• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 5 499 публикаций
Сортировка:
по названию
по году
Статья
Pelinovsky E., Touboil J. European Journal of Mechanics - B/Fluids. 2014. Vol. 48. P. 13-18.
Добавлено: 19 ноября 2014
Статья
Malyshev D. Journal of Combinatorial Optimization. 2014. Vol. 27. No. 2. P. 345-354.

The notion of a boundary graph class was recently introduced for a classification of hereditary graph classes according to the complexity of a considered problem. Two concrete graph classes are known to be boundary for several graph problems. We formulate a criterion to determine whether these classes are boundary for a given graph problem or not. We also demonstrate that the classes are simultaneously boundary for some continuous set of graph problems and they are not simultaneously boundary for another set of the same cardinality. Both families of problems are constituted by variants of the maximum induced subgraph problem.

Добавлено: 7 февраля 2013
Статья
Lozin V.V., Zamaraev V.A. Journal of Graph Theory. 2015. Vol. 78. No. 3. P. 207-218.
Добавлено: 19 июля 2014
Статья
Korpelainen N., Lozin V. V., Malyshev D. et al. Theoretical Computer Science. 2011. No. 412. P. 3545-3554.

Понятие граничного свойства графов было недавно введено в качестве релаксации минимального по включению свойства и было применено к нескольким задачам алгоритмической и комбинаторной природы. В настоящей работе мы в начале делаем обзор недавних результатов, связанных с этими понятием, а затем применяем их к двум алгоритмическим задачам: задаче о гамильтоновом цикле и задаче о вершинной k-раскраске. В частности, мы выявляем два граничных класса для задачи о гамильтоновом цикле и доказываем, что при k>3 существует континуум граничных классов для задачи о вершинной k-раскраске.

Добавлено: 11 сентября 2012
Статья
Musaev E., Perry M. J., Berman D. S. Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics. 2011. Vol. 706. P. 228-231.
Добавлено: 20 октября 2014
Статья
Kudryashov Y., Goncharuk N. B. Bulletin of the Brazilian Mathematical Society. 2017. No. 1.
Добавлено: 15 апреля 2016
Статья
Kanovich M., Ban Kirigin T., Nigam V. et al. Information and Computation. 2014. No. 238. P. 233-261.
Добавлено: 23 марта 2015
Статья
Kanovich M., Ban Kirigin T., Nigam V. et al. Computer Languages, Systems & Structures. 2014. No. 40. P. 137-154.
Добавлено: 23 марта 2015
Статья
Birkar C., Loginov K. Journal fuer die reine und angewandte Mathematik. 2021.
Добавлено: 3 сентября 2021
Статья
Balkanova O., Frolenkov D. Journal of London Mathematical Society. 2019. Vol. 99. No. 2. P. 249-272.
Добавлено: 25 августа 2019
Статья
Przyjalkowski V., Shramov K. Communications in Number Theory and Physics. 2020. Vol. 14. No. 3. P. 511-553.
Добавлено: 13 октября 2020
Статья
Maslov V. P. Mathematical notes. 2017. Vol. 102. No. 4. P. 583-586.
Добавлено: 17 ноября 2018
Статья
Maslov V. P., Maslova T. V. Russian Journal of Mathematical Physics. 2014. Vol. 21. No. 3. P. 373-378.
Добавлено: 30 ноября 2014
Статья
Gurevich D., Saponov P. A. Advances in Applied Mathematics. 2013. Vol. 51. P. 228-253.

