• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 278 публикаций
Сортировка:
по названию
по году
Статья
Pezzini S., Wiedmann S., Mishchenko A. et al. Physical Review B: Condensed Matter and Materials Physics. 2019. Vol. 99. P. 045440-1-045440-7.

We report on high-field magnetotransport (B up to 35 T) on a gated superlattice based on single-layer graphene aligned on top of hexagonal boron nitride. The large-period moiré modulation (≈15 nm) enables us to access the Hofstadter spectrum in the vicinity of and above one flux quantum per superlattice unit cell (Φ/Φ0=1 at B=22 T). We thereby reveal, in addition to the spin-valley antiferromagnet at ν=0, two insulating states developing in positive and negative effective magnetic fields from the main ν=1 and ν=−2 quantum Hall states, respectively. We investigate the field dependence of the energy gaps associated with these insulating states, which we quantify from the temperature-activated peak resistance. Referring to a simple model of local Landau quantization of third-generation Dirac fermions arising at Φ/Φ0=1, we describe the different microscopic origins of the insulating states and experimentally determine the energy-momentum dispersion of the emergent gapped Dirac quasiparticles.

Добавлено: 31 января 2019
Статья
Muravev V., Andreev I., Gubarev S. et al. Physical Review B: Condensed Matter and Materials Physics. 2016. Vol. 93. P. 0411101-0411105.
Добавлено: 23 октября 2016
Статья
Burmistrov I., Pashinsky B. V., Goldstein M. Physical Review B: Condensed Matter and Materials Physics. 2020. Vol. 102. No. 12.
Добавлено: 28 января 2021
Статья
Nagaev K. Physical Review B: Condensed Matter and Materials Physics. 2021. Vol. 104.
Добавлено: 14 октября 2021
Статья
Grudinina A. M., Kurbakov I. L., Yu. E. Lozovik et al. Physical Review B: Condensed Matter and Materials Physics. 2021. Vol. 104. No. 12. P. 125301-1-125301-13.
Добавлено: 27 сентября 2021
Статья
Rodionov Y., K.I. Kugel, Nori F. Physical Review B: Condensed Matter and Materials Physics. 2016. Vol. 94. No. 19. P. 195108-1-195108-13.

Using the Landau-Zener-Stuckelberg-Majorana-type (LZSM) semiclassical approach, we study both graphene and a thin film of aWeyl semimetal subjected to a strong ac electromagnetic field. The spectrum of quasienergies in the Weyl semimetal turns out to be similar to that of a graphene sheet. It has been predicted qualitatively that the transport properties of strongly irradiated graphene oscillate as a function of the radiation intensity [S. V. Syzranov et al., Phys. Rev. B 88, 241112 (2013)]. Here we obtain rigorous quantitative results for a driven linear conductance of graphene and a thin film of a Weyl semimetal. The exact quantitative structure of oscillations exhibits two contributions. The first one is a manifestation of the Ramsauer-Townsend effect, while the second contribution is a consequence of the LZSM interference defining the spectrum of quasienergies.

Добавлено: 19 февраля 2017
Статья
Ya. I. Rodionov, Kugel K. Physical Review B: Condensed Matter and Materials Physics. 2016. Vol. 94. No. 19. P. 195108-13.
Добавлено: 11 февраля 2019
Статья
O.I. Utesov, Syromyatnikov A. V. Physical Review B: Condensed Matter and Materials Physics. 2019. Vol. 100. No. 5. P. 054439.
Добавлено: 16 января 2021
Статья
Tikhonov K., Mirlin A. D. Physical Review B: Condensed Matter and Materials Physics. 2016. Vol. 94. P. 184203-1-184203-16.
Добавлено: 9 марта 2017
Статья
Mal'shukov A. Physical Review B: Condensed Matter and Materials Physics. 2020. Vol. 102. P. 134509-1-134509-5.
Добавлено: 20 января 2021
Статья
Semenov A. G., Zaikin A. Physical Review B: Condensed Matter and Materials Physics. 2019. Vol. 99. No. 9. P. 094516-1-094516-9.
Добавлено: 31 октября 2019
Статья
Sokolik A. A., Zabolotskiy A. D., Lozovik Y. Physical Review B: Condensed Matter and Materials Physics. 2016. Vol. 93. No. 19-5406. P. 1-8.

