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Abstract A retrospective survey of several research directions at the All-
Soviet (now All-Russia) Institute for Scientific and Technical Information
(VINITI), as well as research represented in several VINITI editions, is pro-
posed. In a number of papers of the 1970-1980s, taxonomies (classifications)
were naturally considered as lattices. Several problems of classification re-
quired consideration of tolerance relations as a model of similarity of ob-
jects. Such relations define symmetric formal contexts. A JSM-method of
inductive plausible reasoning, which has been developed at VINITI since the
early 1980s, is considered in terms of Galois connections and concept lat-
tices. Mathematical research around the JSM-method and its applications
is discussed.

1 Introduction

The research on Galois connection in the classification school at the All-Soviet (now
All-Russia) Institute for Scientific and Technical Information (VINITI), Moscow,
was first motivated by problems of classification and storage of documents, which
needed formal models of similarity of objects. Later motivations came from problems
of data analysis in various applied domains and their solution by means of the JSM-
method of hypothesis generation.

In this article we give a review of the research activity in VINITI and/or in its
journals, mainly Nauchno-Tekhnicheskaya Informatsiya (NTI), series', translated
to English by Allerton Press under the name Automated Documentation and Math-
ematical Linguistics, and also in Semiotika i Informatika (Semiotics and Computer
Science), Itogi Nauki i Tekhniki (Reviews in Science and Technology).

Around the mid 1960s, Yulii A. Shreider (1927-1998), one of the leading re-
searchers of VINITI, considered the problem of automatic classification of docu-
ments and their retrieval by means of a model consisting of a triple of sets (M, L, f),
where M is a set of objects (documents), L is a set of attributes and f: M — P(L)
is a mapping taking each object to a set attributes from L [77]. Similarity of docu-
ments z and y was defined by nonemptyness of the set of their common attributes:
f(x) N f(y) # 0. Defined in this way similarity is reflexive and symmetric, i.e.,
similarity is a tolerance relation on the set of objects.

Shreider mentioned the relevance of lattices to problems of classification and
mathematical retrieval in his early paper [77], where he also cited the work of Soergel
[82] on this issue. In [80] Shreider wrote about classifications of objects described
by attributes, where each classification is given by an idempotent commutative
semigroup (which is actually a semilattice) uniquely specified by bases (actually,
by sets of irreducible elements). Implication between single attributes, analogous
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to that in Formal Concept Analysis (FCA), was defined. Together with Sergei V.
Meien, a biological methodologist from St. Petersburg, he wrote on the duality of
taxonomies and meronomies (the latter term, denoting a hierarchy of parts, was
coined by Meien from the Greek word pepoC, part) [59] 2. This was almost like the
starting point of FCA [89], however, no systematic theory appeared. Two directions
of thought, the one of them related to the (semi)lattice nature of classification and
the other one, which considered tolerance relations on the set of objects and their
classes given by Galois correspondences, developed independently. An analogue of
concept lattice theory appeared later, in mid 1980s, in works by O.M. Polyakov and
V.V. Dunaev [72,73,14, 74].

To provide a general framework for the overview of research in different groups,
we will use the standard definitions of Formal Concept Analysis [89,27], which we
will briefly recall below.

Let G and M be sets and I C G x M be a relation. The elements of G and M
are called the sets of objects and attributes, respectively, and gIm (i.e., (g,m) € I)
is read: the object g has the attribute m. The triple K = (G, M, I) is called formal
context. The derivation operators, defined for any A C G and B C M by

Al :={me M |gImforallge A}, B':={ge G| gIm for all m € B}

induce a Galois connection between the ordered powersets (P(G),C) and
(P(M),C). In the case of a fixed relation I one usually writes (-)! instead of (-)!.
Any pair of sets (4, B) such that A C G, BC M, A' = B and B' = A is called
a formal concept of the context K with (formal) extent A and (formal) intent B.
The set of all formal concepts of a formal context K forms a complete lattice called
(formal) concept lattice B(K). Moreover, for an arbitrary complete lattice L, there
is a concept lattice isomorphic to it. For A,C C M the implication A — C holds if
A" C C' (or C C A"), i.e., if all objects from G that have the set of attributes A
also have the set of attributes C.

The issues around Galois connections and functional dependencies motivated
many other researchers. For example, in [11] the equivalence of the category of
functional dependencies to the category of closure systems (Moore families) [6]
was considered. In [84] the author studies implications between binary attributes.
The definition of implication was not extended to sets of attributes as it had been
done previously in FCA. The author considers the equivalence relation on objects
(described by same sets of attributes) and studies the cases where the order defined
by implications induces a Boolean algebra, as well as the possibility of embedding
elements of a binary relation with implication in Boolean algebras by mappings
called strict homomorphisms by the author (more known under the name order
embeddings): for two ordered sets A and B a mapping f: A — B is called a strict
homomorphism if f(a1) < f(a2) iff a; < as for any a1,as € A.

The rest of the paper is organized as follows. In the second section we consider
models of taxonomies and their relation to certain type of dependencies in databases.
In the third section we consider models of similarity based on tolerance relations,
classes of tolerance, and their relation to FCA. In the fourth section we give a
review of the research around the JSM-method of hypothesis generation, a machine
learning method naturally formalized in terms of Galois connections and FCA.

2 Taxonomies and Dependencies

After [80] the next step in the development of Shreider’s classification model was
made in [76], where objects are described by attributes, taxonomies are defined as
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refining sequences of coverings of object sets, meronomies are defined as refining
sequences of coverings of attribute sets (see exact definitions below). An archetype
was defined as a description common to all objects from a taxon (i.e., a member of
classification). The authors relate this construction to the notion of a concept, its
intent and extent, noticing that the size of the former decreases with the growth of
size of the latter. However, no further mathematical theory was proposed. A theory
that would pass completely to these methodological considerations is exactly that
of FCA. Together with [59], where the duality of taxonomies and meronomies was
underlined, the paper [76] is actually a prolegomena to FCA. So it is not surprising
that a counterpart of FCA notions appeared later (and few years later than similar
work in French and German schools) in the classification theory by Polyakov and
Dunaev [72,73,14,74].

They started from object-attribute representation, defined Galois correspon-
dence as it is done in FCA and obtained two antiisomorphic complete lattices on
sets of objects (called taxonomy) and sets of attributes (called meronomy). They
stated that both lattices can be generated by the sets of corresponding irreducibles.
Polyakov and Dunaev also considered relations between sets of objects, i.e., of the
form I C G x G, since to their minds, relations between objects induce taxonomies
(see below) and often come before attributes. Moreover, attributes often result from
the observation of relations between objects, for example the Mendeleev periodic
table of chemical elements, discussed in [14], resulted from ordering of the objects
(chemical elements) with respect to their atomic weights. This ordering motivated
further study of properties of classes of chemical elements.

Several results from FCA were repeated by Dunaev and Polyakov: Representing
concept lattices by products of concept lattices of subcontexts ([73, Theorem 2])
which allowed them to draw lattices in the way as it is done with nested line diagrams
in FCA; describing morphisms of concept lattices specified by subsets of the set of
all attributes ([73, Theorem 3]).

