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ON 2-DIFFEOMORPHISMS WITH ONE-DIMENSIONAL BASIC
SETS AND A FINITE NUMBER OF MODULI

V.Z.GRINES, O.V.POCHINKA, AND S. VAN STRIEN

ABSTRACT. This paper is a step towards the complete topological clas-
sification of )-stable diffeomorphisms on an orientable closed surface,
aiming to give necessary and sufficient conditions for two such diffeo-
morphisms to be topologically conjugate without assuming that the dif-
feomorphisms are necessarily close to each other. In this paper we will
establish such a classification within a certain class ¥ of 2-stable diffeo-
morphisms defined below. To determine whether two diffeomorphisms
from this class ¥ are topologically conjugate, we give (i) an algebraic
description of the dynamics on their non-trivial basic sets, (ii) a geo-
metric description of how invariant manifolds intersect, and (iii) define
numerical invariants, called moduli, associated to orbits of tangency of
stable and unstable manifolds of saddle periodic orbits. This description
determines the scheme of a diffeomorphism, and we will show that two
diffeomorphisms from ¥ are topologically conjugate if and only if their
schemes agree.
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1. INTRODUCTION AND FORMULATION OF THE RESULTS

The topological classification of structurally stable diffeomorphisms on closed
orientable surfaces has made tremendous progress in the last 25 years, due to the
work of C.Bonatti, V.Grines, R.Langevin, A.Zhirov, R.Plykin et al. (see for
example [, [3], [2], [9] for the history of the subject and more information). Any
such classification naturally includes a description of its basic sets and a non-trivial
description of how invariant manifolds of periodic points intersect. If invariant
manifolds of saddles have tangencies, then the topological classification also involves
expressions, called moduli, related to eigenvalues at saddle points, as was discovered
by J. Palis [14].
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The first important step in the direction of a topological classification of -
stable diffeomorphisms on orientable closed surfaces was made in the paper [I1] by
W.de Melo and S.J.van Strien, where they found necessary and sufficient condi-
tions for Q-stable diffeomorphisms to have a finite number of moduli. (A diffeomor-
phism f is said to have a finite number of moduli if one can parametrise topological
conjugacy classes of a neighbourhood of f by a finite number of parameters). Their
result is local in the sense that it only considers the topological conjugacy of two
diffeomorphisms which are sufficiently close to each other. To deal with the global
situation, T.Mitryakova and O.Pochinka [12] partly generalised the previous re-
sult by construction a complete invariant for 2-stable diffeomorphisms for a certain
class of Q-stable diffeomorphisms (with at most a finite number of periodic points)
which can in general be “far” from each other.

Here we present the topological classification considering a wider class than in
[12], within this class the existence of one-dimensional attractors and repellers is
allowed. This class ¥ will be defined formally below.

Let M? be an orientable closed surface and f: M? — M? be an A-diffeomor-
phism, i.e., an Axiom A diffeomorphism. By S.Smale [I7], the non-wandering
set NW(f) of f is represented as a finite union of disjoint closed invariant sets
Ay, ..., Ag, called basic sets, each of which contains a dense orbit. A basic set
which consists of a periodic orbit will be called trivial and otherwise it is called
non-trivial.

Let A be a one-dimensional basic set of f. By R.Plykin [I5], A is either an
attractor or a repeller.

According to [5l Definition 3] a point p is called an s-boundary (u-boundary)
point of attractor (repeller) A, if one of the connected components of the set Wy \p
(W, \ p) is disjoint from A; denote by £, such a component (see Figure [I, where
the construction of a DA-diffeomorphism is represented and where p;, po are the
s-boundary points).

FiGURE 1. DA-diffeomorphism
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FIGURE 2. Other examples of 1-dimensional attractors

For definiteness we suppose that A is an attractor (all notions for repeller can
be obtained by considering f~1). By [6l Lemmas 2.4, 2.5], each s-boundary point
is necessarily periodic and the set A has a non-empty and finite set of s-boundary
pointsﬂ We denote this set by Ph.

Definition 1 (Separable one-dimensional attractors). We say that a 1-dimensional
attractor A of an A-diffeomorphism f is separable if a union Y, of saddle and source
trivial basic sets of the diffeomorphism f exists with the following properties:

1) (W) \ W3 = W,

2) cl(¢p)\ £, = pUa for every s-boundary point p € Py, where a € Y, is a source
point;

3) for every saddle point o € Y, the manifold W2 does not contain heteroclinic
points.

This definition is illustrated in Figure

It follows from [7, Lemma 1, Lemma 2] that any one-dimensional basic set of a
structural stable diffeomorphism f: M? — M? is separable. We prove the following
stronger result.

Theorem 1. If an Q-stable diffeomorphism f: M? — M? has a finite number of
moduli then any of its one-dimensional basic set is separable.

The proof of Theorem [I]is based on necessary and sufficient conditions, found in
[11], under which a diffeomorphism of an orientable surface has a finite number of
moduli of topological conjugacy, and described the structure of the neighborhood
of such a diffeomorphism.

Statement 1 (Criteria of a finite number moduli, [I1]). Let f: M? — M? be an
Q-stable C?-diffeomorphism. Then f has a finite number moduli if and only if it
satisfies the conditions below:

Un fact the existence and finiteness of the set of boundary points without the term “boundary
point” was proved by S. Newhouse and J. Palis in [13} Proposition 1].
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FiGURE 3. In these figures «, w, 0 denote periodic points of
source, sink and saddle type. In Figure (A) a separable one-
dimensional attractor on the torus is shown by the dark curves
and £, are the curves connecting p; to a;; In Figure (B) a situ-
ation is shown with a non-seperable one-dimensional attractor on
the pretzel by the dark curves; here the curves ¢, do not land
on repelling fixed points, and so condition 2 in the definition of
separable one-dimensional attractor is violated.

