• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 125 публикаций
Сортировка:
по названию
по году
Статья
Feigin B. L., Awata H., Shiraishi J. Journal of High Energy Physics. 2012. No. 3. P. 41-68.

Мы устанавливаем эквивалентность между теорией топологической вершины Икбала-Кожача-Вафы и теорией представлений квантовой алгебры типа W1+∞, определённой Мики. Наша конструкция использует тривалентные сплетающие операторы Φ и Φ*, построенные по бозонному фоковскому модулю. Как и в теории топологической вершины, тройка векторов в ∈ Z2 соответствует каждому вертексному оператору, удовлетворяющим условиям Калаби-Яу и гладкости. Мы показываем, что некоторые матричные коэффициенты Φ и Φ* совпадают с топологической вершиной Икбала-Кожача-Вафы Cλμν (t, q). При другом выборе базиса мы получаем выражение для функций Cλμν (q, t), определённых Авата и Канно. Склеивающие множители возникают при рассмотрении произвольных композиций Φ и Φ*. Спектральные параметры фоковских пространств играют роль кэлеровых параметров.

Добавлено: 20 сентября 2012
Статья
M.I.Vysotsky, V.A.Novikov. Journal of High Energy Physics. 2020. Vol. JHEP01(2020)). No. 143. P. 1-25.
Добавлено: 30 января 2020
Статья
Alexandrov A., Buryak A., Tessler R. J. Journal of High Energy Physics. 2017. Vol. 2017. No. 123. P. 123.
Добавлено: 27 сентября 2020
Статья
A. Levin, Olshanetsky M., Zotov A. Journal of High Energy Physics. 2014. Vol. 2014. No. 7:12. P. 1-39.
Добавлено: 23 января 2015
Статья
Gavrilenko P. G., Marshakov A. Journal of High Energy Physics. 2014. No. 05.

We study the extended prepotentials for the S-duality class of quiver gauge theories, considering them as quasiclassical tau-functions, depending on gauge theory condensates and bare couplings. The residue formulas for the third derivatives of extended prepotentials are proven, which lead to effective way of their computation, as expansion in the weak-coupling regime. We discuss also the differential equations, following from the residue formulas, including the WDVV equations, proven to be valid for the SU(2) quiver gauge theories. As a particular example we consider the constrained conformal quiver gauge theory, corresponding to the Zamolodchikov conformal blocks by 4d/2d duality. In this case part of the found differential equations turn into nontrivial relations for the period matrices of hyperelliptic curves.

 

Добавлено: 12 сентября 2014
Статья
Gavrylenko P., Marshakov A. Journal of High Energy Physics. 2014. No. 5. P. 97.

 

 

 

Добавлено: 20 октября 2014
Статья
Slavnov N. A., Zabrodin A., Zotov A. Journal of High Energy Physics. 2020. No. 6. P. 123.
Добавлено: 24 августа 2020
Статья
Arzymatov K., Belavin V., Borisyak M. et al. Journal of High Energy Physics. 2021. P. 1-23.
Добавлено: 31 августа 2021
Статья
Boldyrev A., Derkach D., Guschin M. et al. Journal of High Energy Physics. 2020. Vol. 10.
Добавлено: 6 декабря 2020
Статья
Aaij R., Arzymatov K., Belavin V. et al. Journal of High Energy Physics. 2021. Vol. 6.
Добавлено: 26 августа 2021
Статья
Derkach D., Guschin M., Kazeev N. et al. Journal of High Energy Physics. 2019. Vol. 2019. No. 2. P. 1-33.
Добавлено: 17 марта 2019
Статья
Khachatryan V., Ratnikov F. Journal of High Energy Physics. 2016. No. 2016:169.

A search is performed for heavy Majorana neutrinos (N) decaying into a W boson and a lepton using the CMS detector at the Large Hadron Collider. A signature of two jets and either two same sign electrons or a same sign electron-muon pair is searched for using 19.7 fb−1 of data collected during 2012 in proton-proton collisions at a centre-of-mass energy of 8 TeV. The data are found to be consistent with the expected standard model (SM) background and, in the context of a Type-1 seesaw mechanism, upper limits are set on the cross section times branching fraction for production of heavy Majorana neutrinos in the mass range between 40 and 500 GeV. The results are additionally interpreted as limits on the mixing between the heavy Majorana neutrinos and the SM neutrinos. In the mass range considered, the upper limits range between 0.00015–0.72 for |VeN|2 and 6.6 × 10−5−0.47 for |VeNVμN∗|2/(|VeN|2 + |VμN|2), where VℓN is the mixing element describing the mixing of the heavy neutrino with the SM neutrino of flavour ℓ. These limits are the most restrictive direct limits for heavy Majorana neutrino masses above 200 GeV.