An aspect of their research that has not been previously covered by research
in FCA is related to the study of multivalued and mutual dependencies, which are
generalizations of functional dependencies. They showed how dependencies of this
kind allow for decomposition of taxonomies into products. Below we present some
definitions and results from [74].

Let D(U) be a finite set of objects (U is the name of this set). A tazonomy T
consisting of a system of tazons,

which are subsets D(U), is given as follows: D(U) is a taxon; and if T} € T,
T, € T are taxons, then T3 N T is a taxon.

Obviously, taxonomy defined in this way is a closure system [27] (or, equivalently,
a Moore family [6]) and the set of all taxons induces a lattice. In terms of FCA this
is the lattice of extents. When objects are described in terms of attributes, then the
dual lattice, called meronomy, on closed sets of attribute arises. In terms of FCA
this is the lattice of intents.

A product of tazonomies [74] T and Tz on the same set of objects, denoted by
T1 -T2, is a taxonomy such that T' € 71 -T2 iff T = Ty NT, for some Ty € T1, T3 € Ts.
The order on taxonomies < defined as 7; < 75 iff 71 - 7o = 71 induces a lattice on
the set K of all taxonomies of the set D(U). This order on taxonomies is obviously
related to refinement order on closure systems [27]

An attribute X is given in [74] as a pair (D(X),sX), where D(X) is the set of
attribute values, sX is the “object-attribute value” relation (sX C D(U) x D(X)).
In terms of FCA, X is a many-valued attribute with the set of values D(X). The
relation sX defines its scaling already at the many-valued level: in contrast to FCA,
there is no implicit dependencies of values that are specified by the choice of a
scaling, i.e., a method of reduction to one-valued attributes. All possible (object,
attribute value) pairs are given explicitly.



Criteria of decomposition of a taxonomy lattice resulting from a set of many-
valued attributes into products of taxonomy lattices arising from single attributes
are given in [74]. These criteria were given in terms of multi-valued and mutual
dependencies.

Recall from [57] that a functional dependency U — X holds if for any

u € D(U), z,7 € D(X) the relations (u,z) € sX, (u,Z) € sX imply z = Z.
Multivalued dependency U — X holds if for any u € U the facts (u,z,y) € sV and
(u,z',y") € sV imply (u,z,y’) € sV. The functional dependency U — X obviously
implies U — X. Mutual dependency [66] U ~ X holds if for every u € D(U) the
facts (u,z,y) € sV, (u,2',y') € sV and (z,y') € sV[XY] imply (u,z,y") € sV.
Multivalued dependency is obviously a particular type of mutual dependency.

For two attributes X and Y their (natural) join sX > sY is defined as follows:
(u,z,y) € sX < sY iff (u,2) € sX and (u,y) € sY. By a theorem from [57],
the decomposition sV =], sX; is possible iff there exists a set of multivalued
dependencies U — X;, i = {1,...,n}.

The decomposition sV = sX pa sY < sV[XY] is possible iff there exists mu-
tual dependency U ~ X [66]. The following propositions from [74] give criteria of
decomposition of a taxonomy lattice arising from the whole set of attributes into
products of taxonomy lattices arising from single attributes.

Proposition 1 Let sX; = sV[UX;|, where V = Xy ... X, X;NX; = 0 for any
i#£j;4,5=1,...,n. Mutual dependencies U ~ X; hold for all i = {1,...,n} iff for
any (Z1,...,Zn) € sV[V] the relation

{ve D) | (u,z1,...,2,) €V} = ﬁ{u € D(U) | (u,z;) € sX;}

i=1
holds.

In terms of taxonomies this result can be recast in the following form.

Proposition 2 Let sX; = sV[UX;], where V = X;...X,,, X;NX; = 0 for all
i #3j,4,5 =1,...,n. If mutual dependencies U ~ X; hold for all i = {1,...,n},
then T(V) C T(X1) -...- T(Xy).

As a corollary one has the following

Proposition 3 If sX; = sV[UX;], where V = X;...X,,, X,NX; =0 fori # j
and multivalued dependencies U — X; hold for all i = {1,...,n}, then T(V) =
T(Xy) .- T(XR).

In fact, if multivalued dependencies U — X; hold for all ¢ = {1,...,n}, then
TOV) D T(X1) ... T(X).

3 Tolerance relation: symmetric contexts

In the works of V.Ya. Gusakov and S.M. Gusakova (Yakubovich) classes of a toler-
ance relation were studied. This study of tolerance was motivated first by modeling
similarity of documents in document retrieval systems [91,92, 34, 35].

It was Zeeman [98] who proposed first to formalize similarity as a tolerance (re-
flexive and symmetric) relation. The relation of similarity, being naturally reflexive
and symmetric, should not be transitive: e.g., children are often similar to both their
parents, the latter being very different. Although some authors, like Tversky [85]
doubt that similarity is naturally symmetric and reflexive, this seems to be adequate
to model similarity between documents.



Definition 3.1 For a set G a binary relation T C G x G is called tolerance if
(1) Vz € G zTx (reflexivity)
(2) Vo,y € G 2Ty — yTx (symmetry)

A set G with tolerance T is called the space of tolerance and denoted by Gr.

Definition 3.2 A subset K C G is called a class of tolerance if
(1) Vz,y € K, 2Ty,
(2) Vz ¢ K Ju € K—(2Tu)
An arbitrary subset of a class of tolerance is called a preclass.

Definition 3.3 A set A = {A4;};cs of preclasses is called a system of preclasses
preserving T if
T = U Aj X Aj.
jeJ
The most important preserving system of preclasses for the tolerance 7' is the system
of all classes, which is denoted by KX(G7r).

Tolerance classes defined by a tolerance relation are cliques (inclusion-maximal
complete subgraphs) of the graph (G, T'). On the other hand, a tolerance relation can
be considered as an origin of formal context representation. First, some objects are
observed to be pairwise similar. Then all pairs of the tolerance relation, and further
on, the set all of maximal classes of similarity (classes of tolerance) is constructed.
Eventually, the classes are given names, which are further used as attributes that
describe objects.

By symmetry of the tolerance relation 7', the Galois connection associated with
the context (G,G,T) is given by a single mapping (-)7, where 27 is a set of all
elements from G tolerant to z and X7 is the set of all elements from G tolerant to
each z € X.

Let £ be a system of preclasses preserving tolerance 7' on the set G, then the
context (G, L,T) is defined as usual: for an object ¢ € G and a preclass L € L
one has gIL iff g € L. The Galois connection given by the derivation operator (-)!
is called the Galois connection that agrees with the tolerance T by the preserving
system L.

The following relation from [37] recast in FCA terms gives so called canonical
representation of similarity.

Proposition 4 Let G be a set and T C G x G a tolerance relation and let A be a
system of preclasses preserving T. Then (G, A, €) is a formal context satisfying

(9g,h) €T <= g' NK #0 for all g,h € G.

Conversely, if (G, M,I) is a context with g' # ) for all g € G, then T:= {(g,h) |
g’ Nh' # B} is a tolerance relation and A:= {m' | m € M} is a system of preclasses
preserving T.

Thus, each tolerance can be obtained from some formal context and in turn, an
arbitrary tolerance gives rise to a formal context: Starting from a tolerance relation,
one finds classes of tolerance, which, after being named, can be used further used
as attributes.

