• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Найдены 22 публикации
Сортировка:
по названию
по году
Статья
Нечепуренко И. А. Physical Review A: Atomic, Molecular, and Optical physics. 2017. Vol. 95. No. 5. P. 053835-1-053835-9.
Добавлено: 7 февраля 2019
Статья
Федоров М. В. Physical Review A: Atomic, Molecular, and Optical physics. 2016. Vol. 93. No. 3. P. 033830-1-033830-10.
Добавлено: 24 февраля 2018
Статья
Redchenko E. S., Yudson V.I. Physical Review A: Atomic, Molecular, and Optical physics. 2014. Vol. 90. P. 063829 (1)-063829 (12).
Добавлено: 18 октября 2016
Статья
Shapiro D., Zhukov A., Pogosov W. et al. Physical Review A: Atomic, Molecular, and Optical physics. 2015. Vol. 91. No. 6. P. 063814.

A natural atom placed into a cavity with time-dependent parameters can be parametrically excited due to interaction with the quantized photon mode. One of the channels for this process is the dynamical Lamb effect, induced by a nonadiabatic modulation of the atomic-level Lamb shift. However, in experiments with natural atoms it is quite difficult to isolate this effect from other mechanisms of atom excitation. We point out that a transmission line cavity coupled with a superconducting qubit (an artificial macroscopic atom) provides a unique platform for observation of the dynamical Lamb effect. A key idea is to exploit a dynamically tunable qubit-resonator coupling, which was implemented quite recently. By varying the coupling nonadiabatically, it is possible to parametrically excite a qubit through a nonadiabatic modulation of the Lamb shift, even if the cavity was initially empty. The dynamics of such a coupled system is studied within the Rabi model with a time-dependent coupling constant and beyond the rotating-wave approximation. An efficient method to increase the effect through the periodic and nonadiabatic switching of the qubit-resonator coupling energy is proposed. © 2015 American Physical Society. ©2015 American Physical Society.

Добавлено: 8 сентября 2015
Статья
Погорелов И., Стручалин Г., Страупе С. et al. Physical Review A: Atomic, Molecular, and Optical physics. 2017. Vol. 95. P. 012302-1-012302-11.
Добавлено: 27 февраля 2018
Статья
Стручалин Г., Погорелов И., Страупе С. et al. Physical Review A: Atomic, Molecular, and Optical physics. 2016. Vol. 93. P. 012103-1-012103-10.
Добавлено: 27 февраля 2018
Статья
Makarov V. A., Grigoriev K. S., Vladimirova Yu.V. et al. Physical Review A: Atomic, Molecular, and Optical physics. 2018. Vol. 98. No. 6. P. 063805-1-063805-8.
Добавлено: 1 февраля 2019
Статья
Федоров М. В. Physical Review A: Atomic, Molecular, and Optical physics. 2018. Vol. 97 . No. 1. P. 012319-1-012319-7.
Добавлено: 14 февраля 2018
Статья
Dnestryan A. I., Tolstikhin O. I. Physical Review A: Atomic, Molecular, and Optical physics. 2016. Vol. 93. No. 3. P. 033412-1-033412-10.
Добавлено: 31 октября 2018
Статья
Parfenyev V.M., Vergeles S.S. Physical Review A: Atomic, Molecular, and Optical physics. 2012. Vol. 86. No. 4. P. 043824.
Добавлено: 31 октября 2017
Статья
Burovski E., Cheianov V., Gamayun O. et al. Physical Review A: Atomic, Molecular, and Optical physics. 2014. Vol. 89. P. 041601.
Добавлено: 7 сентября 2016
Статья
Redchenko E. S., A. A. Makarov, V. I. Yudson. Physical Review A: Atomic, Molecular, and Optical physics. 2018. Vol. 97. No. 4. P. 043812-1-043812-15.
Добавлено: 12 ноября 2018
Статья
Makarov A. A. Physical Review A: Atomic, Molecular, and Optical physics. 2015. Vol. 92. No. 5. P. 053840 - 053840 .
Добавлено: 12 ноября 2018
Статья
A. A. Makarov. Physical Review A: Atomic, Molecular, and Optical physics. 2015. Vol. 92. No. 5. P. 053840(1)- 053840(16) .
Добавлено: 4 февраля 2019
Статья
Fedorov A. K., Yudson V., Shlyapnikov G. V. Physical Review A: Atomic, Molecular, and Optical physics. 2017. Vol. 95. No. 4. P. 043615(1)-043615(11).

We discuss the emergence of p-wave superfluidity of identical atomic fermions in a two-dimensional optical lattice. The optical lattice potential manifests itself in an interplay between an increase in the density of states on the Fermi surface and the modification of the fermion-fermion interaction (scattering) amplitude. The density of states is enhanced due to an increase of the effective mass of atoms. In deep lattices the scattering amplitude is strongly reduced compared to free space due to a small overlap of wave functions of fermions sitting in the neighboring lattice sites, which suppresses the p-wave superfluidity. However, for moderate lattice depths the enhancement of the density of states can compensate the decrease of the scattering amplitude. Moreover, the lattice setup significantly reduces inelastic collisional losses, which allows one to get closer to a p-wave Feshbach resonance. This opens possibilities to obtain the topological px+ipy superfluid phase, especially in the recently proposed subwavelength lattices. We demonstrate this for the two-dimensional version of the Kronig-Penney model allowing a transparent physical analysis.

Добавлено: 8 июня 2017
Статья
Berman O., Kezerashvili R., Yurii E. Lozovik. Physical Review A: Atomic, Molecular, and Optical physics. 2016. Vol. 94. No. 5. P. 052308.
Добавлено: 18 октября 2016
Статья
Makarov A. A., Yudson V. I. Physical Review A: Atomic, Molecular, and Optical physics. 2014. Vol. 89. P. 053806 (1)-053806 (13).
Добавлено: 18 октября 2016
Статья
A. A. Makarov, V. I. Yudson. Physical Review A: Atomic, Molecular, and Optical physics. 2014. Vol. 89. No. 5. P. 053806 - 053806 .
Добавлено: 13 ноября 2018
Статья
Madsen L. B., Jensen F., Dnestryan A. I. et al. Physical Review A: Atomic, Molecular, and Optical physics. 2017. Vol. 96. No. 1. P. 013423-1-013423-11.
Добавлено: 31 октября 2018
Статья
M. V. Fedorov, Sysoeva A., Vintskevich S. V. et al. Physical Review A: Atomic, Molecular, and Optical physics. 2018. Vol. 98. P. 013850-1-013850-12.
Добавлено: 2 ноября 2018
Статья
Kravtsov K., Жутов А. К., Кулик С. П. et al. Physical Review A: Atomic, Molecular, and Optical physics. 2018. Vol. 98. P. 063831-1-063831-6.
Добавлено: 1 февраля 2019
1 2