C I's: C Iy: C
Nﬂg/ \Hg NHz/ \H c/ \Hs o/ \01
CH3 — C — NH> NH; —C—OH NHy; —C—OH

[ [ [
O AN CN O

then the lattice of the pattern structure (G4, D, d), where D is the semilattice on
graph sets and ¢ is a function taking an object to its graph description, is given in
Fig. 2, where (+)-hypotheses and falsified (+)-generalizations are marked:

{172,3,4}

negative example 6

NH2-ﬁ_OH
@ <// 0153/ \cz

CHs—ﬁ—OH

CHs—E—OH 7

CHS_g_OH

NH ) {4} CHg—E—oz g-CHa

OI{ \Cl

)

CH3-C—0OH >
8 g CHs_g_OH 0 OHriE—OH

N y N
NHQ/ NHo ~ H2/ }H o / EHs 01{ Cl

positive examples 1, 2, 3, 4

CHs-E—Cl

Fig. 2. The lattice of the positive pattern structure



3.2 Projections and projected hypotheses

Since for some pattern structures (e.g., for the pattern structure given by sets of
graphs with labeled vertices) even computing subsumption relation may be NP-
hard, in practical situations we need to look for some approximation tools, which
would replace the patterns with simpler ones, even if that results in some loss of
information. To this end we use a mapping : D — D that replaces each pattern
d € D by ¢(d) such that the pattern structure (G, D, d) is replaced by (G, D, 09).
To distinguish two pattern structures, which we consider simultaneously, we use the
symbol © only for (G, D, ), not for (G, D, o §). We additionally require that 1) is
a kernel operator (or projection), i.e., that 1) is

monotone: if x C y, then ¢(x) C ¢ (y),
contractive: ¢(z) C z, and

idempotent: (¢ (z)) = ().

This requirement seems to hold for any natural approximation mapping and pro-
jection thus defined has a nice property well-known in order theory: Any projection
of a complete semilattice (D, ) is M-preserving, i.e., for any X, Y € D

PXNY) = ¢X)Ny(Y).

This helps us to describe how the lattice of pattern concepts changes when we replace
(G,D,d) by its approximation (G, D, o §). First, we note that ¢¥(d) C d(g) &
¥(d) C ¥ od(g). Then, using the basic theorem of FCA (which, in particular allows
one to represent every lattice as a concept lattice), we showed how the projected
pattern lattice is represented by a context [20]:

Theorem 2 For pattern structures (G,D,81) and (G,D,d2) the following state-
ments are equivalent:

1. §5 =1 o &, for some projection v of D.
2. There is a representation context (G, M,I) of (G,D,d1) and some N C M such
that (G,N,IN (G x N)) is a representation context of (G,D,ds).

Again, the basic theorem helped us to “binarize” the initial data representation.
However, to do this, we need first to compute the pattern lattice. Pattern structures
are naturally ordered by projections: (G, D,d1) > (G, D, d2) if there is a projection
1 such that § = 1 o §;. In this case, representation (G, D, d2) can be said to be
rougher than (G, D, d;) and the latter to be finer than the former. In comparable
pattern structures implications are related as follows: If ¥(a) — 1 (b) and ¥ (b) = b
then a — b for arbitrary a,b € D.

The properties of projection allow one to relate hypotheses in the original rep-
resentation with those approximated by a projection. As in [20] we use the term
“hypothesis” to those obtained for (G, D,d) and we refer to those obtained for
(G, D,006) as 1-hypotheses. There is no guarantee that the ¢-image of a hypothesis
must be a -hypothesis. In fact, our definition allows that 1) is the “null projection”
with 1(d) = 0 for all d € D. (total abandoning of the data with no interesting hy-
potheses). However, if 1/(d) is a (positive) hypothesis, then (d) is also a (positive)
1-hypothesis. If we want to look another way round, we have the following: if 1)(d)
is a (positive) ¥-hypothesis, then 1(d)°° is a (positive) hypothesis [20].

The set of all hypothesis-based classifications does not shrink when we pass from
d to 1(d). Formally, if d is a hypothesis for the positive classification of g and ¥(d)
is a positive ¥-hypothesis, then ¢(d) is for the positive classification of g.