The results obtained for tolerances were partially extended to the case of n-ary
relations in [36], where the notions of n-ary tolerance relation and the correspond-
ing definitions of a class, preclass, preserving system of preclasses, and basis are
introduced.

In the 1980s a motivation for the further study of tolerance [36-39] came from
the theory of plausible reasoning [17] based on similarity operation (see next section



about the JSM-method). In [36,37] the relationship between so-called global and
local similarities was studied.

In [36] the following two definitions of similarity arising from formal contexts
(called karta, map) were considered.

Definition 3.5. Objects g1, . . ., g, are n-locally similar in the context K = (G, M, I)
ifg; € G (i=1,...,n) and {g1,..., 9.} # 0.

In terms of FCA, locally similar objects are exactly those that occur together in
a formal extent of the formal context K = (G, M, I). The sets of n-locally similar
objects induce a tolerance on G x G, these sets being preclasses of the tolerance.

Definition 3.6. Objects g1, . - ., gx are globally similar in the context K = (G, M, I)
if m"={g1,...,9x} for some m € M.

So, a set of globally similar objects is an attribute extent of the formal context
K = (G, M,I). Global similarity is not a relation, because it involves tuples of
varying length. A global similarity on the set G can be represented by a covering
n = {mj}jes of G, where each =; is a set of globally similar elements. A global
similarity (G, ) is represented by n-local similarity if # = K, where K is the set of
all classes of the tolerance T induced by the n-local similarity [36].

To satisfy this condition, the global similarity should not give rise to new classes
of the tolerance induced by the n-local similarity, and the maximal sets of n-locally
similar objects should be globally similar.

Example 1. Consider the following context (G, M, I) with G = {g; = whale, g5 =
duck, g; = robin, g4 = tree frog}, M = {warm blood, can fly, can swim}.

warm blood can swim can fly
whale X X
duck X X X
robin X X
tree frog X X

Consider the global similarity # = {m, 72,73}, where m1 = {g1,92,93}, T2 =
{91,92,94}, m3 = {g2, 93,94} This global similarity generates the binary local sim-
ilarity Ry with the set of classes Kr, = {{91,92,93,94}} and ternary similarity
R> with the set of classes Kr, = {{91,92,93},{91,92,94},{92, 93,94} }- Obviously,
Kpr, # 7 and, therefore, the global similarity is not representable by the binary
local similarity R;, whereas Kg, = m and the global similarity is representable by
the ternary local similarity Kg,.

In [92] the notion of a conjugate tolerance to a tolerance T' C G x G was defined
as a tolerance relation on the set (Gr) of classes of T: a pair of classes belong to
the conjugate tolerance if they are not disjoint. The relation between conjugated
spaces to the initial tolerances, as well as sequences of conjugations, were studied
in [92].

A further generalization of the similarity models was nonsymmetric similarity
relation considered in [38], where criteria for canonical representation of nonsym-
metric relation was given in terms of preclasses preserving relation.

4 JSM-method

The initial motivation for the first version of the JSM-method proposed by Viktor
K. Finn in late 1970s was the intention to describe induction in purely deductive



form and give at least partial justification of induction. The method was named
in honor of the English philosopher John Stuart Mill, who proposed schemes of
inductive reasoning in the 19th century. Most well-known are the first and second
canons of inductive logic [63].

The first canon, also called Method of Agreement, was formulated as follows:
“If two or more instances of the phenomenon under investigation have only one
circumstance in common, ... [it] is the cause (or effect) of the given phenomenon.”

The second canon or Method of Difference sounds like: “If an instance in which
the phenomenon under investigation occurs, and an instance in which it does not
occur, have every circumstance in common save one, that one occurring only in the
former; the circumstance in which alone the two instances differ, is the effect, or
the cause, or an indispensable part of the cause, of the phenomenon.”

To formalize the Mill’s methods, Finn and colleagues used the principle of two-
layered logics of Dmitrii A. Bochvar 2 [10]: Several truth types, including “empirical
contradiction” between generalizations of data, were allowed at the internal logical
level and classical logical values are used at the external level. More precisely, the
JSM-method was described by means of a many-valued many-sorted extension of
the First-Order Predicate Logic

with quantifiers over tuples of variable length (this logic is a proper part of the
second order logic, often called weak second order logic).

The motivation for the use of quantifiers over tuples of variable length is as fol-
lows: Induction is based on the observation of similarity of objects. Since the number
of objects with a particular similarity is not known in advance, quantification over
tuples of variable length is necessary in the case of infinite number of objects, to
express their similarity.

For example, the Mill’s Method of Agreement is the formalized by the following
predicate M, (V, W) (some other Mill’s canons, e.g., the method of differences, as
well as new methods of inductive reasoning were described in similar way):

ML (VW) = T3k M, (V, W, k),

—~ k
M (V,W,k) =37, ...32,30; ... Uy (& T (Zi =1 U) &

&VU (Tt ny(Zi =1 U)=U CUN &(Z1N...NZy) =V &V £ D&W £ 0&
&VIVi((i # ) &1 < 6,5 < W)= Zi # Z)) &YX VY (T (X 51 V) &

&MUy (X =1 U)—U C V)& &V C X) (W C Y&(ii?l(x = Z)) &k > 2).

Here, Ji. ) is a Rosser-Turquette operator taking formulas of many-valued “in-
ternal” logic to two classical logic values: € € {—1,0,1,7}, -1 denotes “empirically
false,” 1 denotes “empirically true,” 0 denotes “empirical contradiction”, and 7 de-
notes “empirically undeterminate”. n denotes the number of iteration step, which
is an important feature of the JSM-method.

From the agreement (similarity) predicate one can construct some other predi-
cates imposing additional conditions, like the following one:

VXVY((VCX&W CY) = (Jumy(X =1 Y)V (Jirmy (X =1 1)),

which is called “no counterexample” or “counterexample forbidding”. Additional
conditions (conjunctively added to the main agreement predicate) make the “lattice
of methods”.

3 In his 1938 paper Bochvar proposed one of the first many-valued logics for the treatment
of the liar paradox, where there were two types of logical values: the inner values were
“true”, “false” and “contradiction”, whereas the external values were classical “true”
and “false”.



Upon construction of all pairs (V, W) by a certain method, one uses them for
classification of new examples. When the latter are classified, they are added (now,
as new positive or negative examples) to the initial sets of positive and negative
examples, and the whole procedure is iterated.

Algebraic redefinitions of inductive methods started from the observation that
the agreement predicate defines a Moore family w.r.t.

(| with the set of generators given by sets of attributes each of which describes
a positive example (the operation [ is a means of expressing “similarity” of objects
described by attribute sets). This observation allowed redefinition of hypotheses [45]
as pairs of the form

VAZy, ..., 2y V=2.0...0 2, VYZED\{Z1,.... 2} VZX, (1)

where V, Z1,...,Z, C U for some set of attributes U and D = {Z;,...,Z,} is the
set of all positive examples (given as sets of attributes that describe them) of the
phenomenon W.

In [45] the equivalence of pairs (V,{Z1, ..., Zx}) to bicliques (inclusion-maximal
complete bipartite graphs) of a bipartite graph was shown. Some years later the
equivalence between pairs of this form (with components interchanged) and formal
concepts was recognized [47].