(1) if z, y € NW(f) are such that W' is not transverse to W, then the basic
sets containing x and y are trivial;

(2) there is only a finite number of orbits of non-transverse intersections between
stable and unstable manifolds and the contact between these manifolds along each
of these orbits is of finite order;

(3) if p, q are periodic points from trivial basic sets such that Wj' has an orbit
of mon-transverse intersection with W, then the number of orbits in W (resp. in
W;) belonging to some unstable (resp. stable) manifolds of periodic saddle points
of [ is finite;

(4) if x is a point of non-transverse intersection of Wyt and W then there exists
an arc % transverse to W' at x such that no connected component of ¥\ {z}
contains points of both stable and unstable manifolds of saddles;

(5) if W' has a point of non-transverse intersection with W7, and Wg' has a
point of non-transverse intersection with W72, then there is no saddle point of f
whose unstable manifold (resp. stable manifold) intersects W (resp. W).



2-DIFFEOMORPHISMS WITH ONE-DIMENSIONAL BASIC SETS 731

Definition 2 (The class ¥). An orientation preserving Q-stable C2-diffeomorphism
f: M? — M? is called a diffeomorphism of class W if it has a finite number of moduli
and the following properties are satisfied:

1) each non-trivial basic set A of f is one-dimensional;

2) heteroclinic orbits can be contained in the stable or the unstable manifold of
a periodic point of the trivial basic set of f, but not in both.

FIGURE 4. An example of a diffeomorphism f from ¥

Let f € ¥ and W, be not transverse to W for some saddle periodic points

z,y € NW(f). Set Oy = %, where \; is the eigenvalue of Dy at x which is
less than one by absolute value and p,, is the eigenvalue of D f at y which is greater
than one by absolute value. Denote by ¥* the set of diffeomorphisms f € ¥ such
that O, is an irrational for any such pair z, y.
In Section [2] we introduce the notion of a scheme of diffeomorphism f containing
(i) an algebraic description of the dynamics on its non-trivial basic sets,
(ii) a geometric description of how invariant manifolds intersect,
(iii) numerical invariants, called moduli, associated to orbits of tangency of
stable and unstable manifolds of saddle periodic orbits
and define an equivalence of two schemes.
The main result of this paper is the following theorem.

Theorem 2 (Classification with class W). 1. If the schemes of diffeomorphisms
fs ' € ¥ are equivalent, then the diffeomorphisms are topologically conjugate.

2. Diffeomorphisms f, f' € W* are topologically conjugate if and only if their
schemes are equivalent.

2. DESCRIPTIONS OF DIFFEOMORPHISMS FROM W

2.1. An algebraic description of the dynamics on one-dimensional basic
set. Now let A be a 1-dimensional attractor of an A-diffeomorphism f: M2 — M2,
From [4] A is represented as a finite union of disjoint compact sets Ay, ..., Ag,
which are cyclically transformed into each other under the action of f. Moreover,



732 V.Z.GRINES, O.V.POCHINKA, AND S. VAN STRIEN

cd(W:nNA;) = A; and (WP NA;) = A; for any point © € A;. Every A; is called
periodic (or C-dense) component of the basic set A. In this section we suppose that
the attractor A consists of only one periodic component. We will now associate to
A a closed neighbourhood Ny.

Definition 3 (The bunch of an attractor). A bunch b of an attractor A is the

union of the maximal number r, of the unstable manifolds Wy, ..., W;frb of the

s-boundary points pi, ..., p,, of the set A whose separatricesﬂ lpys ooy Lp,, belong
to the same connected component of the set W3 \ A. The number r; is said to be
the degree of the bunch.

Let 0 € {u, s} and x € A. For points y, z € W2 (y # 2),let

[y, 2%, [y 2)° (2% (9, 2)°

denote the connected arcs on the manifold W2 with the boundary points v, z.

Denote by By the set of all bunches of A. From the definition of a bunch b € By
of degree ry, it follows that there is a sequence of points z1, ..., 2, such that:

1) zg;_1, x2; belong to the different connected components of the set WIZ \ pj;

2) T2j+1 € Wiz], (we set Top, 41 = 1'1)

3) (1‘2]‘, .’172j+1)s NA=g, j=1 ..., m.

For each j € {1, ..., rp} we pick a pair of points Z3;_1, Z2; and a simple curve
£; with boundary points Z2;_1, Z2; such that:

1) (Z5, T2j41)° C (25, T2j41)" (T2rg1 = 71);

2) the curve ¢; transversally intersects at a unique point the stable manifold of

any point on the arc (zoj_1, T2;)";
Tp

3) Ly = U [4 U (Z2j, T2541)°] is a simple closed smooth curve and the set
j=1
Ly = U Ly is such that:
bEBA

a) f(La)N Ly =@;

b) for every curve Ly, b € Bp, there is a curve in the set f(La) such that these
two curves are the boundaries of an annulus Kj;

¢) the annuli {Kj}, b € Bp} are pairwise disjoint (see Figure [5)).

Let Na =AU | f*( U Kp). By construction the annuli {Kp, b € Bp} consist

n>1  bEBa
of the wandering points of the diffeomorphism f, N is a surface with non-empty
boundary and N, is a neighbourhood of the attractor A, which we call the support
of NA.

Let pa: Un, — N be the universal covering where Uy, is a subset of Lobache-
vsky plane and let Gy, be the group of its covering transformations. Set Ey, =
Uy, . A lift fA: Uy, — Un, of fao = f|n, with respect to pp induces an au-
tomorphism 77, of the group Gy, acting by the formula 7%, (g) = fagfyt. Set
A= pxl(A). If z € A then let Z € A denote a point in the preimage pxl(m) and
let w? be the connected component of p~(W?) containing . Let us choose a
parametrisation R > ¢ — W2 (t) of W2 such that W2(0) = x. Then wl(t) is a point

2Stable (unstable) separatriz of a hyperbolic periodic point p is a connected component of the
set W3\ p (W5 \ p).
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FIGURE 5. Construction of the surface IV,.

on wd such that py (wl(t)) = W2 (t) and W2+, W2~ (wl™, wl™) are the connected
components of the curve W2 \ z (wd \ Z) for t > 0, t < 0 respectively. For points
7,z € wd (7 # 2), let [y, 2°, [5, 2)°, (7, 2)°, (4, 2)° denote the connected arcs on
the manifold w? with boundary points 7, 2.