We introduce the notion of a braided algebra and study some examples of these. In particular, R-symmetric and R-skew-symmetric algebras of a linear space V equipped with a skew-invertible Hecke symmetry R are braided algebras. We prove the “mountain property” for the numerators and denominators of their Poincaré–Hilbert series (which are always rational functions). Also, we further develop a differential calculus on modified Reflection Equation algebras. Thus, we exhibit a new form of the Leibniz rule for partial derivatives on such algebras related to involutive symmetries R. In particular, we present this rule for the algebra U(gl(m)). The case of the algebra U(gl(2)) and its compact form U(u(2)) (which can be treated as a deformation of the Minkowski space algebra) is considered in detail. On the algebra U(u(2)) we introduce the notion of the quantum radius, which is a deformation of the usual radius, and compute the action of rotationally invariant operators and in particular of the Laplace operator. This enables us to define analogs of the Laplace–Beltrami operators corresponding to certain Schwarzschild-type metrics and to compute their actions on the algebra U(u(2)) and its central extension. Some “physical” consequences of our considerations are presented.

Добавлено: 15 мая 2013
Статья
Pyatov P. N., Gurevich D., Saponov P. A. Journal of Geometry and Physics. 2012. Vol. 62. No. 5. P. 1175-1188.

On any reflection equation algebra corresponding to a skew-invertible Hecke symmetry (i.e., a special type solution of the Quantum Yang-Baxter equation) we define analogs of the partial derivatives. Together with elements of the initial reflection equation algebra they generate a "braided analog" of the Weyl algebra. When q→1, the braided Weyl algebra corresponding to the Quantum Group U q(sl(2)) goes to the Weyl algebra defined on the algebra Sym(u(2)) or U(u(2)) depending on the way of passing to the limit. Thus, we define partial derivatives on the algebra U(u(2)), find their "eigenfunctions", and introduce an analog of the Laplace operator on this algebra. Also, we define the "radial part" of this operator, express it in terms of "quantum eigenvalues", and sketch an analog of the de Rham complex on the algebra U(u(2)). Eventual applications of our approach are discussed.

Добавлено: 7 февраля 2013
Статья
Saponov P. A., Gurevich D. Journal of Geometry and Physics. 2019. Vol. 138. P. 124-143.
Добавлено: 12 января 2017
Статья
Brav C. I., Thomas H. Mathematische Annalen. 2011. Vol. 351. No. 4. P. 1005-1017.
Добавлено: 29 сентября 2014
Статья
Esterov A. I., Lang L. Geometry and Topology. 2021.
Добавлено: 27 октября 2020
Статья
Feigin B. L., Jimbo M., Miwa T. et al. Advances in Mathematics. 2016. Vol. 300. P. 229-274.

We construct an analog of the subalgebra Ugl(n)⊗Ugl(m)⊂Ugl(m+n) in the setting of quantum toroidal algebras and study the restrictions of various representations to this subalgebra.

 

 

Добавлено: 2 декабря 2016
Статья
Roman Avdeev, Petukhov A. Algebras and Representation Theory. 2020. Vol. 23. No. 3. P. 541-581.
Добавлено: 11 февраля 2019
Статья
Kolesnikov A., Milman E. Journal of Geometric Analysis. 2017. Vol. 27. No. 2. P. 1680-1702.

It is known that by dualizing the Bochner–Lichnerowicz–Weitzenböck formula, one obtains Poincaré-type inequalities on Riemannian manifolds equipped with a density, which satisfy the Bakry–Émery Curvature-Dimension condition (combining a lower bound on its generalized Ricci curvature and an upper bound on its generalized dimension). When the manifold has a boundary, an appropriate generalization of the Reilly formula may be used instead. By systematically dualizing this formula for various combinations of boundary conditions of the domain (convex, mean-convex) and the function (Neumann, Dirichlet), we obtain new Brascamp–Lieb-type inequalities on the manifold. All previously known inequalities of Lichnerowicz, Brascamp–Lieb, Bobkov–Ledoux, and Veysseire are recovered, extended to the Riemannian setting and generalized into a single unified formulation, and their appropriate versions in the presence of a boundary are obtained. Our framework allows to encompass the entire class of Borell’s convex measures, including heavy-tailed measures, and extends the latter class to weighted-manifolds having negative generalized dimension.

Добавлено: 11 ноября 2016