Статья
Two-dimensional superintegrable metrics with one linear and one cubic integral
We describe all local Riemannian metrics on surfaces whose geodesic flows are superintegrable with one integral linear in momenta and one integral cubic in momenta. We also show that some of these metrics can be extended to S2. This gives us new examples of Hamiltonian systems on the sphere with integrals of degree three in momenta, and the first examples of superintegrable metrics of nonconstant curvature on a closed surface.
We construct differential invariants that vanish if and only if the geodesic flow of a two-dimensional metric admits an integral of third degree in momenta with a given Birkhoff–Kolokoltsov 3-codifferential.
Эта публикация представляет собой сборник отдельных статей "Третьей Международной конференции по динамике информационных систем», которая состоялась в университете Флориды, 16-18 февраля 2011 года. Цель данной конференции заключалась в том, чтобы собрать вместе ученых и инженеров из промышленности, правительства и научных кругов, чтобы они смогли обменяться новыми открытиями и результатами в вопросах, имеющих отношение к теории и практике динамики информационных систем. Динамика информационных систем: математическое открытие представляет собой современное исследование и предназначается студентам – аспирантам и исследователям, которые интересуются самыми последними открытиями в информационной теории и динамичных системах. Ученые других дисциплин могут также получить пользу от применения новых разработок в своих областях исследований.
Сборник составлен по результатам исследований молодых ученых, аспирантов и студентов МЭСИ, а также ряда вузов Москвы, Йошкар-Олы, Магнитогорска, Махачкалы, Пензы, Саранска, Саратова, Улан-Удэ. Рассмотренные на конференции (июнь 2011 г.) результаты исследований посвящены вопросам статистической методологии, применению математико-статистических и эконометрических методов в различных отраслях экономики и социальной сфере. Обобщается зарубежный опыт статистического анализа ряда проблем экономической и социальной жизни. Сравнивается эффективность различных методов, формулируются рекомендации по их выбору в зависимости от специфики решаемой задачи.
В основе настоящего учебного пособия лежит специальный курс по выбору студента, прочитанный автором на механико - математическом факультете МГУ им. М.В. Ломоносова в 2010-2012 учебных годах. Пособие знакомит читателя с методом параметрикса и его дискретным аналогом, развитым в самое последнее время автором пособия и его коллегами-соавторами. Оно объединяет воедино материал, который ранее содержался только в ряде журнальных статей. Не стремясь к максимальной общности изложения, автор ставил целью продемонстрировать возможности метода при доказательстве локальных предельных теорем о сходимости марковских цепей к диффузионному процессу и при получении двусторонних оценок типа Аронсона для некоторых вырожденных диффузий.
Статьи данного сборника написаны на основе докладов, сделанных в 2011 г. на социологическом факультете МГУ им. М.В. Ломоносова на заседании XIV Междисциплинарного ежегодного научного семинара "Математическое моделирование социальных процессов" им. Героя Социалистического труда академика А.А. Самарского.
Издание предназначено для научных сотрудников, преподавателей, учащихся вузов и научных учреждений РАН, интересующихся проблемами, разработкой и внедрением методологии математического моделирования социальных процессов.