Definition 4 (Asymptotic direction). We say that a curve wS” has the asymptotic
direction 6Y for t — voo, v € {—, +} if cl(wl?) \ wl is equal to  and 6% € Ex, =
Uy, -

As before, let Py be the set of s-boundary points of A. For a boundary point
p € Pp denote by £3° a connected component of W, \ p different from ¢, and by
£2° the connected component of wy \ p for which py (£5°) = £7°.

It was proved in [§] that for each point x € (A\ Wp, ) the curve w} has two
distinct boundary points (asymptotic directions) s, s;. Finally, for every point
p € Py the curve wg‘x’ has an asymptotic direction sgo.

Statement 2 (Conjugacy on one-dimensional attractors, [§]). Let A, A’ be attrac-
tors such that there is an automorphism p: Gy, — Gy,, with property Tffllv =

VAT " Then
1) 4y is uniquely induces a homeomorphism ¥} : En, — En,;
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2) for every point T € A there exists a unique point ¥’ € A’ such that
Yael(wl) NEy,) = cl(w) NEx,,

for & € {u, s} and the map pp: A — N, assigning ¥’ to T, is a homeomorphism;
3) @A induces the homeomorphism

oA =papapy A — A

conjugating fla with f'|ar and possesses the property: if a, b € WE, x € A, then
eala), oa(b) € W (-

It immediately follows from Statement [2]that each isomorphism 14 with property
Tf}u = wATwaXI uniquely induces a one-to-one map

'&A: Py — Py

2.2. Moduli associated to diffeomorphisms from the class ¥. For two dif-
feomorphisms from ¥ to be topologically conjugate certain moduli conditions have
to be satisfied. Let us define these conditions now. For f € ¥ denote by {2; the set
of trivial basic sets of f and by Q°, Q!, Q2 its subsets consisting of the sinks, sad-
dles and sources, accordingly. For a saddle point o € Q' of a diffeomorphism f € ¥
denote by k, the period of ¢ and ., let A\, denote the eigenvalues of D f* which
are greater and less than one by absolute value, accordingly (|ue| > 1 > |[As] > 0).

For 0 < |A] <1 < |u| denote by f, »: R? — R? linear diffeomorphism given by
the formula

Jur(@, y) = (pz, Ay).
Set
U = {(z, y) € R?: [z]ly| " < 1}.

Notice that the set U, » is f, a-invariant and possesses two f, x-invariant foliations
Fo=U{(z,y) €eUpn:x=c}and F*= J{(z,y) € Uyr: y = c}.
ceR ceR

Definition 5 (C! linearization). A saddle point o € Q' and an f*o-invariant
neighbourhood U, of ¢ form a C'-linearization (see Figure @) if:

1) there is a Cl-diffeomorphism 1, : U, — Uy, x, conjugating f*o |y with
Jaona U, ays

2) each leaf of the foliations F2 = ¢ 1(F®), F¥ = 1 (F*) is C%-smooth.

The existence of a linearizable neighborhood for any saddle point of a diffeomor-
phism f from ¥ (or indeed any C? diffeomorphism) is well-known, see for example
[16, Chapter 5].

Denote by A the set of points at which one-sided heteroclinic tangencies of
invariant manifolds of saddle points of the diffeomorphism f there is. For each
a € A denote by o € Q! 05 € Q! the saddle points such that a € W3 N Wi Set
Ha = Hos and A\, = )\03.

Denote by U, the connected component of U,s NUyu containing the point a. For
any point z € U, let us set 2° = v, (2) = (23, 2y) and 2" = o (2) = (2, z;). Set

T “y T
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FIGURE 6. Linearizable neighborhood U,

'S RL

FIGURE 7. The transition map g,

9o = You(Vos|v,) 7t Yoz (Ua) = tou(Ua) (see Figure @ and write the map g, in
the coordinate form
ga(l‘, y) = (§a<mv y)7 Na(T, Y)).
Set 5
_ ONa , &
= a (a®).

Ta
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Set
Hy = ANWZ. N Wi
Statement 3 (Moduli for f € ¥, [I1], [12]).
(1) Let f eV, a€ Aand k € Z. Then
k
‘ Tq.

‘)\a
Tik(q) = |—
f*(a) Lia

(2) If diffeomorphisms f, f' € U are topologically conjugate by means of a home-
omorphism h such that h(a) = a' for a point a € A and h(c)) = o3/, h(c}) = ol
then

InjAg|  InfAq]
Infua|  Infpal

(3) If diffeomorphisms f, f' € U* are topologically conjugate by means of a

homeomorphism h such that h(c]) = o, h(c}) = ol for some points a € A,

a' € A" and h(a1) = a}, h(az) = ay for some points a1, az € H,, o}, a4 € Hy then

1 1
Tas In |pa Tal, Inpa’ |

Tay 7—0/1

2.3. Geometric description of the intersection pattern of invariant man-
ifolds. Denote by L£?, L* the sets of non-trivial attractors respectively repellers.
Set £ = L£5UL*. As before let Q°, Q', Q2 be the sets of sinks, saddles and sources
from the trivial basic set Qy. We let Q' be the set of saddle points p € Q' for
which there is either a saddle point ¢ € (Q'\ p) such that W N W7 # & or a set
A € L% such that WY NW3 # @. Next define Q'* = Q'\ @', Note that the defini-
tions of the sets % and Q'* are not symmetric, but, by the class ¥ assumptions,
if p € Q' then there exists no saddle point ¢ for which Wy N Wyt # @ for some
saddle point ¢ and that there exists no set A € £* such that W, N W§ # 2.
Let us set

Ay =WH UQPULY, Ry=Wg.UQ>UL"

By construction the set Ay is an attractor and Ry is a repeller of f, see Figure
Set

Vi =M?\ (Af URy).

