• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта

Статья

О равномерных аттракторах динамических процессов и неавтономных уравнений математической физики

Успехи математических наук. 2013. Т. 68. № 2. С. 159-196.

Изучаются равномерные аттракторы динамических систем, которые отвечают неавтономным диссипативным уравнениям с частными производными. Задача сводится к исследованию семейств динамических процессов, если исходное уравнение задано на всей оси времени, или к изучению семейств динамических полупроцессов, если уравнение задано на полуоси. Доказаны теоремы о существовании равномерных глобальных аттракторов для семейств процессов и полупроцессов. Изучена структура аттракторов для неавтономных уравнений с трансляционно компактными символами. Найдены условия, при которых аттракторы полупроцессов сводятся к аттракторам соответствующих процессов. Исследован важный частный случай уравнений с асимптотически почти периодическими членами. Рассмотрен ряд примеров неавтономных уравнений математической физики, для которых построены равномерные глобальные аттракторы и изучена их структура.