The following definition of a hypothesis (“no counterexample-hypothesis”) in
FCA terms was given in [24]:

Let a context K = (G, M, I) be given. In addition to attributes of M, a target
attribute w ¢ M is considered. This partitions the set G of all objects into three
subsets: The set G of those objects that are known to have the property w (these
are the positive examples), the set G_ of those objects of which it is known that they
do not have w (the negative examples) and the set G of undetermined examples, i.e.,
of those objects, of which it is unknown if they have property w or not. This gives
three subcontexts of K = (G, M, I), the first two staying for the training sample:

K, := (G4, M,I,), K :=(G_,M,I.), andK, := (G-, M,I,),

where for € € {4+, —, 7} we have I, := IN(G x M) and the corresponding derivation
operators are denoted by (-)7, (-)~, (-)7, respectively.

A subset h C M is a simple positive hypothesis for w if it satisfies the positive
agreement predicate (see above) and does not satisfy the (symmetrically formulated)
negative predicate). In terms of FCA,

Rt =h and h~ #h.

Another type of hypothesis which are mostly used in practice, namely “no coun-
terexample hypothesis” [17,18] (in what follows, we call it just a positive hypothesis),
is an intent of Ky such that h* 2@ and h € g~ := {m € M | (9,m) € I_} for any
negative example g € G_. Equivalently,

htT =h and A NG_ #90,

where (-)' is taken in the whole context K = (G, M,I). An intent of K, that is
contained in the intent of a negative example is called a falsified (+)-generalization.
Negative hypotheses and falsified generalizations are defined similarly. Hypotheses
can be used to classify undetermined examples: If the intent

g ={meM|(g,m) €L}

of an object g € G, contains a positive, but no negative hypothesis, then g” is
classified positively. Negative classifications are defined similarly. If g” contains hy-
potheses of both kinds, or if g” contains no hypothesis at all, then the classification



is contradictory or undetermined, respectively. In this case one can apply standard
probabilistic techniques known in machine learning and data mining (majority vote,
Bayesian approach, etc.). Obviously, for classification purposes it suffices to have
only minimal (w.r.t. inclusion C) hypotheses, positive as well as negative.

Example 2. Consider the following data table

G\ M |color firm smooth form |target
1 apple |[yellow no yes round
2 grapefruit |yellow no no round
3 kiwi green no no  oval
4  plum blue no yes oval
5 toy cube |green yes yes cubic| -—
6 egg white yes yes oval -
7 tennis ball| white no no round| -

++ + +

This dataset or multivalued context can be reduced to a context of the form
presented above by scaling [27], e.g., as follows (scaling 1):

G\M |wyghb|f f|s §|r T|target
1 apple X X[X |x +
2 grapefruit| x x| X|X +
3 kiwi X x| x| x| +
4  plum x| X|X x| +
5 toy cube X |x |x x| -
6 egg X X X x| -
7 tennis ball| x x| X|X —

Here we use the following abbreviations: “w” for white, “y” for yellow, “g” for green,
“b” for blue, “s” for smooth, “f” for firm, “r” for round, “o0” for oval, and “m” for
m e {W7 y7 g7 b7 s7 f7 r7 07}'

This context gives rise to the positive concept lattice in Fig. 1, where we marked
minimal (+)-hypotheses and falsified (4)-generalizations. If we have an undeter-
mined example mango with mango™ = {y, f, s, T} then it is classified positively, since
mango” contains the minimal hypothesis {f,¥} and does not contain any negative
hypothesis. For this scaling we have two minimal negative hypotheses: {w} (sup-
ported by examples egg and tennis ball and {f, s, T} (supported by examples toy
cube and egg.

The context can be scaled differently, e.g. in this way (scaling 2):

G\M |wygbwyghb|f f|ls 5|r o T oftarget
1 apple X X X X| x|x |x X +
2 grapefruit| x X X X| x| X[x X +
3 kiwi X XX X| x| x| xx +
4  plum X X X X X | X X X +
5 toy cube X XX X X X X| =
6 egg X X X X X X -
7 tennis ball|x X X X| x| X|x X -

This scaling gives rise to another positive concept lattice, all intents of which are
(4)-hypotheses. The unique minimal hypothesis (corresponding to the top element
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Fig. 1. Positive concept lattice for scaling 1

of the concept lattice) is {W,f, o}. Two minimal negative hypotheses are {¥, b, T,
f, s} (supported by examples 5 and 6) and {y,g,b, w, o} (supported by examples 6
and 7).

The definitions of JSM-hypotheses can be varied, e.g., as follows:

- by imposing other logical conditions (e.g. of the “Difference method” of J.S.
Mill), which gives rise to the “lattice of methods” [18],

- by allowance for a% of counterexamples (for hypotheses and/or classifications) [29,
30]7

- by using nonsymmetric classification (e.g., (—)-hypotheses are selected by stronger
conditions than (+)-hypotheses) [18, 20],

- by varying “similarity operation” (see Section 4.2)

4.1 Various hypotheses of the JSM-method in terms of Galois
connections

Various types of hypotheses expressed via respective plausible reasoning predicates
of the JSM-method were supposed to capture different aspects of the relationship
between structural and functional (target) attributes of objects. In the previous
sections we considered representation of JSM-hypotheses by means of Galois con-
nections for the case with a single target attribute. Here we give a description of
various types of JSM-hypotheses from [17, 3,18, 20,40, 21], assuming that there are
several target attributes.

Here, for simplicity sake we also assume that each example (object) in the train-
ing dataset is either a positive or a negative example with respect to each attribute.
Then the situation can be represented by two formal contexts: a structural context
Ky = (G, M,I) and a target context Kp = (G, P, J), where P is the set of tar-
get attributes (properties) and M is the set of structural attributes. The resulting
context (called the apposition of the two contexts) can be given by the following
matrix:
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Derivation operators (-)! and (-)/ are defined in the usual way. Complements
of relations I and J are defined naturally as I : gIm <= —gIm, J : gJm <
—gJm. These relations also define derivation operators (-)! and (-)7. Now the def-
initions of various hypothesis types of the JSM-method can be represented by the
following table (here V C M and W C P):

hypothesis name expression for (+) expression for (-)
agreement V=WVinwHi,w=vi+ Vv=w-1i w=vl
no counterexample Vv=vI yvIcwt v=vI vicw-
inverse W=wtt v=wt W=w——,Vv=w-1
situational V=((VusS)Inwt)! w-I=vus
Mill’s difference (jgo VJ)I_ c wi-mt symmetric
generalized |X =min{B |V Cc B= (B! nW~)I} symmetric

Here “symmetric” means that the expression for (-) is obtained from the ex-
pression for (4) by replacing “+” with “”. Each hypothesis type defines the set
of all pairs (V, W) such that the set of structural attributes V is a hypothetical
cause of the set of target attributes W. Above we have considered the methods
of agreement (also with additional “no counterexample condition”) and difference
(as formulated by J.S. Mill). Its JSM-formalization requires that the effect W does
not occur in the absence of causes from {V;}; (determined by other methods, e.g.,
by agreement). The intuitive meaning of other methods in this table is as follows.
The inverse method is applied for “effect-cause reasoning” [20], usually when the
number of attributes in P is larger than that in M. In the situational method [21]
the importance of situation S for establishing relation between cause V' and effect
W is underlined. In the generalized method [20] it is assumed that each hypothetical
cause V of effect W can have specific hindrances from the set X, so V' plausibly
causes W only in the absence of elements of X'. Note that for “no counterexample”
hypotheses there can be no hindrances as defined in the table.