Let kf be a minimal natural number such that each separatrix of saddle and
boundary points is invariant with respect to f*/. By construction the orbit space
Vf =Vi/f ks of the action of the diffeomorphism f*/ on V¢ consists of a finite num-
ber of copies of the two-dimensional torus, and the natural projection ps: Vi — V;
is a covering (see, for example [I2, Lemma 2.1]). In Figure |§| this construction is
illustrated for the diffeomorphism shown in Figure[§ Set

or =prfp;t: Vi = V.
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Fi1cURE 9. The orbit space Vf for the diffeomorphism f from Fig-
ure |8 with the projections of the separatrices
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For each point o € Q% set 4, = p;y(W: \ o) and for each point o € Q! set
Yo =ps(W2\ o). By the construction 4, is a pair of circles. Set

For each non-trivial basic set A denote by ka the number of periodic components of
A and by g, the restriction of f¥* on a periodic component of Nyx. Set £, = p(¢,),

p € Py, lh= U ¢ and
peEA

Set H, = pr(Ha), Af, = Ao and py = pg for a € A. Denote by f[f the union
of all sets H,. For a connected component T' of Vy let us set Hy = HyNT. If
the set EIT is not empty let us choose a simple closed curve BT which intersects
each curve from 7' N f} at exactly one point not being from H + (such curve exists
as TN f‘} is a set of disjoint non-contractible curves). Denote by 84 a connected
component of the preimage p}l(ﬁAT) and by K; an annulus on V; situated between
B4 and fha (B4). For an oriented path » C T from a point & to a point 7 there is
a unique lift ¥ C V; with the start point « = p?l(i) N K4 (see, for example, [10]).
Then the end point of v is situated in f<r%» (K ) for some integer k;.

Let a1, as € ﬁT If a; and as belong to the same connected component of f}
then denote by 74, 4, a directed curve connecting the points @; with a» which is
the part of curve from fjc oriented along the stable manifold. If a; and as belong
to different connected components 47, 45 of f; then set 21 =47 N BT, 21 =4N BT
and denote by 74, 4, a directed curve connecting the points a; with do consisting
of a part of 47 oriented opposite the stable manifold, a part of curve BT connecting

21 with 22 and a part of 45 oriented along the stable manifold.

For each point b € (Hy N K ;) let us calculate 7, and set 7 = 7, for b = py(b).
For ﬁa is from ﬁf let us set

T, = {7’&7 86 I:Ia} and C’ﬁa = {)\ﬁlﬂ /QLH“, TI:IQ}'
Set
Cf = {Cﬁa’ H, C Hf}.
Definition 6 (The scheme of a diffeomorphism). We call the set
Sy = (Vf7 of, Fj” F?v Cy, L?‘a L?)

a scheme of the diffeomorphism f € W.
Definition 7 (Equivalence of schemes). The schemes
Sf = (Vf, ¢f, ch, F;ﬁ, Cf, L;, L;ﬁ) and Sf/ = (Vf/, (bf/F?u, Iﬂ;/, Cf/, Lju, L?/)
of diffeomorphisms f, f/ € U, respectively, are said to be equivalent if there exists
an orientation-preserving homeomorphism ¢: Vy — V}s such that:
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D ¢dy=dpei
2) p(I'3) = ch,, @(I') = T'}, and for each o € Q" there is a unique ¢’ € Q! such
that ¢(§5) = Jo';

3) if Ha = G(H,) then 2mal _ 2 Payl,

ta =Y Wlig, | Wlig, |
4) if Hy = ¢( a) for H, from Hy then
4a) for any points a1, as € H, belonging to the same connected component T of
7'572 T(an)

1 1
Wlig,] _ ( )Fmﬁa,\.
31 Te(ar)

4b) for any points a1, as € H from different connected components T1, T2 of Vf
1

/\ﬁ , k%"’(f'al‘aQ)

Vf we have

'“‘H ’

1
Ta In|p g Ag May,az 1,0, In |p g

there is a number mg, 4, such that (=2 gl — (|2 Tetay) ) Inleg, |

1,42 Tay | Pt To(ar) ’

5) if Ha, Hb are from Hy and a1, a2 € H,, bl, by € H, such that ar, by €
Tl, as, by € Ty then the numbers My a5 M, 4, satisfy the equality My b, =

R, 5,) F Mavas ¥ Rp,, 5,3

6) p(L}) = Lf,7 gp(Lf) Lf, and for each A € £ there is a unique A’ € L’ such
that ¢(Lp) = Las;

7) if @(é A) = £ then there is an isomorphism ¥ conjugating Tj, with Ty, for

some ga, gy, and such that 3(f,) = %A(p)

3. SEPARABILITY OF A 1-DIMENSIONAL ATTRACTOR (REPELLER) OF A
DIFFEOMORPHISM OF A SURFACE WITH A FINITE NUMBER MODULI

Proof of Theorem[I} We now prove that a 1-dimensional attractor of an A-diffeo-
morphism f: M? — M? with a finite number moduli is separable.

Let A be an attractor of an A-diffeomorphism f: M? — M? with a finite number
of moduli. Let us prove that the three conditions of Definition [1| hold.

1) To prove item 1 of Definition [1it suffices to prove that W3, N W3 = & holds
for every non-trivial basic set A’ distinct from A. Suppose the contrary: there are
points x € A, ' € A’ such that WNW2 # @. Since stable manifolds of the points
of A (unstable manifolds of the points of A’) are C''-close on compact sets, without
loss of generality one can assume that the manifold W7 contains no s-boundary
periodic points of the basic set A and the manifold W, contains no u-boundary
periodic points of the basic set A’. By Statement (1] l the intersection W§¢, N Wy is
transverse.