The above observations show that we can generate hypotheses starting from
projections. For example, we can select only those that can be seen in the projected
data, which is suggested by the following theorem from [20]:
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Theorem 3 For any projection v and any positive hypothesis d € D the following
are equivalent:

1. 9(d) is not subsumed by any negative example.
2. There is some positive 1p-hypothesis h such that h®° C d.

3.3 Algorithmic problems of learning in concept lattices and pattern
structures

Computing concept-based hypotheses can be hard. The number of concepts of a
formal context, i.e., the size of a concept lattice, can be exponential in the size of a
context (e.g., for the context (A, A, #), which gives rise to a Boolean concept lattice)
and the problem of computing the size of a concept lattice is #P-complete [34,
38]. All hypotheses can be generated by a polynomial delay algorithm, however
a (cumulative) polynomial delay algorithm for minimal hypotheses is not known.
In certain cases, e.g., when the number of attributes per object is bounded, the
computation of hypotheses can be realized in polynomial time. In principle, any
known algorithm for computing concepts (see, e.g., review [39]) can be adapted to
computing hypotheses.

When a pattern structure is given, we may, for example, determine its concepts
by computing all infima of subsets of Ds and thereby all pattern concepts. To this
end we can adapt some standard FCA algorithms, e.g., Next Closure [23]. Here
one should take into account that performing a single closure may take exponential
time. For example, already the problem of testing the C relation for a lattice on
sets of labeled graphs from [35,37,20] is NP-complete (equivalent to SUBGRAPH
ISOMORPHISM problem [24]), and computing X MY is even more difficult. A
similar algorithm of this type was described in [37] for computing with sets of
graphs. The time complexity of the algorithm is O((« + B|G|)|G||L|) and its space
complexity is O(y|G||L|), where « is time needed to perform N operation and S
is time needed to test C relation and < is the space needed to store the largest
object from Dgs. Computing the line diagram of the set of all concepts, given the
tree generated by the previous algorithm, takes O((a|G| + B|G|?)|L|) time and
O((vIGI|L]) space [37].

4 Hypotheses, concept lattices, and decision trees

In this Section we consider the relation between decision trees, concept lattices
and concept-based hypotheses. We describe a typical procedure of constructing a
decision tree (see, e.g., [54]) in terms of concept lattices.

As input, a system constructing a decision tree receives descriptions of positive
and negative examples (or positive and negative contexts). The root of the tree
corresponds to the beginning of the process and is not labeled. Other vertices of
the decision tree are labeled by attributes and edges are labeled by values of the
attributes (e.g., 0 or 1 in case of binary contexts), each leaf is additionally labeled
by a class + or —, meaning that all examples with attribute values from the path
leading from the root to the leaf belong to a certain class, either + or —.

Systems like ID3 [54] (see also [46]) compute the value of the information gain
(or negentropy) for each vertex and each attribute not chosen in the branch above.
The attribute with the greatest value of the information gain (with the smallest
entropy, respectively) “most strongly separates” objects from classes + and —. The
algorithm sequentially extends branches of the tree by choosing attributes with the
highest information gain. The extension of a branch stops when a next attribute
value together with attributes above in the branch uniquely classify examples with
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this value combination in one of classes + or —. In some algorithms, the process of
extending a branch stops before this in order to avoid overfitting, i.e., the situation
where all or almost all examples from the training sample are classified correctly by
the resulting decision tree, but objects from test datasets are classified with many
errors.

Now we consider decision trees more formally. Let the training data be described
by the context Ky = (G UG_, M, I, UI_) with the derivation operator denoted
by (-). In FCA terms this context is called the subposition of Ky and K_. Assume
for simplicity sake that for each attribute m € M there is an attribute m € M, a
“negation” of m: m € ¢' iff m & g'. A set of attributes M with this property is
called dichotomized in FCA. We call a subset of attributes A C M noncontradictory
if either m ¢ A or m ¢ A. We call a subset of attributes A C M complete if for
every m € M one has m € A or m € A.