Another specific feature of the JSM-method is the so-called condition of causal
completeness [20], which states that for chosen methods and a dataset the generated
positive and negative hypotheses should classify the initial data correctly:

u vi=wt, u Vvi=w-,
MEV,W) My (V,W)

where MF(V,W) and M, (V,W) denote some positive and negative methods, re-
spectively. The condition is supposed to be tested each time hypotheses are gener-
ated.

The invariant feature of hypotheses w.r.t. different types of predicates is that
they are sought among closed subsets of attributes.
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4.2 Similarity operation

Initially, similarity of object descriptions was defined in the JSM-method by means
of set-intersection N. However, this definition suggested an obvious generalization:
defining similarity as an idempotent, commutative and associative operation, i.e.,
as a meet operator in a semilattice. So, for each application domain with its spe-
cific data structure, a “similarity” operation was to be defined. This approach is
equivalent to scaling in FCA where each many-valued attribute is turned to a set
of related binary atributes.

An example of a similarity operation different from N is the following interval
algebra on real numbers. For two intervals [a,b] and [c,d] with a,b,¢,d € R and
a < ¢ their meet can be defined as

[a,b] A [¢, d] = [maz(a,c), min(b,d)] if b > ¢, otherwise A,

where A denotes the empty interval with A A [a,b] for any a,b € R. This operation
on intervals is often used in life-science applications, where, e.g., a number stays
for a dose of a substance introduced [69] or a characteristic activation energy of a
substance [55]. From the very beginning, the most important application of the JSM-
method was the study of “chemical structure - biological activity” relationship. For
this problem, adequate representation of chemical structure is essential. A special
encoding scheme, called Fragmentary Code of Substructure Superposition (FCSS)
(see, e.g., [9]), which turns molecular graphs to sets of binary attributes, was used.
This encoding scheme allows efficient search for molecular similarities, however it
leads also to the loss of information on connection between molecular parts. This
problem motivated the search for mathematical means that would help dealing
directly with graph representation of molecules. A solution was proposed in the
form of a semilattice of graph sets [43, 44,52, 46].

This semilattice is based on the following ordered set P of graphs with labels
from the set £ with partial order <. Each labeled graph I' from P is a triple of the
form ((V,1),E), where V is a set of vertices, E is a set of edges and I: V — L is a
label assignment function, taking a vertex to its label.

For two graphs I := (V1,11), E1) and % := ((Va, 1), E2) from P I dominates I
or I < I3 if there exists a one-to-one mapping

p: Vo — V4 such that it

— respects edges: (v,w) € Es = (¢p(v), p(w)) € Ej,
— fits under labels: I2(v) <11 (p(v)).

Example 3. Let £ = {C, NHy, CH3z, OH, z} , then we have the following domina-
tion relations:

C—CHs CH; —C—OH z C z NHy; —C—OH
C S C C S o}
NHQ/ C/ XHZ Nﬁg/ XH C/ st
vertex labels are unordered z < A for any vertex label A € L

A meet operation M on graph sets can then be defined as follows: For two graphs
X and Y from P

Xpn{yr={Z|Z<X)Y, VZ. <X)Y Z % Z},
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i.e., {X}N{Y} is the set of all maximal common subgraphs of X and Y up to substi-
tution of a vertex label by a vertex label smaller w.r.t. <. The meet of nonsingleton
sets of graphs is defined as

{Xy,.. ., X} {YL, .., Vi } == MAX < (X3} {Y5))

i,J

for details see [46,48,25]. Here is an example of applying M defined above:

CHg—I[—OH CH3—I[—Cl C’Hg—E—Cl E—CHs
o TN T ™ N

Let positive examples be described by graphs I7,I5, I3, [y and negative examples
be described by graphs I, [, I7:

CH; —(C —OH CH3; —C—OH C’Hs—ﬁ—OH CHz —C —Cl

FI: C F2: C F3: C F4: C\
th/ XHQ Nﬁz/ xH c/ st o/ o/l
CH3 —C —NH> NH; —C—OH NH; —(C—OH

[ [ [
A VCZANATAN

then the lattice of graph sets generated by positive examples and their graph de-
scriptions is given in Fig. 2, where (+)-hypotheses and falsified (+)-generalizations
are highlighted:
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{1,2,3,4} negative example 6

NHz—@—OH

g <,/ oy

CH3—@—OH

_CH;
C Ha— L—OH ii ,-‘Q/

od

CHg—g—OH

NHE ) {43 CHa-g-C’l E-CHS

OH/ \Ol

)

CHg—g—OH CHS—E—Cl

CHs—i[:-OH C'H3—g—OH

NHQ/ }Hg NHQ/ %H C/ }'Ha Ol{ le

positive examples 1, 2, 3, 4

Fig. 2. The lattice of the positive pattern structure

The same approach is realizable for arbitrary data descriptions with generality
(subsumption) order <. The general idea is to consider the (distributive) lattice of
order ideals of <, distinguish the elements of it that correspond to descriptions of ex-
amples (objects) and consider these elements as generators of a meet-subsemilattice
of the lattice of order ideals. Being supplied with a dummy top element (which is
feasible, e.g., in the case when the number of objects is finite) this subsemilattice
turns into a sublattice of the lattice of order ideals of < (which is not necessarily
distributive). These ideas were proposed and developed in [25], where semilattices
of patterns were considered. Let G be a set (elements of which are called objects),
let (D,M) be a meet-semilattice and let § : G — D be a mapping. Then (G, D, §)
with D = (D, M) is called a pattern structure, provided that the set

6(G) =={d(9) [ g € G}

generates a complete subsemilattice (Dg,M) of (D, M), i.e., every subset X of §(G)
has an infimum NX in (D, M)
and Dy is the set of these infima. Each such complete semilattice has lower and
upper bounds, which we denote by 0 and 1, respectively. There are two natural situ-
ations where the condition on the complete subsemilattice is automatically satisfied:
when (D, M) is complete, and when G is finite. If (G, D, §) is a pattern structure,
we define the derivation operators as
A®:= [1 §(g) for ACG
geEA

and
d°:={g€G|dCd(g)} ford e D.

The elements of D are called patterns. The natural order on them is given, as usual,
by

cCd: <= cNd=c,
and is called the subsumption order.

An algebraic model of approximation was proposed in [25] in the form of pro-
jection (or kernel, i.e., idempotent, monotone and contracting) operator and the
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reduction to standard concept lattices was discussed. Since projections (kernels)
preserve meet operator, hypotheses in projected data have preimages in the original
data that are hypotheses too. The research of pattern structures and their approx-
imations led to further practical applications in chemistry with the approximation
level being controlled by a parameter [23].

4.3 Mathematical activity around concept-based hypotheses

Here we give a partial list of references to some research around JSM-method,
concept-based hypotheses and implication bases.