The virial theorem for a system of interacting electrons in a crystal, which is described within the framework of the tight-binding model, is derived. We show that, in the particular case of interacting massless electrons in graphene and other Dirac materials, the conventional virial theorem is violated. Starting from the tight-binding model, we derive the generalized virial theorem for Dirac electron systems, which contains an additional term associated with a momentum cutoff at the bottom of the energy band. Additionally, we derive the generalized virial theorem within the Dirac model using the minimization of the variational energy. The obtained theorem is illustrated by many-body calculations of the ground-state energy of an electron gas in graphene carried out in Hartree-Fock and self-consistent random-phase approximations. Experimental verification of the theorem in the case of graphene is discussed.

Добавлено: 14 июня 2016
Статья
Vasenko A.S., Basko D., Hekking F. Physical Review B: Condensed Matter and Materials Physics. 2015. Vol. 91. P. 085310-1-085310-10.
Добавлено: 21 сентября 2015
Статья
Larionov A., Kulik L., Dickmann S. et al. Physical Review B: Condensed Matter and Materials Physics. 2015. Vol. 92. P. 1654171-1654175.
Добавлено: 23 октября 2016
Статья
Berman O. L., Kezerashvili R. Y., Lozovik Y. Physical Review B: Condensed Matter and Materials Physics. 2013. Vol. 88. No. 23. P. 235424.

A novel type of spaser with the net amplification of surface plasmons (SPs) in a doped graphene nanoribbon is proposed. The plasmons in the THz region can be generated in a doped graphene nanoribbon due to nonradiative excitation by emitters like two level quantum dots located along a graphene nanoribbon. The minimal population inversion per unit area, needed for the net amplification of SPs in a doped graphene nanoribbon, is obtained. The dependence of the minimal population inversion on the surface plasmon wave vector, graphene nanoribbon width, doping, and damping parameters necessary for the amplification of surface plasmons in the armchair graphene nanoribbon is studied.

Добавлено: 13 января 2014
Статья
Kurilovich P., Kurilovich V., Burmistrov I. et al. Physical Review B: Condensed Matter and Materials Physics. 2019. Vol. 99. No. 085407. P. 1-15.

Helical edge modes of 2D topological insulators are supposed to be protected from time-reversal invariant elastic backscattering. Yet substantial deviations from the perfect conductance are typically observed experimentally down to very low temperatures. To resolve this conundrum we consider the effect of a single magnetic impurity with arbitrary spin on the helical edge transport. We consider the most general structure of the exchange interaction between the impurity and the edge electrons. Moreover, for the first time, we take into the account the local anisotropy for the impurity and show that it strongly affects the backscattering current in a wide range of voltages and temperatures. We show that the sensitivity of the backscattering current to the presence of the local anisotropy is different for half-integer and integer values of the impurity spin. In the latter case the anisotropy can significantly increase the backscattering correction to the current.

Добавлено: 10 июня 2019
Статья
Zvezdin A. Physical Review B: Condensed Matter and Materials Physics. 2019. Vol. 100. P. 174427.
Добавлено: 27 ноября 2019
Статья
Smirnov A., Soldatov T. A., Povarov K. Y. et al. Physical Review B: Condensed Matter and Materials Physics. 2015. Vol. 91. P. 174412.
Добавлено: 22 октября 2016
Статья
Dziom V., Shuvaev A., Shchepetilnikov A. et al. Physical Review B: Condensed Matter and Materials Physics. 2019. Vol. 99. No. 4.
Добавлено: 11 декабря 2020
Статья
Pudalov V., Sadakov A., Usoltsev A. Physical Review B: Condensed Matter and Materials Physics. 2018. Vol. 97. No. 13. P. 134508-1-134508-9.
Добавлено: 4 августа 2018
Статья
Dubrovin R., Alyabyeva L., Siverin N. et al. Physical Review B: Condensed Matter and Materials Physics. 2020. Vol. 101. P. 180403-1-180403-6.
Добавлено: 22 октября 2020