We would like first to avoid mentioning the use of any optimization functional
like information gain for selecting attributes and consider construction of all possible
decision trees. The construction of an arbitrary decision tree proceeds by sequen-

tially choosing attributes. If different attributes myq,...,my were chosen one after
another, then the sequence (my,...,my) is called a decision path if {m1,...,my} is
noncontradictory and there exists an object g € G4 UG _ such that {my,...,mg} C
g' (i-e., there is an example with this set of attributes). A decision path (m1,...,m;)
is a (proper) subpath of a decision path {(my,...,my) ifi <k (i < k, respectively). A
decision path (my, ..., my) is called full if all objects having attributes {m, ..., my}

are either positive or negative examples (i.e., have either + or — value of the target
attribute). We call a full decision path irredundant if none of its subpaths is a full
decision path. The set of all chosen attributes in a full decision path can be con-
sidered as a sufficient condition for an object to belong to a class e € {+,—}. A
decision tree is then a set of full decision paths.

In what follows, we shall use extensively the one-to-one correspondence between
vertices of a decision tree and the related decision paths, representing the latter,
when this does not lead to ambiguity, by their last chosen attributes. By closure of
a decision path (my,...,m) we mean the closure of the corresponding set of at-
tributes, i.e., {mq, ..., my}". Now we relate decision trees with the covering relation
graph of the concept lattice of the context K = (G, M, I), where the set of objects
G is of size 21M1/2 and the relation I is such that the set of object intents is exactly
the set of complete noncontradictory subsets of attributes. In terms of FCA [23] the
context K is the semiproduct of |M|/2 dichotomic scales or K= Dy X ... X Dy /2
(denoted by Xpr D for short), where each dichotomic scale D; stays for the pair of
attributes (m,m).

In a concept lattice a sequence of concepts with decreasing extents we call a
descending chain. If the chain starts at the top element of the lattice, we call it
rooted.

Proposition 4. Every decision path is a rooted descending chain in B(Xpr D)
and every rooted descending chain consisting of concepts with nonempty extents in
B(Xpr D) is a decision path.

To relate decision trees to hypotheses introduced above we consider again the
contexts Ky = (G4, M,I;), K. =(G_,M,I_),and K, = (GLUG_, M, I, UI_).
The context K;_ can be much smaller than Xj; D because the latter always has
21M1/2 gbjects while the number of objects in the former is the number of examples.
Also the lattice B(K;_) can be much smaller than B (X D).

Proposition 5. A full decision path {my,...,my) corresponds to a rooted descend-
ing chain ((mY,m}),...,({{my,...,me}’,{mq,...,my}")) of the line diagram of
B(K,_) and the closure of each full decision path {my,...,my) is a hypothesis,
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either positive or negative. Moreover, for each minimal hypothesis h, there is a full
irredundant path (my,...,my) such that {mq,...,my}" = h.

This proposition also illustrates the difference between hypotheses and irredun-
dant decision trees. The former correspond to “most cautious” (most specific) learn-
ing in the sense that they are least general generalizations of descriptions of pos-
itive examples (or object intents, in terms of FCA). The shortest decision paths
(for which in no decision tree there exist full paths with proper subsets of attribute
values) correspond to the “most courageous” learning (often referred to as “most
discriminant” in machine learning community): being the shortest possible rules,
they are most general generalizations of positive example descriptions. However, it
is not guaranteed that for a given training set resulting in a certain set of minimal
hypothesis there is a decision tree such that minimal hypotheses are among closures
of its paths (see Example 3 below). In general, to obtain all minimal hypotheses
as closures of decision paths one needs to consider several decision trees, not all
of them being optimal w.r.t. a procedure based on the information gain functional
(like ID3 or C4.5). The issues of generality of generalizations and, in particular, the
relation between most cautious (most specific) and most courageous (most general)
generalizations, are naturally captured in terms of version spaces, which we consider
in the next section.