Logics. Construction of quasi-axiomatic theories of plausible JSM-reasoning, com-
pleteness problem of the theory of plausible reasoning based on rules that generate
hypotheses were considered in [3, 5]. Argumentation logic (where a proof of a state-
ment takes into account arguments for and against the statement) were considered
in [19]. In [86,88] the author studies (partial) expressibility of plausible reasoning
rules in Prolog and the expressibility in first-order predicate logic was studied in [87].
Logics of causal reasoning in the JSM-method were studied in [2]. A modal logic of
incomplete contexts was studied in [67].

Algebraic issues. Similarity operation on sets of labeled graphs, which is an in-
fimum (meet) operation in a corresponding semilattice, was defined and studied
in [43,44,46,1,48,25]. A distributive lattice (of order ideals) of data for JSM-
method was studied in [1]. Further generalization of the graph set semilattice and
its translation in FCA terms was realized in [25], where general pattern semilattices
were studied (see the previous subsection).

Algorithmic issues. First algorithms for computing JSM-hypotheses were pro-
posed in [94,61,95], a recent review which includes theoretical and experimental
comparison of various algorithms for computing closed sets and concept lattices is
found in [54]. Polynomial tractability and intractability of certain decision prob-
lems related to generation of hypotheses was considered in [96,45,46]. In [45] it was
proved that the problem of computing the number of hypotheses is #P-complete,
In [46, 51] same result was proved for the number of minimal hypotheses. In [49, 51]
similar results were demonstrated for concepts. In particular, it was shown that the
problems of computing the number all concepts is #P-complete. A very efficient
incremental algorithm for computing concept lattices was proposed in [60]. A fast
incremental algorithm for computing Duquenne-Guigues implication bases (with
the best known experimental performance) was proposed in [68].

4.4 Applications of JSM-method

Starting from the early 1980s JSM-hypotheses were used in several applied domains,
including bioscience analysis of biological activity of chemicals (see reviews [7,97])
predicting metabolic pathways [15, 58]), medical diagnostics, technical diagnostics,
sociology, document dating, spam filtering, and so on. JSM-hypotheses were used
successfully for making predictions at two international competitions: that for pre-
dictive toxicology [9] (where JSM-hypotheses resulted in optimal classifications in
all test groups) and that for spam filtering [13]. A freeware system QuDA [32,33],
which incorporates several data mining techniques also presents a possibility of
generating JSM-hypotheses.

Life sciences. Most numerous experiments were carried out in applied pharma-
cology or Structure-Activity Relationship domain, which deals with predicting bi-
ological activity of chemical compounds with known molecular structure. JSM-
hypotheses were generated for antitumor [71], antibacterial, antileprous, hepato-
protective [12], plant growth-stimulating, cholesterase-inhibitine, toxic and carcino-
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genic activities, see reviews [7,97]. JSM-method was many times applied to prob-
lems of medical diagnostics, e.g., the results of the study of human papilloma are
found in [69]. Recent results in the study of toxicity of different substances, includ-
ing alcohols and halogen-substituted hydrocarbons by means of learning in pattern
structures on graph sets are found in [55].

Sociology and Humanities. In [21] strike readiness at joint-stock factories in St.
Petersburg and Elets was analysed. The advantages of the JSM-based approach
as compared to statistical methods resided in the fact that the former allowed
for creating taxonomies of socio-psychological types and enabled creating “social
portraits”. In paleography [41] the JSM-method was applied to dating birch-bark
documents of 10—16 centuries of the Novgorod republic. Here there were five types of
attributes describing individual letter features, features common to several letters,
handwriting, language features: morphology, syntax, and typical errors, style: letter
format, addressing formulas and their key words. Time was considered as many-
valued target attribute, with 20 nointersecting time intervals as attribute values. A
model for analyzing human conflicts that uses for similarity of labeled graphs was
studied in [22].

Spam filtering. A first successful application of the JSM-like (concept-based)
hypotheses for filtering spam was reported in [16]. In April-May 2003 Technical
University Chemnitz, European Knowledge Discovery Network, and PrudSys AG
organized the Data Mining Cup (DMC) competition for students specializing in
Machine Learning [13]. Among 514 participants from 199 universities of 38 coun-
tries the sixth place was taken by a model that combined “Naive Bayes” approach
with JSM-hypotheses.

5 Machine Learning in terms of Galois connection and FCA

In recent years some progress was done in describing various learning models like
version spaces, decision trees in terms of Galois connection and concept lattices [26,
50].

6 Decision trees embedded in concept lattices

As input, a system constructing a decision tree (see, e.g., [75]) receives descriptions
of positive and negative examples (or positive and negative contexts, in terms of the
previous section). The root of the tree corresponds to the beginning of the process
and is not labeled. Other vertices of the decision tree are labeled by attributes and
edges are labeled by values of the attributes (e.g., 0 or 1 in case of binary contexts),
each leaf is additionally labeled by a class + or —, meaning that all examples with
attribute values from the path leading from the root to the leaf belong to a certain
class, either + or —.

Systems like ID3 [75] (see also [65]) compute the value of the information gain
(or negentropy) for each vertex and each attribute not chosen in the branch above.
The attribute with the greatest value of the information gain (with the smallest
entropy, respectively) “most strongly separates” objects from classes + and —. The
algorithm sequentially extends branches of the tree by choosing attributes with the
highest information gain. The extension of a branch stops when a next attribute
value together with attributes above in the branch uniquely classify examples with
this value combination in one of classes + or —. In some algorithms, the process of
extending a branch stops before this in order to avoid overfitting, i.e., the situation
where all or almost all examples from the training sample are classified correctly by
the resulting decision tree, but objects from test datasets are classified with many
errors.
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Now we consider decision trees more formally. Let the training data be described
by the context K, _ = (G4 UG_, M, I, UI_) with the derivation operator denoted
by (-)'. In FCA terms this context is called the subposition of Ky and K_. Assume
for simplicity sake that for each attribute m € M there is an attribute m € M, a
“negation” of m: m € ¢' iff m & g'. A set of attributes M with this property is
called dichotomized in FCA. We call a subset of attributes A C M noncontradictory
if either m ¢ A or m ¢ A. We call a subset of attributes A C M complete if for
every m € M one has m € A or m € A.

First no optimization functional (like information gain) for selecting attributes
is involved and construction of all possible decision trees is considered. The con-
struction of an arbitrary decision tree proceeds by sequentially choosing attributes.

If different attributes my, ..., my were chosen one after another, then the sequence
(maq,...,my) is called a decision pathif {m4,...,my} is noncontradictory and there
exists an object g € G4 UG_ such that {my,...,mg} C ¢’ (i.e., there is an exam-

ple with this set of attributes). A decision path {m;,...,m;) is a (proper) subpath
of a decision path (m,...,my) if ¢ < k (i < k, respectively). A decision path
(mq,...,my) is called full if all objects having attributes {m,...,my} are either
positive or negative examples (i.e., have either 4+ or — value of the target attribute).

We call a full decision path irredundant if none of its subpaths is a full decision
path. The set of all chosen attributes in a full decision path can be considered as a
sufficient condition for an object to belong to a class € € {4+, —}. A decision tree is
then a set of full decision paths.