Let y € (WNW). As A and A’ have local structure of the product on interval
by Cantor set then the point y belongs to an adjacent interval (a, b)® C W2 which
consists of the wandering points of the diffeomorphism f and such that a, b € A
and WY, W contain one s-boundary point each py, pp (pa = pp if W = W).
Denote by L, (L) the connected component of the set W2 \ a (W \ b) disjoint
from the point p, (pp). Then the curve I, = L, ULy U|a, b]® bounds a domain D .
This domain is a continuous immersion of the open disk into the manifold M?, all
of its points are the wandering points of the diffeomorphism f and the curve [, is
the boundary of D, which is accessible from inside.
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Denote by W;* the connected component of the set Wy \ y disjoint from the
point z’. The transversality condition implies W;'* N Dgj, # &. On the other hand
the component W/ contains a set which is dense in the periodic component of the
set A’. Therefore there are points in W/ disjoint from the domain Dgp. Then there
is a point ¢ € (a, b)® distinct from the p01nt y and such that the arc (y, y')* C W4
belongs to the domain D,,. Since for any point @ € L, there is a unique p01nt
be Ly, such that a € W2, & € A and (@, B)S C Dyy it follows that there is a point
& for which the arc (a, b)® is tangent to the arc (y, 4/)* and this contradicts the
transversality condition.

2) To prove item 2 of Definition [I] it suffices to show that for every s-boundary
point p of the basic set A there is no saddle point ¢ from the trivial basic set of the
diffeomorphism f such that W N¢, # @. If we assume the contrary then similarly
to the proof of item 1 we come to a contradiction to the transversality condition.

3) Assuming the contrary in this case we come to a contradiction to the transver-
sality condition as well. O

4. PROOF OF THE CLASSIFICATION THEOREM

It follows from the geometrical construction of the schemes and Statement
that diffeomorphisms f, f’ € ¥* are topologically conjugate then their schemes
are equivalent. Let us show that if the schemes of diffeomorphisms f, f/ € ¥ are
equivalent, then the diffeomorphisms are topologically conjugate.

Proof of Theorem[2} Let
Sy = (Vf’ a2 fh}’ f?’ éf’ IA’;’ i?) and  Sp = (Vf'v ¢f’f‘§”7 fw;/? éf’a E;/v IAf;’)

be schemes of diffeomorphisms f, f/ € ¥, respectlvely, for which there exists an
orientation-preserving homeomorphism ¢: Vf — Vf/ with the properties 1-7 of
Deﬁnltlonl 7l We divide the construction of a conjugating homeomorphism h: M? —
M? such that hf = f'h in to steps.

STEP 1. The existence of the homeomorphism ¢: Vf — Vf/ with property 4,27(;3 F=
qAbf:gb implies that there exists a homeomorphism ¢: Vy — V¢ that conjugates the
restriction of the diffeomorphism f to V; with the restriction of the diffeomorphism
f’ to Vp and is such that ¢ = pfmpp;l. For each point b € (H, N Kj4) let us

denote by n(b) an integer such that ¢(b) € f’kf""(i’)(K@(T)). Due to condition
5 in Definition |7} we can suppose that ¢ is chosen such that if a; € (H, N Ky)
and az € (H, N Kp,) then n(&g) —n(@1) = ma,a,- S0 we have a conjugating
homeomorphism on the set M? \ U Ry).

Due to condition 2 in Deﬁnltlonlf for any point o € Q. § € {u, s} there exists
a point o’ € Q'Y such that p(W?2 \ o) = W2, \ o’. Let us extend ¢ on the set Q!

by setting ¢(o) = o’. Due to condltlon 1in Deﬁnition  conjugates f|W515 with
Q

Flwes, -

Due to condition 6 in Definition [7] for any basic set A € £° there exists a basic

set A’ € £ such that p(€4) = £5/. Let us extend ¢ by continuity on the set |J Pa
AeLl
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of boundary points of non-trivial basic sets. Due to condition 1 in Definition [7 ¢
conjugates f| \j ¢, with f'| y ¢,

A€L Aec!
STEP 2. In this step we define homeomorphisms ¢, : Wi, — Wi, and

V&1t Whie = W, conjugating f|W51u with f’\WS/m and f|W§{1s with f’|W;;,1S~
Let 0 € Q' and o’ = ¢(0). Set
oy = 2|
In|As|
Let £5 be a stable separatrix of 0. Denote by ¢2, the stable separatrix of ¢’ =
(o) such that for a connected component E of U, \ WY containing ¢5 and a
connected component E’ of U, \ W containing ¢2, the following condition holds
e(E\W})NE" # @. Let us define a homeomorphism s : £ — £5, by the
following way. For a point ¢ € £; such that t* = (0, t}) let us set @y: (t) = " where
" =(0, ),

Ll
£yl = 1tyl7e

It is easy to verify that ¢gs conjugates the diffeomorphisms fhe ¢s and f’ ko e,
Due to property 2 of Definition [7] we get ko, = k,s. Then for each k =0, ..., ko,
we can define a homeomorphism w;k( | : E;k(a) — E;,k(g,) by the formula

() = ™ (es (fF *(2)))

for each = € E;k(a). Doing a similar construction for all saddle periodic orbits of

es
¥ fE (o)

the set Q" we get the sought conjugating homeomorphism Otu-
Now let 0 € Q% and o/ = (o). Set

u In |/1’O"|

" Tl
Similar to the construction above for corresponding separatrices %, %, we define a
homeomorphism ¢ : £ — 3, by the following way. For a point ¢ € £ such that
t5 = (t5, 0) let us set @gu(t) = ¢’ where t'* = (¢7,, 0),

1%,

el = ce

n(a)
P ITarl
a

—Ha . ifthereis a point a € égmﬁf and equals 1 in the opposite

|7a|?o

)\I:Ia’

where Cou =

case. As above it is possible to verify that ¢ conjugates the diffeomorphisms
fk‘f|gg and f’kd\gg,. For each &k = 0, ..., k, we can define a homeomorphism
Pl oy
T € E?k(o). Doing a similar construction for all saddle periodic orbits of the set !¢
we get the sought conjugating homeomorphism ¢g;..