Добавлено: 21 октября 2016
Статья
Khachatryan V., Ratnikov F., Sirunyan A. M. Journal of High Energy Physics. 2016.

A search is presented for the Higgs boson off-shell production in gluon fusion and vector boson fusion processes with the Higgs boson decaying into a W+W− pair and the W bosons decaying leptonically. The data observed in this analysis are used to constrain the Higgs boson total decay width. The analysis is based on the data collected by the CMS experiment at the LHC, corresponding to integrated luminosities of 4.9 fb−1 at a centre-of-mass energy of 7 TeV and 19.4 fb−1 at 8 TeV, respectively. An observed (expected) upper limit on the off-shell Higgs boson event yield normalised to the standard model prediction of 2.4 (6.2) is obtained at the 95% CL for the gluon fusion process and of 19.3 (34.4) for the vector boson fusion process. Observed and expected limits on the total width of 26 and 66 MeV are found, respectively, at the 95% confidence level (CL). These limits are combined with the previous result in the ZZ channel leading to observed and expected 95% CL upper limits on the width of 13 and 26 MeV, respectively.

Добавлено: 21 октября 2016
Статья
Сапронов А. А., Aad G., Glazov A. Journal of High Energy Physics. 2017. Vol. 1710. No. 182. P. 1-60.
Добавлено: 7 августа 2018
Статья
Khachatryan V., Ratnikov F. Journal of High Energy Physics. 2016. No. 2016:27.

A search is presented for single top quark production in the s channel in proton-proton collisions with the CMS detector at the CERN LHC in decay modes of the top quark containing a muon or an electron in the final state. The signal is extracted through a maximum-likelihood fit to the distribution of a multivariate discriminant defined using boosted decision trees to separate the expected signal contribution from background processes. The analysis uses data collected at centre-of-mass energies of 7 and 8 TeV and corresponding to integrated luminosities of 5.1 and 19.7 fb−1, respectively. The measured cross sections of 7.1 ± 8.1 pb (at 7 TeV) and 13.4 ± 7.3 pb (at 8 TeV) result in a best fit value of 2.0 ± 0.9 for the combined ratio of the measured and expected values. The signal significance is 2.5 standard deviations, and the upper limit on the rate relative to the standard model expectation is 4.7 at 95% confidence level.

Добавлено: 21 октября 2016
Статья
A. Boldyrev, D. Derkach, M. Hushchyn et al. Journal of High Energy Physics. 2020. Vol. 11. No. 095. P. 1-20.
Добавлено: 2 декабря 2020
Статья
K. Arzymatov, V. Belavin, A. Boldyrev et al. Journal of High Energy Physics. 2020. Vol. 06. No. 129. P. 1-18.
Добавлено: 16 сентября 2020
Статья
Andrey Ustyuzhanin, Likhomanenko T., LHCb c. Journal of High Energy Physics. 2015. Vol. 121. P. 1-19.
Добавлено: 17 июля 2015
Статья
Akhmedov E., Popov F., Astrakhantsev N. Journal of High Energy Physics. 2014. Vol.  1409. P. 071.

We calculate one--loop corrections to the vertexes and propagators of photons and charged particles in the strong electric field backgrounds. We use the Schwinger--Keldysh diagrammatic technique. We observe that photon's Keldysh propagator receives growing with time infrared contribution. As the result, loop corrections are not suppressed in comparison with tree--level contribution. This effect substantially changes the standard picture of the pair production. To sum up leading IR corrections from all loops we consider the infrared limit of the Dyson--Schwinger equations and reduce them to a single kinetic equation.

Добавлено: 25 сентября 2014
Статья
Marshakov A. Journal of High Energy Physics. 2008. No. 0803 . P. 55.
Добавлено: 18 октября 2012
Статья
Ratnikov F., Guschin M., Курбатов Е. О. et al. Journal of High Energy Physics. 2019. Vol. 1904. No. 77. P. 1-16.
Добавлено: 30 апреля 2019