• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдены 54 публикации
Сортировка:
по названию
по году
Статья
Aleksei Ivanov, Tikhomirov A. S. Journal of Geometry and Physics. 2018. Vol. 129. P. 90-98.
Добавлено: 25 февраля 2018
Статья
Covolo T., Grabowski J., Poncin N. Journal of Geometry and Physics. 2016. Vol. 110. P. 393-401.

Smooth -supermanifolds have been introduced and studied recently. The corresponding sign rule is given by the ‘scalar product’ of the involved -degrees. It exhibits interesting changes in comparison with the sign rule using the parity of the total degree. With the new rule, nonzero degree even coordinates are not nilpotent, and even (resp., odd) coordinates do not necessarily commute (resp., anticommute) pairwise. The classical Batchelor–Gawȩdzki theorem says that any smooth supermanifold is diffeomorphic to the ‘superization’ ΠE of a vector bundle E. It is also known that this result fails in the complex analytic category. Hence, it is natural to ask whether an analogous statement goes through in the category of -supermanifolds with its local model made of formal power series. We give a positive answer to this question.

Добавлено: 12 ноября 2016
Статья
Izosimov A. Journal of Geometry and Physics. 2012. Vol. 62. No. 12. P. 2414-2423.
Добавлено: 18 ноября 2013
Статья
Soldatenkov A. O., Verbitsky M. Journal of Geometry and Physics. 2012. Vol. 62. No. 11. P. 2234-2240.

A hypercomplex manifold M is a manifold with a triple I,J,K of complex structure operators satisfying quaternionic relations. For each quaternion L=aI+bJ+cK, L2=−1, L is also a complex structure operator on M, called an induced complex structure. We study compact complex subvarieties of (M,L), for L a generic induced complex structure. Under additional assumptions (Obata holonomy contained in SL(n,H), the existence of an HKT-metric), we prove that (M,L) contains no divisors, and all complex subvarieties of codimension 2 are trianalytic (that is, also hypercomplex).

Добавлено: 30 августа 2012
Статья
Amerik E., Verbitsky M. Journal of Geometry and Physics. 2015. Vol. 97. P. 44-50.

Let S be an infinite-dimensional manifold of all symplectic, or hyperkähler, structures on a compact manifold M, and Diff0 the connected component of its diffeomorphism group. The quotient S/Diff0 is called the Teichmüller space of symplectic (or hyperkähler) structures on M. MBM classes on a hyperkähler manifold M are cohomology classes which can be represented by a minimal rational curve on a deformation of M. We determine the Teichmüller space of hyperkähler structures on a hyperkähler manifold, identifying any of its connected components with an open subset of the Grassmannian variety SO(b2-3, 3)/SO(3)×SO(b2-3) consisting of all Beauville-Bogomolov positive 3-planes in H2(M,R) which are not orthogonal to any of the MBM classes. This is used to determine the Teichmüller space of symplectic structures of Kähler type on a hyperkähler manifold of maximal holonomy. We show that any connected component of this space is naturally identified with the space of cohomology classes v∈H2(M,R) with q(v,v)>0, where q is the Bogomolov-Beauville-Fujiki form on H2(M,R). © 2015 Elsevier B.V.

Добавлено: 8 сентября 2015
Статья
Kharchev S., Zabrodin A. Journal of Geometry and Physics. 2015. Vol. 94. P. 19-31.
Добавлено: 12 октября 2015
Статья
Kharchev S., Zabrodin A. Journal of Geometry and Physics. 2016. Vol. 104. P. 112-120.
Добавлено: 30 сентября 2016
Статья
Khoroshkin S. M., Shapiro A. Journal of Geometry and Physics. 2010. Vol. 60. No. 11. P. 1833-1851.
Добавлено: 26 сентября 2012
Статья
Kazakov A., Bolsinov A. V., Kilin A. A. Journal of Geometry and Physics. 2015. Vol. 87. P. 61-75.
Добавлено: 29 марта 2015
Статья
Losev A. S., Mnev P., Youmans D. R. Journal of Geometry and Physics. 2018. Vol. 131. P. 122-137.
Добавлено: 5 октября 2018
Статья
Poberezhny V. A., Matveeva A. Journal of Geometry and Physics. 2017. Vol. 114. P. 384-393.
Добавлено: 26 октября 2016
Статья
Matveev V. S., Shevchishin V. Journal of Geometry and Physics. 2011. Vol. 61. No. 8. P. 1353-1377.

We describe all local Riemannian metrics on surfaces whose geodesic flows are superintegrable with one integral linear in momenta and one integral cubic in momenta. We also show that some of these metrics can be extended to S2. This gives us new examples of Hamiltonian systems on the sphere with integrals of degree three in momenta, and the first examples of superintegrable metrics of nonconstant curvature on a closed surface.

Добавлено: 18 марта 2013