STEP 3. In this step we construct a homeomorphism ¢gs: L5 — L' (ppu: L% —
L) which conjugates f|zs with f/|zs (f]ce with f/|zw). Let us construct ¢ s,
the construction of ¢ u is similar.

Let A be a one-dimensional attractor of f and L be one from kj periodic compo-
nents of A. Then L is a one-dimensional attractor of the diffeomorphism g = f*a

. “ — flk w( FF
L%y = Lfm(pry Py the formula e () = f"(peu(f7"(x))) for each
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with the unique periodic component. Denote by L’ a periodic component of A’
such that ¢ sends the boundary points of L to the boundary points of L’. Then
L' is a one-dimensional attractor of the diffeomorphism ¢’ = f’*A’ with the unique
periodic component. Due to conditions 1) and 6) in Definition [7|, kx = kas. Due
to condition 7) in Definition |7} there is an isomorphism ¥, conjugating Tj, with
Ty, for some gr,, g7, and such that ¢(p) = 1/A1A(p) for each point p from the set Py,
of the boundary points of L. Statement [2| implies that there is a homeomorphism
¢r: L — L' such that g7, ¢r|; = prgr|r. Set

o = pNL,QELp]_Vi L — L.

Then ¢rgrlr = g7¢r|r and ¢r(p) = ¢(p) for each p € Pr. Define pp: A — A’
by the formula @u(v) = f*(or(f~*(v))) where f¥(v) € L for v € A. Doing a
similar construction for all attractors of the set £° we get the sought conjugating
homeomorphism ¢ s.

STEP 4. In this step we modify the homeomorphism @l \co (@lwy,\c«) by
replacing it with hge: WE N\ L5 — W \ L (hgu: W, \ LY — Wi \ L), which
extends continuously to the set £° (L*) by the mapping ¢rs (¢ru). We construct
hps (construction of hpw is similar).

Let A be a one-dimensional attractor of f. We modify the homeomorphism
¢lws\a by replacing it with the homeomorphism hy: WENA — W3, \ A, which
extends continuously to A by the mapping ¢, and which conjugates f |WX\ A with
Flws -

Let L be a periodic component of A as in Step above. Denote by By, the set
of all bunches of L and will use further the denotations of Section 2.1l Let us
consider the closed curve L; of the bunch b € B;, and enumerate the separatrices
l1, ..., Iy of all saddle points and boundary points which intersect L; due to some
orientation on L. Set ¥ = ¢r(b). Due to items 2 and 6 of Definition (7| we
have that the separatrices ¢(ly), ..., ¢(ln) intersect Ly in order. If ¢r|p, =
¢|p, then for each j € {1, ..., 7} there is a homeomorphism hj: [z2;, T9;+1]° —
[pr(22;), pr(@241)]" such that hj([xo;, 22j41]° N ) = [pr(@2)), pr(ze;+1)]* N

T
(p(lu) for each JURS {1, ey m} and h;(l‘gj) = (pL(l‘Qj). Set Ilf = U [J,‘gj, l‘2j+1]s,
j=1
Tyt

It = U lpr(z2;), ¢r(r2j+1)]® and denote by hj : I§ — I, a homeomorphism which
j=1
composed from A3, j € {1, ...,m}. Set I = U If, Ij, = U I and denote
beBL b EBL
by hf:I{ — I}, a homeomorphism which composed from hj, b € By.
Denote by y2j-1, y2; € Wy the intersection points of f(I;) with Wy such

Ty

that p; ¢ [za;, y2;]" (see Figure . Set It = U [@ay, y2;]", I} = U I}, and
i=j bEBL

If, = hp(I}). Set h} = pp|p: I} — If,. Let Il (IIz/) be the closure of the set

Wiu \L (W;7. \ L'). Let us construct on II;, a pair of transverse one-dimensional

L/

foliation F}, F}* with the following properties:
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F1GURE 10. Illustration to the Step 4

a) each leaf of F} is a connected component of the intersection stable manifold
of a point from L with Il ;

b) each leaf of F} is a segment [z, y] with the boundary points x, y such that
T € [z25, T2j11]% Y € (Y25, Y2j41]°;

¢) if [z, y] belongs to F} then [g71(y), g(z)] also belongs to ot;

d) each connected component of intersection of the separatrices of the saddle
points with I, is a leaf of F}'.

For each point z € I} denote by F7} , a leaf of the foliation F} passing through
the point z. For each point z € I} denote by F} , a leaf of the foliation F}' passing
through the point z. Let us construct similar foliations F7},, F}, on II;, and define
a homeomorphism Ay, : Il — II;, by the formula

hHL (Fz,z n FEL,:U) = Fz,h'}j(z) n Fg,h’L(w)
Notice that IIy, \ By, is a fundamental domain of f restriction on W3\ A. Then for
each point w € (W3 \ A) there is k € Z such that f*(w) € II;. As kg, conjugates
gl with ¢'[r1,, then we can extend hyr, up to ha: W\ A — W3, \ A’ conjugating
f and f’ by the formula
ha(w) = f* (b, (F7* (w)))-
Doing a similar construction for all attractors of the set £* we get the sought
conjugating homeomorphism h .
Denote by ¢1: Vy — V' a homeomorphism given by the formula
@cs (2), z€ (Wi \L%);
p1(2) = Q hee(2), 2 € (WA N\ LY);
o(2), zeVi\ (Wi.nWE).