In real systems for the construction of decision trees like ID3 or C4.5 the process
of constructing a decision path is driven by the information gain functional: a next
chosen attribute should have maximal information gain. For dichotomized attributes
the information gain is defined for a pair of attributes m,m € M. Given a decision
path (my,...,mg)

|47

IG(m) = —WEnt(Am)

| Al

~ Pl pngas),
|G|

where Ay, := {my,...,mk, m}, Am = {mq,...,my,m}, and for A C M

Ent(4) :=— Y ple|A)-log,p(e | A),
ee{+,—}

{+,—} are values of the target attribute and p(e | A) is the conditional sample
probability (for the training set) that an object having a set of attributes A belongs
to a class € € {4, —}. If the derivation operator (-)’ is associated with the context
(G UG_,M,I, UI_), then, by definition of the conditional probability, we have

A'NG. AN NG,
e 4y = 0T SR e )

by the property of the derivation operator (-)': (A")" = A’. This observation implies
that instead of considering decision paths, one can consider their closures without
affecting the values of the information gain. In terms of lattices this means that
instead of the concept lattice B(Xas D) one can consider the concept lattice of the
context Ky _ = (G4 UG_, M, I, UI_). Another consequence of the invariance of
IG w.r.t. closure is the following fact: If implication m — n holds in the context
K;_ = (G+UG_, M, I, UI_), then an IG-based algorithm will not choose attribute
n in the branch below chosen m and will not choose m in the branch below chosen 7.

Example 3. Consider the training set from Example 1. The decision tree obtained
by the IG-based algorithm is given in Fig. 3. Note that attributes f and w has
the same IG value (a similar tree with f at the root is also optimal), the IG-based
algorithms usually take the first attribute with the same value of IG.
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yes no

examples 6,7

yes no
- %
example 5 examples 1,2,3,4

Fig. 3. A decision tree for the dataset from Example 1

The decision tree in Fig. 3 corresponds to three implications {w} — —, {W,
f} - —, {w, f} — +, such that closures of their premises make the corresponding
negative and positive hypotheses for the second scaling from Example 1. Note that
the hypothesis {w, f}" is not minimal, since there is a minimal hypothesis {f}"
contained in it. The minimal hypothesis {f}" corresponds to a decision path of the
mentioned IG-based tree with the attribute f at the root.

5 Version spaces vs. concept-based hypotheses

5.1 Version spaces

The term “version space” was coined by T. Mitchell [44-46] to denote a variety
of models compatible with the training sample of positive and negative examples.
Version spaces can be defined in different ways: e.g., in terms of sets of maximal
and minimal elements [44,45] or in terms of minimal elements and sets of nega-
tive examples [59]. They can also be defined in terms of some matching predicate.
These representations are equivalent, however transformations from one into an-
other are not always polynomially tractable. We will start from the representation
with matching predicates, in terms slightly modified as compared with [44, 59], in
order to avoid collision of FCA terminology and that of machine learning.

— An ezample language L. (elsewhere also called instance language) by means of
which the examples (instances) are described. This language describes a set E
of examples.

— A classifier language L. describing the possible classifiers (elsewhere called con-
cepts). This language describes a set C' of classifiers.

— A matching predicate M (c, e) that defines if a classifier ¢ does or does not match
an example e: We have M (c, e) iff e is an example of classifier c¢. The set of clas-
sifiers is (partially) ordered by a subsumption order: for c1,ca € L. the classifier
c1 subsumes ¢y or ¢; J ¢y if ¢; corresponds to a more specific description and
thus, covers less objects than co:

¢1 d ey : <= Veer M(c1,€) = M(ca,e).

The corresponding strict order 1 is called proper subsumption.

— Sets E; and E_ of positive and negative examples of a target attribute with
E; N E_ = (. The target attribute is not explicitly given.

— consistency predicate cons(c):
cons(c) holds if for every e € E, the matching predicate M (c,e) holds and for
every e € E_ the negation =M (c, e) holds. The set of all consistent classifiers is
called the version space

VS(L., Le, M(c,e), Ey, E_).
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The learning problem is then defined as follows:

Given L., L., M(c,e),Ey,E_.
Find the version space VS(L., L¢, M (c,e), E4,E_).

In the sequel, we shall usually fix L., L., and M (c,e) and write VS(E;, E_) or
even just VS for short. Version spaces are often considered in terms of boundary sets
proposed in [45]. They can be defined if the language L. is admissible, i.e., if every
chain in the subsumption order has a minimal and a maximal element. In this case,

GVS(Le, Lo, M(c,€), By, E_) := MINC(VS) := {c € VS | =3¢1 € VS ey C ¢},
SVS(Le, Le, M(c,€), By, E_) := MAX(VS) = {c € VS | =3¢y € VScC 1 }.