In what follows, we use the one-to-one correspondence between vertices of a
decision tree and the related decision paths, representing the latter, when this does
not lead to ambiguity, by their last chosen attributes. By closure of a decision
path (my,...,my) we mean the closure of the corresponding set of attributes, i.e.,
{my,...,my}". Now we relate decision trees with the covering relation graph of the
concept lattice of the context K = (G, M, I), where the set of objects G is of size
21M1/2 and the relation I is such that the set of object intents is exactly the set of
complete noncontradictory subsets of attributes. In terms of FCA [27] the context
K is the semiproduct of |M|/2 dichotomic scales or K = Dy X ... X Dy /> (denoted
by Xar D for short), where each dichotomic scale D; stays for the pair of attributes
(m,m).

In a concept lattice a sequence of concepts with decreasing extents we call a
descending chain. If the chain starts at the top element of the lattice, we call it
rooted.

Proposition 5 Every decision path is a rooted descending chain in B(Xp D) and
every rooted descending chain consisting of concepts with nonempty extents in B(X s
D) is a decision path.

To relate decision trees to hypotheses introduced above we consider again the
contexts Ky = (G4, M,I,), K. =(G_,M,I_),and K, _ = (GLUG_, M, I, UI_).
The context K;_ can be much smaller than Xj; D because the latter always has
2IM1/2 gbjects while the number of objects in the former is the number of examples.
Also the lattice B(K;_) can be much smaller than B (X D).

The relation between decision trees and (minimal “no counterexample”) hy-
potheses from the previous section is given by the following

Proposition 6 A full decision path {m1,...,my) corresponds to a rooted descend-
ing chain ((m{,m}),...,{my,...,mg}', {m,...,mp})) of the line diagram of
B(K,_) and the closure of each full decision path {my,...,my) is a hypothesis,
either positive or negative. Moreover, for each minimal hypothesis h, there is a full
irredundant path (mq,...,mg) such that {my,...,m}" = h
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By the proposition, hypotheses correspond to the “most cautious” (most spe-
cific) learning strategy in the sense that they are least general generalizations of
descriptions of positive examples (or object intents, in terms of FCA). The short-
est decision paths (for which in no decision tree there exist full paths with proper
subsets of attribute values) correspond to the “most courageous” (“most discrimi-
nating”) learning strategy: being the shortest possible rules, they are most general
generalizations of positive example descriptions. However, it is not guaranteed that
for a given training set resulting in a certain set of minimal hypothesis there is a
decision tree such that minimal hypotheses are among closures of its paths (see Ex-
ample 4 below). In general, to obtain all minimal hypotheses as closures of decision
paths one needs to consider several decision trees, not all of them being optimal
w.r.t. a procedure based on the information gain functional (like ID3 or C4.5). The
issues of generality of generalizations and, in particular, the relation between most
specific and most general generalizations, are naturally captured in terms of version
spaces, which we consider in the next section.

In real systems for the construction of decision trees like ID3 or C4.5 the process
of constructing a decision path is driven by the information gain functional: a next
chosen attribute should have maximal information gain. For dichotomized attributes
the information gain is defined for a pair of attributes m,m € M.

Given a decision path (my,...,mg)

| A7 | A
IG(m) := ——ZEnt(4,,) — —2 Ent(47),
(m) c| nt(A,,) c| nt(Az)

where Ay, := {my,...,mk, m}, Am = {mq,...,my,m}, and for A C M

Ent(4) :=— Y ple|A)-log,p(e | A),
ee{+,—}

{4+, —} are values of the target attribute and p(e | A) is the conditional sample
probability (for the training set) that an object having a set of attributes A belongs
to a class € € {+,—}.

If the derivation operator (-)' is associated with the context (G UG-, M, I U
I_), then, by definition of the conditional probability, we have

A'NG. AN NG,
e )= LT TR e )

by the property of the derivation operator (-)': (A”)" = A’. This observation implies
that instead of considering decision paths, one can consider their closures without
affecting the values of the information gain. In terms of lattices this means that
instead of the concept lattice B(Xns D) one can consider the concept lattice of the
context Ky — = (GL UG_,M,I, UI_). Another consequence of the invariance of
IG w.r.t. closure is the following fact: If implication m — n holds in the context
K, =(G+UG_,M,I,UI ), then an IG-based algorithm will not choose attribute
n in the branch below chosen m and will not choose m in the branch below chosen 7.

Example 4. Consider the training set from Example 2. The decision tree obtained
by the IG-based algorithm is given in Fig. 3. Note that attributes f and w has
the same IG value (a similar tree with f at the root is also optimal), the IG-based
algorithms usually take the first attribute with the same value of IG.



19

yes N0

examples 6,7

yes no
- %
example 5 examples 1,2,3,4

Fig. 3. A decision tree for Example 2

The decision tree in Fig. 3 corresponds to three implications {w} — —, {W,
f} - —, {w, f} — +, such that closures of their premises make the corresponding
negative and positive hypotheses for the second scaling from Example 2. Note that
the hypothesis {w, f} is not minimal, since there is a minimal hypothesis {f}"
contained in it. The minimal hypothesis {f}" corresponds to a decision path of the
mentioned IG-based tree with the attribute f at the root.

6.1 Version spaces vs. concept-based hypotheses

The term wversion space was proposed by T. Mitchell [64,65] to denote a variety
of models compatible with the training sample of positive and negative examples.
Version spaces can be defined in different ways. Here they are described in terms
somewhat different to those in [64], in order to avoid collision with FCA terminology.

— An exzample language L. (elsewhere also called instance language) by means of
which the examples (instances) are described. This language describes a set E
of examples.

— A classifier language L. describing the possible classifiers (elsewhere called con-
cepts). This language describes a set C of classifiers.

— A matching predicate M (c, e) that defines if a classifier ¢ does or does not match
an example e: We have M (c, e) iff e is an example of classifier c¢. The set of clas-
sifiers is (partially) ordered by a subsumption order: for ¢1,co € L. the classifier
c1 subsumes ¢y or ¢; ¢y if ¢; corresponds to a more specific description and
thus, covers less objects than co:

c1 dco: <= Vecr M(c1,e) = M(ca,e).

The corresponding strict order 1 is called proper subsumption.

— Sets E; and E_ of positive and negative examples of a target attribute with
E, N E_ = (. The target attribute is not explicitly given.

— consistency predicate cons(c):
cons(c) holds if for every e € E, the matching predicate M (c,e) holds and for
every e € E_ the negation =M (¢, e) holds. The set of all consistent classifiers is
called the version space

VS(Le, Le, M (c,e), Ey, E_).

The learning problem is then defined as follows:

Given L., L., M(c,e),E,,E_.
Find the version space VS(L, L., M (c,e), E4, E_).



20

In the sequel, we shall usually fix L., L., and M (c,e) and write VS(E;, E_) or
even just VS for short. Version spaces are often considered in terms of boundary sets
proposed in [64]. They can be defined if the language L. is admissible, i.e., if every
chain in the subsumption order has a minimal and a maximal element. In this case,

GVS(Le, L., M(c,e), E;, E_) :== MIN(VS) := {c€ VS| =3¢; € VS¢;1 C ¢},
SVS(Le¢, Le, M(c,e), E4, E_) := MAX(VS) :=={c€ VS| =3¢; € VScC c1}.

