• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдена 51 публикация
Сортировка:
по названию
по году
Статья
S.V.Demishev, V.V.Glushkov, Lobanova I. et al. Scientific Reports. 2016. Vol. 6. P. 22101-1-22101-7.
Добавлено: 16 февраля 2017
Статья
Shapiro D.S., Shick A. B., Kolorenc J. et al. Scientific Reports. 2017. Vol. 7. No. 1. P. 2751-1-2751-6.
Добавлено: 7 февраля 2019
Статья
S.V.Demishev, V.V.Glushkov, Semeno A. et al. Scientific Reports. 2016. Vol. 6. P. 39196-1-39196-8.
Добавлено: 16 февраля 2017
Статья
Demishev S. V., Gilmanov M., Samarin A. et al. Scientific Reports. 2018. Vol. 8. P. 1-8.
Добавлено: 4 марта 2019
Статья
Gelfand M. S. Scientific Reports. 2018. Vol. 8. No. 1. P. 1-10.

нет

Добавлено: 17 марта 2019
Статья
Vishnyakova P., Volodina Maria, Tarassova N. et al. Scientific Reports. 2016. No. 6. P. 1-9.
Добавлено: 10 августа 2018
Статья
Shtyrov Y., MacGregor L. J. Scientific Reports. 2016. No. 6, Article number: 26558.

Rapid and efficient processing of external information by the brain is vital to survival in a highly dynamic environment. The key channel humans use to exchange information is language, but the neural underpinnings of its processing are still not fully understood. We investigated the spatio-temporal dynamics of neural access to word representations in the brain by scrutinising the brain’s activity elicited in response to psycholinguistically, visually and phonologically matched groups of familiar words and meaningless pseudowords. Stimuli were briefly presented on the visual-field periphery to experimental participants whose attention was occupied with a non-linguistic visual feature-detection task. The neural activation elicited by these unattended orthographic stimuli was recorded using multi-channel whole-head magnetoencephalography, and the timecourse of lexically-specific neuromagnetic responses was assessed in sensor space as well as at the level of cortical sources, estimated using individual MR-based distributed source reconstruction. Our results demonstrate a neocortical signature of automatic near-instant access to word representations in the brain: activity in the perisylvian language network characterised by specific activation enhancement for familiar words, starting as early as ~70 ms after the onset of unattended word stimuli and underpinned by temporal and inferior-frontal cortices.

Добавлено: 1 июля 2016
Статья
Ossadtchi Alexei, Shamaeva T., Okorokova E. et al. Scientific Reports. 2017. Vol. 7. No. 3772. P. 3772-1-3772-12.
Добавлено: 11 октября 2017
Статья
Maurice P., Baud S., Bocharova O. et al. Scientific Reports. 2016. Vol. 6. No. 38363. P. 1-19.

Neuraminidase 1 (NEU1) is a lysosomal sialidase catalyzing the removal of terminal sialic acids from sialyloconjugates. A plasma membrane-bound NEU1 modulating a plethora of receptors by desialylation, has been consistently documented from the last ten years. Despite a growing interest of the scientific community to NEU1, its membrane organization is not understood and current structural and biochemical data cannot account for such membrane localization. By combining molecular biology and biochemical analyses with structural biophysics and computational approaches, we identified here two regions in human NEU1 - segments 139–159 (TM1) and 316–333 (TM2) - as potential transmembrane (TM) domains. In membrane mimicking environments, the corresponding peptides form stable α-helices and TM2 is suited for self-association. This was confirmed with full-size NEU1 by co-immunoprecipitations from membrane preparations and split-ubiquitin yeast two hybrids. The TM2 region was shown to be critical for dimerization since introduction of point mutations within TM2 leads to disruption of NEU1 dimerization and decrease of sialidase activity in membrane. In conclusion, these results bring new insights in the molecular organization of membrane-bound NEU1 and demonstrate, for the first time, the presence of two potential TM domains that may anchor NEU1 in the membrane, control its dimerization and sialidase activity.

Добавлено: 15 марта 2017
Статья
MacInnes W., Bhatnagar R. Scientific Reports. 2018. Vol. 8. No. 1. P. 13289-1 -13289-13.

