• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 109 публикаций
Сортировка:
по названию
по году
Статья
Khachatryan V., Ratnikov F., Sirunyan A. M. Journal of High Energy Physics. 2016.

A search is presented for the Higgs boson off-shell production in gluon fusion and vector boson fusion processes with the Higgs boson decaying into a W+W− pair and the W bosons decaying leptonically. The data observed in this analysis are used to constrain the Higgs boson total decay width. The analysis is based on the data collected by the CMS experiment at the LHC, corresponding to integrated luminosities of 4.9 fb−1 at a centre-of-mass energy of 7 TeV and 19.4 fb−1 at 8 TeV, respectively. An observed (expected) upper limit on the off-shell Higgs boson event yield normalised to the standard model prediction of 2.4 (6.2) is obtained at the 95% CL for the gluon fusion process and of 19.3 (34.4) for the vector boson fusion process. Observed and expected limits on the total width of 26 and 66 MeV are found, respectively, at the 95% confidence level (CL). These limits are combined with the previous result in the ZZ channel leading to observed and expected 95% CL upper limits on the width of 13 and 26 MeV, respectively.

Добавлено: 21 октября 2016
Статья
Сапронов А. А., Aad G., Glazov A. Journal of High Energy Physics. 2017. Vol. 1710. No. 182. P. 1-60.
Добавлено: 7 августа 2018
Статья
Khachatryan V., Ratnikov F. Journal of High Energy Physics. 2016. No. 2016:27.

A search is presented for single top quark production in the s channel in proton-proton collisions with the CMS detector at the CERN LHC in decay modes of the top quark containing a muon or an electron in the final state. The signal is extracted through a maximum-likelihood fit to the distribution of a multivariate discriminant defined using boosted decision trees to separate the expected signal contribution from background processes. The analysis uses data collected at centre-of-mass energies of 7 and 8 TeV and corresponding to integrated luminosities of 5.1 and 19.7 fb−1, respectively. The measured cross sections of 7.1 ± 8.1 pb (at 7 TeV) and 13.4 ± 7.3 pb (at 8 TeV) result in a best fit value of 2.0 ± 0.9 for the combined ratio of the measured and expected values. The signal significance is 2.5 standard deviations, and the upper limit on the rate relative to the standard model expectation is 4.7 at 95% confidence level.

Добавлено: 21 октября 2016
Статья
A. Boldyrev, D. Derkach, M. Hushchyn et al. Journal of High Energy Physics. 2020. Vol. 11. No. 095. P. 1-20.
Добавлено: 2 декабря 2020
Статья
K. Arzymatov, V. Belavin, A. Boldyrev et al. Journal of High Energy Physics. 2020. Vol. 06. No. 129. P. 1-18.
Добавлено: 16 сентября 2020
Статья
Andrey Ustyuzhanin, Likhomanenko T., LHCb c. Journal of High Energy Physics. 2015. Vol. 121. P. 1-19.
Добавлено: 17 июля 2015
Статья
Akhmedov E., Popov F., Astrakhantsev N. Journal of High Energy Physics. 2014. Vol.  1409. P. 071.

We calculate one--loop corrections to the vertexes and propagators of photons and charged particles in the strong electric field backgrounds. We use the Schwinger--Keldysh diagrammatic technique. We observe that photon's Keldysh propagator receives growing with time infrared contribution. As the result, loop corrections are not suppressed in comparison with tree--level contribution. This effect substantially changes the standard picture of the pair production. To sum up leading IR corrections from all loops we consider the infrared limit of the Dyson--Schwinger equations and reduce them to a single kinetic equation.

Добавлено: 25 сентября 2014
Статья
Marshakov A. Journal of High Energy Physics. 2008. No. 0803 . P. 55.
Добавлено: 18 октября 2012
Статья
Ratnikov F., Guschin M., Курбатов Е. О. et al. Journal of High Energy Physics. 2019. Vol. 1904. No. 77. P. 1-16.
Добавлено: 30 апреля 2019
Статья
Gorsky A., Zabrodin A., Zotov A. Journal of High Energy Physics. 2014. No. 01. P. 070,28.
Добавлено: 15 июля 2014
Статья
Boldyrev A., Derkach D., Guschin M. et al. Journal of High Energy Physics. 2020. Vol. 2020. No. 8. P. 1-27.
Добавлено: 17 сентября 2020
Статья
Ratnikov F. Journal of High Energy Physics. 2018. Vol. 1811. P. 1-35.
Добавлено: 11 марта 2019
Статья
Feigin B. L. Journal of High Energy Physics. 2011. Vol. 7. No. 7(079). P. 1-18.
The conjecture about the correspondence between instanton partition functions in the N = 2 SUSY Yang-Mills theory and conformal blocks of two-dimensional conformal field theories is extended to the case of the N = 1 supersymmetric conformal blocks. We find that the necessary modification of the moduli space of instantons requires additional restriction of Z(2)-symmetry. This leads to an explicit form of the N = 1 superconformal blocks in terms of Young diagrams with two sorts of cells.
Добавлено: 12 октября 2012
Статья
Dunin-Barkowski P., Mironov A., Morozov A. et al. Journal of High Energy Physics. 2013. Vol. 3. No. 021.
Добавлено: 6 ноября 2014
Статья
Spiridonov V., Brunner F., Regalado D. Journal of High Energy Physics. 2017. No. 07. P. 1-20.
Добавлено: 31 июля 2017
Статья
Tsuboi Z., Zabrodin A., Zotov A. Journal of High Energy Physics. 2015. Vol. 2015. No. 5, Article number 86.

For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y(gl(N|M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians. © 2015, The Author(s).

Добавлено: 7 сентября 2015
Статья
Marshakov A. Journal of High Energy Physics. 2013. Vol. 07. P. 086.
Добавлено: 11 марта 2015
Статья
K. Arzymatov, V. Belavin, A. Boldyrev et al. Journal of High Energy Physics. 2020. Vol. 05. P. 140.
Добавлено: 17 сентября 2020
Статья
Derkach D., Bevan A. Journal of High Energy Physics. 2014. Vol. 123. P. 1403.
Добавлено: 9 июля 2015
Статья
Окубо Ю., Zenkevich Y., Awata H. et al. Journal of High Energy Physics. 2016. Vol. 2016. No. 10. P. 1-47.
Добавлено: 21 апреля 2017
Статья
Bershtein M., Gavrylenko P., Marshakov A. Journal of High Energy Physics. 2018. Vol. 08. No. 108. P. 1-54.
Добавлено: 11 сентября 2018