If a version space VS is fixed, we also use notation G(VS) and S(VS) for short.
According to [46], the ideal result of learning a target attribute is the case where
the version space consists of a single element. Otherwise, the target attribute is said
to be learned partially.

The elements of the version space can be used as potential classifiers for the
target attribute: A classifier ¢ € VS classifies an example positively if ¢ matches e
and negatively else. Then, all positive examples are classified positively, all negative
examples are classified negatively, and undetermined examples may be classified
either way. If it is assumed that E; and E_ carry sufficient information about the
target attribute, we may expect that an undetermined example is likely to have the
target attribute if it is classified positively by a large percentage of the version space
(cf. [46]). We say that an example e is a-classified (or a%-classified) if no less than
a-| VS| classifiers classify it positively. This means, e.g., that 100%-classification of
e takes place if e is matched by all elements of SVS and negative classification of e
(0%-classification) takes place if e is not matched by any element of GVS.

5.2 Version spaces in terms of Galois connections

As we showed in [21] the basic properties of general version spaces can easily be
expressed with Galois connections, which underlie basic definitions of Formal Con-
cept Analysis [23]. Consider the formal context (E,C,I), where E is the set of
examples containing the disjoint sets of observed positive and negative examples:
EDELUE_,E NnE_ =, C is the set of classifiers and the relation I corre-
sponds to the matching predicate M (c,e): for ¢ € C, e € E the relation elc holds
iff M(c,e) = 1. The complementary relation, I, corresponds to the negation: elc
holds iff M(c,e) = 0. As shown in [21]

VS(E.,E_)=E."nE_T.

This characterization of version spaces implies immediately the property of merging
version spaces, proved in [30]: For fixed L., L., M(c,e) and two sets E;1, E_; and
FE,q,E_5 of positive and negative examples one has

VS(E+1 U E+2, E_1U E_z) = VS(E+1, E_l) n VS(E+2, E_g).

This follows from the relation (A U B)' = A’ N B’, which holds for a derivation
operator (-)' of an arbitrary context.

The classifications produced by classifiers from the version space are character-
ized as follows. The set of all 100%-classified examples defined by the version space
VS(E;, E_) is given by

(E.'nE D
In particular, if one of the following conditions is satisfied, then there cannot be any
100%-classified undetermined example:



15

1.E =Qand E,"" = E,,

2. (E,'nE_ N =E,.
The set of examples that are classified positively by at least one element of the
version space VS(Ey, E_) is given by

E\(E " nE_DT

5.3 Version spaces for classifier semilattices

In the preceding section we showed that the language of FCA and Galois connections
is a convenient means for describing version spaces in general case, for unspecified
order relation on the set of classifiers. Now we would like to consider a very impor-
tant special case where the ordered set (C, <) of classifiers given in terms of some
language L. makes a meet-semilattice w.r.t. A meet operation. This assumption is
quite natural and realistic, e.g., classifiers given as logical formulas form a meet
semilattice when the set of these formulas is closed under conjunction. Classifiers
given as sets of attributes show the same effect if arbitrary subsets of attribute are
allowed as classifiers, too. This also covers the case of attributes with values. In
the setting of [46], for example, each attribute takes one of possible values, either
constant or “wildcard” =, the latter being the shortcut for universal quantification
over constant values of this attribute. Examples are given by conjunctions of at-
tribute values. A classifier ¢ matches example e if all attribute values of ¢ that do
not coincide with the corresponding values of e are wildcards.

In [21] we proved that in case where the classifiers, ordered by subsumption,
form a complete semilattice, the version space is a complete subsemilattice for any
sets of examples £, and E_. For the case where the set of classifiers C' makes a
complete semilattice (C, M), we can consider a pattern structure (E, (C,M),d), where
E is a set (of “examples”), d is a mapping 6 : E — C, §(E) := {d(e) | e € E}. The
subsumption order can be reconstructed from the semilattice operation: ¢ C d <=
cnd=c.