Set @1 :pf/golpjtl: Vf — Vf(.
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STEP 5. In this step we modify the homeomorphism <p1|W25\£s (<P1|Wgu \cw) by
replacing it with hgs: W2 N\ L — W2 N\L (hew: W2\ LY — Wi\ L), which
extends to the set £5 (L*) by ¢rs (pcu) by the mapping prs (¢ru), and which
extends to the set cl(W2.)\ (£5UQ?) (cl(WE.) \ (LU Q%)) by the mapping ¢,
(Pg1s)-

%y Theorem [1} each non-trivial attractor of the diffeomorphism f is separable.
Then there is a set 3% C Q' such that cl (Wg,)\ (£L5UQ?) = Wg.. Let 0 € X%
Set by = @& |ws: WE — WS and hY = o1|we: W — W, In an f* -invariant
neighbourhood N, of o let us construct a pair of transverse f*o-invariant foliations
G2, G¥ with the following properties:

a) WieGs, Wt e Gy,
b) if W NW; # & for some periodic component L of a non-trivial attractor
then each connected component of W3 N N,, z € L is a leaf of G.

For each point z,, € W' denote by G, . aleaf of the foliation G, passing through
the point z,. For each point z; € W7 denote by Gg , a leaf of the foliation G
passing through the point z;. Let us construct 51m11ar Foliations G2/, GY on Ny
and define a homeomorphism hn,: Ny = Ny by the formula

N (Go o, NGG L) =G huizn) NGy (20

O,2q

Then in some tubular neighbourhood N (9,) of 4, a map h N, is well-defined by the
formula hy, = pf/hNUpJTI. Chose a tubular neighbourhood N(4,) of 4, such that
N(o) € N(o), v, (NGa)) © 1(N(35)) and the set Q = cl(N(5,) \ N(3,)).
Q' = cd(p1(N(Hs)) \ hN (N(%5))) are two-dimensional annulus. Then there is a
homeomorphism @ : Q — @’ such that Palon(s,) = hy, and ¢4 olome. ) = @1 As
the homeomorphisms ¢; and hy, send leaves of the foliation VVS x € L%, to leaves
of the foliation W2, 2’ € £'*, and are coincide on W then we can construct ¢

x’
such that its lift sends leaves of the foliation W, € L*, to leaves of the foliation
Ws, a' e L.

Denote by @5, : Vy — Vy a homeomorphism given by the formula

G, (67420, 2 € BN (i)
Ga@i (). 2 e dbQ)
( )7 ze (Vf \N(’?U))

Denote by 5, a lift of ¢4, coinciding with ¢; on Vj \pf (N(35)). Doing in
series a similar construction for all saddle periodic orbits of the set X% we get a
homeomorphism ¢su: Vy — V. Also we construct a homeomorphism ¢ss: Vi —
Vi

Denote by p2: Vy — Vy a homeomorphism given by the formula

Pxu (Z), A (WZS \;Cg),

P2(2) =  ma(2), 2 € (W \ LY);
¢1(2), 2 Vi\ (We. NWE).

k
s
¢4, (%) = '}

Set @y = pprpap; s Vi — Vi,
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STEP 6. Let 0 € Q'. For a point z € U, denote by F¥, (Fj ) the unique
leaf of FY (FZ) that passes through the point z. Define projections 7%: U, — WS
(75: Uy — W) along the leaves of the foliation F¥ (F2) as follows: 7¥%(z) =
Fow NW5 (5 (2) = F5 . NWS).

Let a € W3, N WJ. be a point of one-sided tangency and a’ = ¢(a). Set
lo = ¢;31({(x, Y) € Uppurow @ = ag}) NUq, lo = ¢;;1,({(m y) € U%u Agu, L=

ay)NUy. Set Ly = |J Iy and Ly = |J lo. In this step we construct a
acA a’'e A’
homeomorphism ¢y, : L4 — Las which conjugates f|r, with f’|z,,. This home-
omorphism extends continuously to the set W, by the mapping ¢g,.., and to the
set Wi, by the mapping ¢g;..
Define a homeomorphism ¢, : [, — I, by the formula

w1, (2) = 2" = (15, ) T (@ou (M5 (2)))) N lar-

a

Set Ly = U f*(ly) and Ly = |J f*"(la/), where k is the period of unstable
nez nez
separatrix containing a. Define a homeomorphism ¢y, : L, — Lo by the formula

o, (2) =2 = f* (¢, (f7¥"(2))) for each point z € f*¥(1,). Set &, = WL UWE, U
Lo and &y = W5 UWJu U Lg. Denote by ¢,: &, — & a map, coincicllling with
©gs on W w1th <pgu on un and with ¢, on L,. Using condition 2 of Definition
[7it is posslble to Verlfy that ¢, is a homeomorphism (see [12] for details).

Denote by A C A a set of such points that any two from their are not belonging
to the same orbit of f and |J f™(A) = A. Set A = p(A), €4 = U &, and

neZ acA
Eax = U Ew. Let us define a map pa: E4 — Ea as coinciding with ¢, on
a’eA’

each set ga. Using condition 4 of Definition [7] it is possible to verify that ¢4 is a
homeomorphism (see [12] for details).

