• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдено 267 публикаций
Сортировка:
по названию
по году
Статья
Dickmann S., Kulik L., Kuznetsov V. Physical Review B: Condensed Matter and Materials Physics. 2019. Vol. 100. P. 155304-1-155304-10.
Добавлено: 31 октября 2019
Статья
Peltonen J., Peng Z., Korneeva Y. et al. Physical Review B: Condensed Matter and Materials Physics. 2016. Vol. 94. No. 18. P. 180508-1-180508-5.
Добавлено: 2 февраля 2017
Статья
Peltonen J., Astafiev O., Korneeva Y. et al. Physical Review B: Condensed Matter and Materials Physics. 2013. Vol. 88. P. 220506-1-220506-5.
Добавлено: 13 марта 2014
Статья
Melnikov A. A., Boldyrev K. N., Selivanov Y. G. et al. Physical Review B: Condensed Matter and Materials Physics. 2018. Vol. 97. No. 21. P. 214304-1-214304-10.
Добавлено: 31 октября 2018
Статья
Boldyrev K., Мельников А., Селиванов Ю. et al. Physical Review B: Condensed Matter and Materials Physics. 2018. Vol. 97. No. 21. P. 214304-1-214304-10.
Добавлено: 8 февраля 2019
Статья
Shtyk A., Feigelman M. Physical Review B: Condensed Matter and Materials Physics. 2017. Vol. 96. P. 064523-1-064523-8.
Добавлено: 30 ноября 2017
Статья
Karabassov T., Stolyarov V. S., Golubov A. A. et al. Physical Review B: Condensed Matter and Materials Physics. 2019. Vol. 100. No. 10. P. 104502-1-104502-9.
Добавлено: 5 сентября 2019
Статья
Yu.E. Lozovik, Огарков С. Л., A.A. Sokolik. Physical Review B: Condensed Matter and Materials Physics. 2012. Vol. 86. No. 04-5429. P. 1-6.
Добавлено: 14 марта 2013
Статья
Asano Y., Yakov V. Fominov, Tanaka Y. Physical Review B: Condensed Matter and Materials Physics. 2014. Vol. 90. P. 094512.
Добавлено: 14 октября 2016
Статья
Shchepetilnikov A., Khisameeva A., Nefyodov Y. A. et al. Physical Review B: Condensed Matter and Materials Physics. 2019. Vol. 100. No. 12.
Добавлено: 11 декабря 2020
Статья
Flokstra M. G., Cunningham T., Kim J. et al. Physical Review B: Condensed Matter and Materials Physics. 2015. Vol. 91. P. 060501(R).

Transport measurements are presented on thin-film superconducting spin-valve systems, where the controlled noncollinear arrangement of two ferromagnetic Co layers can be used to influence the superconducting state of Nb.We observe a very clear oscillation of the superconducting transition temperature with the relative orientation of the two ferromagnetic layers. Our measurements allow us to distinguish between the competing influences of domain averaging, stray dipolar fields, and the formation of superconducting spin triplets. Domain averaging is shown to lead to a weak enhancement of transition temperature for the antiparallel configuration of exchange fields, while much larger changes are observed for other configurations, which can be attributed to drainage currents due to spin triplet formation.

Добавлено: 23 февраля 2017
Статья
Kukushkin V., Mukhametzhanov I., Kukushkin I. et al. Physical Review B: Condensed Matter and Materials Physics. 2014. Vol. 90. P. 235313.
Добавлено: 23 октября 2016
Статья
Prazdnichnykh A., Glazov M., Ren L. et al. Physical Review B: Condensed Matter and Materials Physics. 2021. Vol. 103. No. 8. P. 085302-1-085302-12.
Добавлено: 5 марта 2021
Статья
P. A. Ioselevich, Ostrovsky P. M., Ya. V. Fominov et al. Physical Review B: Condensed Matter and Materials Physics. 2017. Vol. 95. No. 9. P. 094508-1-094508-6.
Добавлено: 18 октября 2017
Статья
A.S.Ioselevich, Sivak V. Physical Review B: Condensed Matter and Materials Physics. 2017. Vol. 95. P. 214205-1-214205-18.
Добавлено: 26 октября 2017
Статья
Feigelman M., Ioselevich A. Physical Review B: Condensed Matter and Materials Physics. 2014. Vol. 90. P. 115108.
Добавлено: 15 октября 2016
Статья
Elistratov A. A., Lozovik Y. Physical Review B: Condensed Matter and Materials Physics. 2016. Vol. 93. No. 10. P. 104530.

We study the behavior of exciton polaritons in an optical microcavity with an embedded semiconductor quantum well. We use a two-component exciton-photon approach formulated in terms of path integral formalism. In order to describe spatial distributions of the exciton and photon condensate densities, the two coupled equations of the Gross-Pitaevskii type are derived. For a homogeneous system, we find the noncondensate photon and exciton spectra, calculate the coefficients of transformation from the exciton-photon basis to the lower-upper polariton basis, and obtain the exciton and photon occupation numbers of the lower and upper polariton branches for nonzero temperatures. For an inhomogeneous system, the set of coupled equations of the Bogoliubov–de Gennes type is derived. The equations govern the spectra and spatial distributions of noncondensate photons and excitons.

Добавлено: 2 июня 2016
Статья
Tikhonov K., Mirlin A. Physical Review B: Condensed Matter and Materials Physics. 2019. Vol. 99. P. 214202-1-214202-10.
Добавлено: 31 октября 2019
Статья
Vargas-Paredes A. A., A. A. Shanenko, Vagov A. et al. Physical Review B: Condensed Matter and Materials Physics. 2020. Vol. 101. P. 094516.
Добавлено: 22 октября 2020
Статья
Samokhvalov A. V. Physical Review B: Condensed Matter and Materials Physics. 2009. Vol. 79. P. 094510.
Добавлено: 29 января 2010
Статья
O.I. Utesov, Syromyatnikov A. V. Physical Review B: Condensed Matter and Materials Physics. 2019. Vol. 99. No. 13. P. 134412.
Добавлено: 16 января 2021