The version space may be empty, in which case there are no classifiers separating
positive examples from negative ones. This happens, e.g., if there is a hopeless
positive example (an outlier), by which we mean an element e, € E, having a
negative counterpart e € E_ such that every classifier which matches e, also
matches e_. An equivalent formulation of the hopelessness of e is that (e4)°° N

E_ #0.

Theorem 1 Suppose that the classifiers, ordered by subsumption, form a complete
meet-semilattice (C,1), and let (E, (C,N), ) denote the corresponding pattern struc-
ture. Then the following are equivalent:

1. The version space VS(E4, E_) is not empty.

2. (E+)oo NE_= @

3. There are no hopeless positive examples and there is a unique minimal positive
hypothesis by

In this case, hy,;, = (E4)°, and the version space is a convex set in the lattice
of all pattern intents, ordered by subsumption, with mazimal element hy ;.

In case where conditions 1-3 are satisfied, the set of training examples is often
referred to as separable in machine learning. The theorem gives access to an algo-
rithm for generating the version space. For example, in [21] we use a modification
of a standard Next Closure [23] algorithm for generating all formal concepts of a
formal context to generate the version space as a convex set of the type described
in Theorem 1.
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According to [23] a subset A C M can be defined as a proper premise of an
attribute m € M if m ¢ A, m € A" and for any A; C A one has m ¢ Al.
In particular we can define a positive proper premise as a proper premise of the
target attribute w. In [21] we generalized this notion to include the possibility of
the unknown value of a target attribute (for an undetermined example): d € L. is a
positive proper predictor with respect to examples E,, E_, and E, if the following
conditions 1-3 are satisfied:

1. d°CELUE,,
2. dg€E :ged (ord°NEL #0),
3. Vd; such that d C dy and d # d;, the relation d ¢ E; U E; holds.

In the case where E, = (), satisfaction of condition 2 of the definition follows
from condition 1 and a proper predictor is just a proper premise [23] of the target
attribute. The set of all positive proper predictors for a pattern structure II =
(E,(C,M),d) and sets of positive and negative examples E, and E_ will be denoted
by PP, (I, E,,E_).

By H,(II, E,, E_) we denote the set of positive hypotheses, by V.S(II, E;,E_)
we denote the version space for the pattern structure II = (E, (C,M),6) and sets
of positive and negative examples £, and E_. Then the proper predictors and
hypotheses are related to the boundaries of the version space as follows [21]:

(1) PP (I, By, E_) = MAXc(Up, ¢, GVS(I, Fy, E_)),
(2) H+(Ha E+5E7) = UF+QE+ SVS(Ha F+5E7)'

To sum up the relation of concept-based hypotheses with version spaces, we can
say the following:

The major drawback of the version spaces where classifiers are defined syntac-
tically is the very likely situation when - in case of too restrictive choice of the
classifiers - there is no classifier that matches all positive examples (so-called “col-
lapse of the version space”). This can easily happen for example when classifiers are
just conjunctions of attribute value assignments and “wildcards” *, a case mentioned
above. In other words: The situation discussed in Theorem 1, which presupposes
that there are classifiers that match all positive and no negative examples, is too
narrow. If the expressive power is increased syntactically, e.g., by introducing dis-
junction, then the version space tends to become trivial, while the most specific
generalization of positive examples becomes “closer” to or just coincide with the
set of positive examples. A syntactical restriction to conjunctions of k-term disjunc-
tions was proposed in [57]. Hypotheses as we defined them in terms of concepts and
patterns structures offer another sort of “context-restricted” disjunction: not all
disjunctions are possible, but only those of minimal hypotheses (that are equivalent
to certain conjunctions of attributes), which express similarities of examples. As for
the relation of version spaces (with example descriptions given by consjunctions of
attribute values) to decision trees, for any ¢ € G(VS) there is a decision tree with a
path whose set of attributes coincide with ¢, but in general not all paths of decision
trees are in G(VS).