Attending a location in short space. Certain types of exogenous cues - such as sudden peripheral onsets - have been described as reflexive and automatic. However, it has been shown that it has been shown. However, it doesn’t automatically consider this location. It is a test of exogenous responses. We've seen such as saccadic curvature, microsaccades and pupil size. It can be measured as the result of the reaction time. There is no need for a microsaccade after the cue. It was the effect that the process of recovery was observed. It has been shown to be there in a field. Overall, we'll find it in pupil size. It is indicative of whether we see RT or facilitation or not. Microsaccades were not diagnostic in either experiment. Finally, there is no need for any response measures.

Добавлено: 5 сентября 2018
Статья
Fedorov A. K., Matveenko S. I., Yudson V.I. et al. Scientific Reports. 2016. Vol. 6. P. 27448 (1)-27448 (10).
Добавлено: 18 октября 2016
Статья
Kovalyuk V., Ferrari S., Kahl O. et al. Scientific Reports. 2017. Vol. 7. No. 1. P. 1-9.
Добавлено: 13 октября 2017
Статья
Lebedev M., Yin A., Tseng P. et al. Scientific Reports. 2018. Vol. 8. No. 9184. P. 1-17.
Добавлено: 11 декабря 2018
Статья
Konstantin Yu. Arutyunov, Hongisto T. T., Lehtinen J. S. et al. Scientific Reports. 2012. Vol. 2. No. 293. P. 1-7.
Добавлено: 24 марта 2014
Статья
Шеин А. В., Zaikin A., Poptsova M. Scientific Reports. 2019. Vol. 9. No. 7211. P. 1-16.
Добавлено: 13 марта 2019
Статья
Blythe D., Nikulin V., Müller K. Scientific Reports. 2016. Vol. 6. No. 27089.
Добавлено: 29 августа 2016
Статья
Lyukmanova E., Shulepko M., Shenkarev Z. et al. Scientific Reports. 2016. Vol. 6. No. 30698. P. 1-17.

Human-secreted Ly-6/uPAR-related protein-2 (SLURP-2) regulates the growth and differentiation of epithelial cells. Previously, the auto/paracrine activity of SLURP-2 was considered to be mediated via its interaction with the α3β2 subtype of the nicotinic acetylcholine receptors (nAChRs). Here, we describe the structure and pharmacology of a recombinant analogue of SLURP-2. Nuclear magnetic resonance spectroscopy revealed a three-finger' fold of SLURP-2 with a conserved β-structural core and three protruding loops. Affinity purification using cortical extracts revealed that SLURP-2 could interact with the α3, α4, α5, α7, β2, and β4 nAChR subunits, revealing its broader pharmacological profile. SLURP-2 inhibits acetylcholine-evoked currents at α4β2 and α3β2-nAChRs (IC 50 ∼0.17 and >3 μM, respectively) expressed in Xenopus oocytes. In contrast, at α7-nAChRs, SLURP-2 significantly enhances acetylcholine-evoked currents at concentrations <1 μM but induces inhibition at higher concentrations. SLURP-2 allosterically interacts with human M1 and M3 muscarinic acetylcholine receptors (mAChRs) that are overexpressed in CHO cells. SLURP-2 was found to promote the proliferation of human oral keratinocytes via interactions with α3β2-nAChRs, while it inhibited cell growth via α7-nAChRs. SLURP-2/mAChRs interactions are also probably involved in the control of keratinocyte growth. Computer modeling revealed possible SLURP-2 binding to the classical' orthosteric agonist/antagonist binding sites at α7 and α3β2-nAChRs.

Добавлено: 6 октября 2016
Статья
Lyukmanova E., Shulepko M., Shenkarev Z. et al. Scientific Reports. 2016. Vol. 6. No. 30698. P. 1-17.
Добавлено: 14 марта 2017
Статья
Moseley R., Pulvermuller F., Shtyrov Y. Scientific Reports. 2014. Vol. 3. No. 1928. P. 1-7.
Добавлено: 23 октября 2014
Статья
Efremov R., Нольде Д. Е., Волынский П. Е. et al. Scientific Reports. 2019. Vol. 9. No. 413. P. 1-12.
Добавлено: 6 февраля 2019
Статья
Feurra M., Blagoveshchensky E., Nikulin V. et al. Scientific Reports. 2019. Vol. 9. No. 1. P. 12858-1-12858-11.
Добавлено: 12 сентября 2019