If a version space VS is fixed, we also use notation G(VS) and S(VS) for short.

The elements of the version space can be used as potential classifiers for the
target attribute: A classifier ¢ € VS classifies an example positively if ¢ matches e
and negatively else. Then, all positive examples are classified positively, all negative
examples are classified negatively, and undetermined examples may be classified
either way. If it is assumed that Ey and E_ carry sufficient information about the
target attribute, we may expect that an undetermined example is likely to have
the target attribute if it is classified positively by a large percentage of the version
space (cf. [65]). We say that an example e is p%-classified (for 0 < p < 100) if no
less than p% classifiers of the version space classify it positively. This means, e.g.,
that 100%-classification of e takes place if e is matched by all elements of SVS and
negative classification of e (0%-classification) takes place if e is not matched by any
element of GVS.

As showed in [26] the basic properties of general version spaces can easily be
expressed with Galois connections. Consider the formal context (E,C,I), where E
is the set of examples containing the disjoint sets of observed positive and negative
examples: ED E, UE_, E, NE_ =0, C is the set of classifiers and the relation
T corresponds to the matching predicate M (c,e): for ¢ € C, e € E the relation elc
holds iff M(c,e) = 1. The complementary relation, I, corresponds to the negation:
elc holds iff M(c,e) = 0. As shown in [26]

VS(Ey,E_)=E.'nE_L

This characterization of version spaces implies immediately the property of merging
version spaces, proved in [42]: For fixed L., L., M(c,e) and two sets E;q, E_; and
E 5, E_5 of positive and negative examples one has

VS(E+1 U E+2, E_1U E_z) = VS(E+1, E_l) n VS(E+2, E_g).

This follows from the relation (A U B)' = A’ N B’, which holds for a derivation
operator (-)' of an arbitrary context.

The classifications produced by classifiers from the version space are charac-
terized as follows. The set of all 100%-classified examples w.r.t the version space
VS(E;, E_) is given by

(E,"nE N
In particular, if one of the following conditions is satisfied, then there cannot be any
100%-classified undetermined example:

1.E_=0and B, = E,,

2. (E,"nE_ N =E,.

The set of examples that are classified positively by at least one element of the
version space VS(Ey, E_) is given by

E\ (B nE_D.

Consider a very important special case where the ordered set (C, <) of classi-
fiers given in terms of some language L. makes a meet-semilattice w.r.t. A meet
operation, like in Section 4.2. This also covers the case of attributes with values.
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In [26] it was shown that in the case where the classifiers, ordered by subsump-
tion, form a complete semilattice, the version space is a complete subsemilattice for
any sets of examples FE; and E_. If the set of classifiers C' makes a complete semi-
lattice (C, M), we can consider a pattern structure (E, (C,M),6), where E is a set (of
“examples”), § is a mapping § : E — C, 6(E) := {d(e) | e € E}. The subsumption
order can be reconstructed from the semilattice operation: cC d <= cMNd =c.

The version space may be empty, in which case there are no classifiers separat-
ing positive examples from negative ones. This happens, e.g., if there is a hopeless
positive example (an outlier), by which we mean an element e, € E, having a neg-
ative counterpart e € E_ such that every classifier which matches e also matches
e_. An equivalent formulation of the hopelessness of e, is that (ef)*°*NE_ # 0.
The following relation between the version space with latticeordered classifiers and
minimal hypotheses was shown in [26]:

Suppose that the classifiers, ordered by subsumption, form a complete meet-
semilattice (C, M), and let (E, (C,MN), §) denote the corresponding pattern structure.

Proposition 7 The following statements are equivalent:

1. The version space VS(E,, E_) is not empty.

2. (l;l_;r_)oo ﬁ E_ = @

3. There are no hopeless positive examples and there is a unique minimal positive
hypothesis by .

In this case, hy, i, = (F4+)°, and the version space is a convex set in the lattice
of all pattern intents, ordered by subsumption, with maximal element h;,,.

In case where conditions 1-3 are satisfied, the set of training examples is often
referred to as separable in machine learning. The theorem gives access to generation
of the version space, e.g., with the use of a standard Next Closure [27] algorithm.

According to [27] a subset A C M can be defined as a proper premise of an
attribute m € M if m ¢ A, m € A" and for any Ay C A one has m ¢ AY.
In particular we can define a positive proper premise as a proper premise of the
target attribute w. In [26] we generalized this notion to include the possibility of
the unknown value of a target attribute (for an undetermined example): d € L. is a
positive proper predictor with respect to examples E,, E_, and E. if the following
conditions 1-3 are satisfied:

1 d°CE,LUE,,
2 dg€Ei:ged (ord°NE; #0),
3 Vd; such that d C dy and d # d,, the relation d{ € E; U E; holds.

In the case where E, = (), condition 2 of the definition follows from condition 1
and a proper predictor is just a proper premise [27] of the target attribute.

The proper predictors and hypotheses are related to the boundaries of the version
space as follows [26]:

Proposition 8 Let PP, (II,E,,E_) denote the set of all positive proper predic-
tors for the pattern structure II = (E,(C,N),d8) and sets of positive and negative
examples Ey and E_. Let H, (I, Ey, E_) denote the set of positive hypotheses and
VS(II, Ey, E_) denote the version space for the pattern structure I = (E,(C,1M),d)
and sets of examples E4 and E_. Then the following holds:

1. PPy(II,Ey,E_) = MAXC(Up,cp, GVSUI, Fy, E)),
2. H—i—(HaE-i-aE—) = UF+QE+ SVS(HaF-i—aE—)

In contrast to version spaces with purely conjunctive classifiers, hypotheses pro-
pose a sort of “context-restricted” disjunction (which, hence is not so “loose” as
purely syntactical disjunction over conjunction of attribute values): not all disjunc-
tions are possible, but only those of minimal hypotheses (that are equivalent to
certain conjunctions of attributes), which express similarities of examples.
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7 Conclusion

We considered activity in classification, data analysis, and machine learning around
VINITTI Institute in Moscow and its NTI journal that used models naturally de-
scribed in terms of Galois connections and FCA. Early research was related to the
models of taxonomies and meronomies, which are naturally recast in terms of con-
cept lattices. Galois connection are very helpful in modeling similarity given by
tolerance relation and its classes.

Recasting the JSM-method in FCA terms motivated further activity in describ-
ing well-known models of machine learning and knowledge discovery, such as version
spaces and decision trees, in terms of Galois connections and concept lattices. Trans-
lations of this kind often provide with a unified view, simpler definitions,and simpler
proofs of the results. Further work in this direction will be related to other widely
used models of learning, such as Naive Bayes, induction of ripple-down rules, sup-
port vector machines, and so on. The language of Galois connections provide with
standard algorithmic machinery from FCA and new developments from Data Min-
ing related to finding (closed) frequent itemsets.

Concept lattices that seem from the first glance to be a tool for processing
binary tables, actually provide with means for dealing with complex structure such
as logical formulas, labeled graphs (e.g., concept graphs, molecular graphs), texts,
3D-structures. This aspect indicates yet another direction of further study: fast
algorithms for models with complex and/or large data. Successful applications in
chemistry and conflict modelling give hope for future results.
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