A systematical elaboration of the idea of version spaces in logical terms by
means of logical programming is going on in Inductive Logic Programming (ILP,
see [47,48]). Classifiers there are logical formulas with deducibility order on them.
Standard inductive operators of ILP, called V- and W-operators, are based on the
idea of inverting resolution. The application of these operators can be translated in
the language of FCA generally in terms of association rules (partial implications)
and for certain cases in terms of implications.
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6 Applications of concept-based hypotheses

Starting from early 1980s JSM-hypotheses (equivalent to concept-based hypotheses
from Section 2) were used in several applied domains, including biosciences, techni-
cal diagnostics, sociology, document dating, spam filtering and so on. Most numerous
experiments were carried out in applied pharmacology or Structure-Activity Rela-
tionship domain, which deals with predicting biological activity of chemical com-
pounds with known molecular structure. JSM-hypotheses were generated for antitu-
mor [53], antibacterial, antileprous, hepatoprotective [7], plant growth-stimulating,
cholesterase-inhibitine, toxic and carcinogenic activities, see review [4]. A free-
ware system QuDA [25,26], which incorporates several data mining techniques also
presents a possibility of generating JSM-hypotheses. JSM-hypotheses were used for
making predictions at two international competitions: that for predcitive toxicol-
ogy [28,5] and that for spam filtering [10].

6.1 Competition on Predictive Toxicology

The program of a workshop on Predictive Toxicology Challenge (PTC) [28], (at the
joint 12th European Conference on Machine Learning and the 5th European Con-
ference on Principles of Knowledge Discovery in Databases) consisted in a competi-
tion of machine learning programs for generation of hypothetical causes of toxicity
from positive and negative examples of toxicity. The organizers (Machine Learning
groups of the Freiburg University, Oxford University, and University of Wales) to-
gether with toxicology experts (US Environmental Protection Agency, US National
Institute of Environmental and Health Standards) provided the participants with
training and test samples.

The training sample consisted of descriptions of 185 molecular graphs of 409
chemical compounds with indication of whether a compound is toxic or not for a
particular sex/species group out of four possible groups: male mice, female mice,
male rats and female rats. For each group there were about 120 to 150 positive
examples and 190 to 230 negative examples of toxicity with indication of whether
a substance is toxic for four sex/species groups: {male, female} x {mice, rats} (for
some groups a substance can be neither a positive nor a negative example because
of ambiguous laboratory results). The test sample provided by the Food and Drug
Administration (FDA) consisted of 185 substances for which forecasts of toxicity
should be made (actually, (non)toxicity of substances was known to organizers).
Twelve research groups (world-wide) participated in PTC, each with up to 4 pre-
diction models for every sex/species group.

The competition consisted of the following stages: 1. Encoding of chemical struc-
tures in terms of attributes, 2. Generation of classification rules, 3. Prediction by
means of classification rules. All results of each stage were made public by the orga-
nizers. In particular, encodings of chemical structures made by a participant were
made available to all participants. The evaluation was ROC diagrams where each
predictive model was represented in a two-dimension space with coordinates related
to the rate of (in)correctly predicted toxicity: percentage of substances from the test
sample with correctly predicted toxicity (true positive classification rate) and that
of incorrectly predicted (false positive classification rate).

The following learning models were used by the participants: structural regres-
sion tree (STR) [33] based on combination of statistical methods for constructing
regression trees and inductive logic programming (ILP); tree induction for predictive
toxicology (TIPT) [3], which is an adaptation of the standard C4.5 algorithm, ILP
algorithm PROGOL [47] that realizes inverse entailment for generalizing positive
examples w.r.t. a partial domain theory; LRD model based on Distill algorithm [58],
which is a combination of the method of Disjunctive Version Spaces (DiVS) [57] with
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the method of stochastic choice of certain model parameters; the OUCL-2 model
used the C4.5 algorithm for construction decision trees, where some attributes were
constructed by means of ILP and WARMR methods [32] (the latter is a moderniza-
tion of the Apriori algorithm [1] by generating DATALOG queries levelwise up to a
certain level, choosing those satisfied by a sufficient number of examples); OAI model
used a combination of rules generated by C4.5 with Bayes classification followed by
voting; LEU3 model based on the Inductive constraint logic (ICL) algorithm [12],
which used a mutagenesis theory preconstructed by PROGOL; LEU1 model used
an algorithm for inducing decision trees; LEU2 model based on the MACCENT
system with the use of association rules found by WARMR. MACCENT model [11]
also uses DATALOG queries, first finding constraints for conditional distributions
for the membership to positive and negative classes and then finding the distributon
with the use of the maximum entropy principle.
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Fig. 4. ROC-diagram for classifications in the female mice group