STEP 7. In the neighborhood U, of a point a € A define foliations F and F; by

the following way. The leaves of F are coincide with the leaves of F. NU,. In the
neighborhood ¢,u (Us) the curve 1w (W3.) has the equation g(z) = Q(gc —ay)" +

ole=a)l) 5 0 for & — a¥. Set FS = Yoa (U {(z, y) €
ceR

o((z — a¥)™), where (o—aiyr

Uiy ry Y = q(x) + c}) N U,. Hence, in a neighborhood U, the leaves of F are

transverse to the leaves of F7 on the set U, \ [, and have tangency along the

curve ly. Set Us = |J Uy, Ua = U f"(Ua), FY = U & Fh = U M(F,
acA nez nez
U F; and 75 = U f*(F3). The similar fohatlons F4 and F3, let us
acA neZ
construct in the neighbourhood U4 of the set A’

Let d be a point of the heteroclinic intersection of the manifolds WS N W“ be
not belonging to the set .A. Denote Uy a connected component of the set Uoss N U
which contains d. Define foliations F} a F; by the following way: F ]-" ou N Ud
and Fj = F3: NUg. Let D (D') be the set of all heteroclinic points of f (f’) not
belonging to A, D C D the set of points such that any two of them do not belong

to the same orbit of the diffeomorphism f and |J f™(D) =D. Set Up = |J Uy,
neZ deD
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FIGURE 11. Construction of foliations

Up = U f(WUp), Fpy = U Fy, Fp = U fM(Fp), Fp = U Fj and F3 =
deD nez deD
U f™(F3). Construct the similar foliation FJ, and F3, in the neighbourhood

Up: of the set D' = (D).

Set Ly = |J La. For a point o € Q; define foliations F$ and F transverse to
acA

each other everywhere except L 4 by the following way. The foliation ]}(j (.7:' ) coin-
cides with F5 (FY) on U, NU 4, coincides with F3, (Ff) on U, NUp and coincides
with F2 (F¥) out of the set U4 U Up (see figure [1I)). Denote by 75: U, — W2
(7%: U, — W?) a projection along the leaves of the foliation F3 (F%). Con-
struct similarly the foliation f;, (.73;,) and define the projection 73,: Uy — W
(7 : Uyr — W7, in the neighbourhood Uys. Denote by ¢y, T, T, & maps
consisting of 75, 7%, 75, 75, 0 € Q, accordingly.

STEP 8. For each point ¢ € A let us define a homeomorphism ¢y, : U, —
U, by the following way. Denote by U} and U] the connected components of
Ua \ I, following a rule that any point z = (2%, 0) € U, belongs to U if z% > a¥
and belongs to U, if z¥ < af. Similarly denote the connected components of
Uar \ lo. Define a homeomorphism Py Ut — U/, by the following way: for a

point z € U set Yy (2) = 2/, where 2’ € U}, is the intersection point of the leaves
S

(ﬁ&z/)_l(cpgg (752 (2))) and (ﬁgsl)_l(wig (T5u(2))). In the similar way let us define



2-DIFFEOMORPHISMS WITH ONE-DIMENSIONAL BASIC SETS 747

a homeomorphism ¢,—: U, — Uy, Set

(PU;r(Z), S Uj;
eu,(2) = { py-(2), 2z €U
Ol s z €l,.

Define a homeomorphism ¢y, : Ug — U4+ as coinciding with ¢y, for each a € A.
For each point d € D define a homeomorphism ¢y, : Uy — Uy by the fol-
lowing way: oy, (z) is the intersection point of the leaves (7. )_1(@33 (Fou(2)))
d/
and (7k. )_1(g0f,5 (774 (2))) belonging to Ug. Let us define a homeomorphism
d/
wup: Up = Ups as a homeomorphism coinciding with ¢, for each d € D.
For 0 € {u, s} denote by gpgw: Wéw — Wé,m a homeomorphism conjugating
the diffeomorphisms f |W515, s ) coinciding with the homeomorphism ¢y, on
Q Qf
Wgw NU 4, coinciding with the homeomorphism ¢, on Wgw NUp and coinciding
with the homeomorphism ¢ out of some neighborhood of the set ng N(U4UUp).
Denote by ¢g:: W& — W{ a homeomorphism composed from ¢g;., and ¢g,.
Denote by g, : W31 — Wi a homeomorphism composed from ¢g);., and ¢¢,:..
Set Ugr = |J Us and Ugn = |J U,s. Define a homeomorphism ¢, : Ugt —
oeQ! oreut
Uqn as a homeomorphism conjugating the diffeomorphisms f|y,, and f’|v,,,, co-
inciding with the homeomorphism ¢, on Ug: N Uy, coinciding with the homeo-
morphism ¢, on Ug: NUp and such that for a z € (U, \ (UaUUp)), yu,, (2) is the
intersection point of the leaves (7&:) ™' (¢l: (751 (2))) and (F&:) (@& (FE:(2))).
STEP 9. For any ¢ € (0, 1) set U} \ = {(z, y) € R?: |z||y|~®* # < t}. For any

oeQ set UL =4 (UL, )and Uh = U UL
et

Let us choose a value to € (0, 1) such that ¢p,, (Us) C (9(Uar ) UW§ 1. UWE,.L).
Set @ = U \ intUS, R = 0Uq, Ry = 0US, Q' = ¢(Uqgr) \ int o1 (UL,
R = 9(0Un1), Ry = ¢u,, (0UR), @ = ps(Q), @' = ppr(Q') and

P = DUy (PflRy) 't Ro — Ry

By the construction the sets Q, Q’ have the same number of the connected
components each of them is homeomorphic to the standard two-dimensional annulus
(see Figure where the set Q is coloured). Then there is a homeomorphism
Pt @ — @ such that |z = ¢ and @z, = Pug, -

Denote by ¢go: @ — Q' a lift of the homeomorphism @Q coinciding with ¢ on
OUqa. Define a homeomorphism ¢3: Vy — V by the formula:

YU, (r), w€ U;Z‘)l;
e3(r) = {polz), TE€Q;
(p(l’), IEMQ\UQL
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[y,

FiGURE 12. Illustration to Step 9

Let us define a homeomorphism h: M2\ (20U Q?) — M2\ (2° U Q) by the

formula:
pa(x),  we (Wi \LIUWENLY);
e3(x),  we(Vp\(Wz UWE));
W) = ors(z), € L®
oeu(z), x€LY

ph

il

[2

(3
[4

5

6

[7

)
@515 ($), HAS Wg%ls;
Yo (), =€ Wiia.

Then, to obtain a desired homeomorphism, it suffices to extend the homeomor-
ism h continuously to the set Q° U Q2. (]
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