As measured by ROC diagrams, the performance of the learning program from
VINITI (Moscow) [5] based on JSM-hypotheses defined in Section 2 turned out to
be Pareto-optimal (ROC diagrams allow for several incomparable “best” results) for
all sex/species groups, see e.g. model number 26 in Fig. 4, among all classification
rules generated by learning models participating in the competition in terms of
the relative number of false and true positive classifications made by hypotheses
generated by a learning program (see [28] for details).

6.2 Spam filtering

The first successful applications of concept-based hypotheses for filtering spam
was reported in [15]. In April-May 2003 Technical University Chemnitz, European
Knowledge Discovery Network, and PrudSys AG organized the Data Mining Cup
(DMC) competition for students specializing in Machine Learning [10]. 514 partic-
ipants from 199 Universities of 38 countries received training datasets with 8000
e-mail messages some part of which (39%) was qualified as spam (positive exam-
ples) and the rest (61%) as nonspam (negative examples). The test dataset con-
tained 11177 messages. Both datasets were described by 833 attributes, including
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832 binary ones and one numeric one. The only numeric attribute (ID) reflected
the (unique) incoming number of the e-mail within the company that provided the
data. Thus no two different e-mails had the same value for this attribute.

The participants were to generate a classifier for distinguishing spam from not
spam by using various machine learning techniques. An important condition of the
competition was that the error of classifying a nonspam message from the test set as
a spam one should not be greater than 1%. There were only 74 participants whose
learning models did not exceed this level. The learning models were than ranked
according to the rate of incorrect classification of spam messages as nonspam ones.

Seven students from Computer Science and Mathematics Faculties of the Darm-
stadt University of Technology took part in the competition. Three of the students
obtained solutions within the best 20 in the competition. The sixth place (the best
among the Darmstadt group) was taken by a solution of F. Hutter, which used
“Naive Bayes” approach with boosting and when the confidence level of the classi-
fication (i.e., the rate of correct classifications in the training sample itself) was less
than 90% utilized concept-based hypotheses with support (i.e., number of exam-
ples in the hypothesis extent) > 20. When hypotheses refused to classify a message
from the test set, the model used classifiers based on majority votes among decision
trees, the Naive Bayes classifier and a neural network. The sixteenth and seven-
teenth places in the competition were also taken by the students from Darmstadt.
Their models combined concept-based hypotheses, decision trees and Naive Bayes
appoaches using the majority vote strategy.

During the data preparation stage, the participants from Darmstadt “cleaned
off” the ID attribute (the serial number of an e-mail message). It turned out later
that the ID attribute, unique for each e-mail, implicitly indicated the time when
the e-mail was received: the last 4000 e-mails were spam (obtained on holidays
when business corespondence was temporarile canceled). 5 most successful models
used this to turn ID into time attribute with few values (roughly, “before holidays”
and “during the holidays”). The results obtained with concept-based hypotheses
could have been even better if this consideration had been taken into account at
the preprocessing stage.

7 Conclusions

The application of the lattice theory and FCA in machine learning shows that the
basic notions in lattice-based learning are that of a concept, concept intent (closed
itemset), implication, and association rule (partial implication). We presented sev-
eral machine learning models from the concept lattice viewpoint, including version
spaces, decision trees, and JSM- (or concept-based) hypotheses. It is shown that
concept-based hypotheses tend to be “more cautious” than those obtained by deci-
sion trees. On the other hand, they introduce a kind of restricted disjunction (over a
certain subset of concept intents) for purely conjunctive version spaces. A next inter-
esting link between FCA and machine learning will be relating FCA-based learning
with methods of ILP. We also discussed algorithmic problems of concept-based and
pattern-based hypotheses, as well as applications of concept-based hypotheses in
predictive toxicology and spam filtering.
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