
Äèíàìè÷åñêèå ñèñòåìû, 2016, òîì 6(34), �1, 3�13

MSC 2010: 37D05

Description of domain structures in the Solar Corona

by means multi-color graphs1

D.Malyshev, O. Pochinka

Higher School of Economics

Nizhny Novgorod. E-mail: dmalishev@hse, olga-pochinka@yandex.ru

Abstracts.Magnetic charging topology explains many energy processes (�ares, prominences, etc.) in the solar
corona by changing the domain structure associated with the appearance or disappearance of the separators.
It is known that at most of the nulls of the magnetic �eld are prone. In this paper it is proved that a topology
of the domains of a �eld with the prone nulls is completely described by a multi-color graph. In addition, we
give an e�cient algorithm for distinguishing of these graphs.
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1. Introduction and the formulation of the results

Understanding the energy processes in the corona of the sun is very important to explain
many of the laws of nature. This paper considered a possible model to explain such e�ects
in the photosphere as the �ares and the prominences. Their origin is connected with the
restructuring of regions (domains), on which the fans and the spines of the null points of the
magnetic �eld divide the corona of the sun � reconnection. Therefore, the main questions
for this approach are the qualitative partition of the solar corona into domains, as well as
the existence of the separators (the lines of intersection of fans) � marks of upcoming or
already occurred reconnection. There are di�erent approaches to the study of the topology of
domains, such as the construction of graphs that re�ect the structure and the relative position
of the domains [3] or footprints � traces of spines and fans on the photosphere [8]. We have
proposed a new approach consisting in distinguishing of traces of fans on some circle on the
photosphere. We describe these trace on a language of multi-color graph whose isomorphic
class is a complete invariant for the topology of domains and gives information on the number
of the separators. In more detail.

By the topological approach the magnetic �eld in the corona is believed to arise from a
large number of dipoles in the solar interior. The dipoles are interpreted as locations where
�ux tubes originating in the solar interior break through the surface and spread out into
the atmosphere (see �gure 1). We use the assumptions of Magnetic Charge Topology [7],
where photospheric �ux patches are modeled as point sources (charges) on the photosphere.
Although this suggestion violate the solenoidal condition, but each source is considered to
represent a �ux tube passing through the solar surface and spreading out into the overlying
corona, then this simpli�cation is allowable. Following [2] for a model of the magnetic �eld

1This work was supported by the Russian Foundation for Basic Research (projects no. 15-01-03687-a, 16-51-
10005-Ko_a, 16-31-60008-mol-a-dk), RF President grant MK-4819.2016.1, the Basic Research Program at the
HSE (project 98) in 2016, by LATNA laboratory, National Research University Higher School of Economics.

c© D.MALYSHEV, O.POCHINKA
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Ðèñ. 1. The dipoles in the solar interior

B with point sources the two-dimensional sphere P = {(x, y, z, w) ∈ S3 | w = 0} in three-
dimensional sphere S3 = {(x, y, z, w) ∈ R4 | x2 + y2 + z2 +w2 = 1} is used as the photosphere
and the region {(x, y, z, w) ∈ S3 | w > 0} as solar corona. Moreover we suppose that B is
symmetrically extended to the region {(x, y, z, w) ∈ S3 | w < 0} being termed the mirror

corona and, hence, it is de�ned on M = S3 \
k⋃
i=1

qi where q1, . . . , qk are the points on the

photosphere where the charges are situated.

Magnetic nulls are the points where the magnitude of magnetic �eld vector vanishes. Due
to the solenoidal condition ∇ ·B = 0 three eigenvalues λ1, λ2, λ3 of the critical point satisfy
the equality λ1 + λ2 + λ3 = 0. Since B is potential then all eigenvalues are real number.
Generically each eigenvalue is di�erent from 0, thus each null of B is a saddle point. Two
quite distinct families of �eld lines tends to a null point: the spine is a line and the fan

is a surface. For a null p denote by Sp the spine and by Fp the fan of p. The spines of
di�erent nulls have no intersections in general position. A null is called positive (negative) if
λ1 ·λ2 ·λ3 > 0 (λ1 ·λ2 ·λ3 < 0). The topological structure of a magnetic �eld B is largely de�ned
by null points, spines, fans, and separators, the union of which forms the so-called skeleton of
the magnetic �eld. There are several types of nulls. A null which belongs to the photosphere
is called photospheric. A photospheric null point whose spine lies in the photosphere is called
prone, whereas a photospheric null with a spine directed vertically is called upright. The
coronal null is a null above the photosphere. It follows from [1] that the most nulls are prone.

When two fans have intersection they form a separator, which joins two oppositely signed
null points. Fans divide the corona into di�erent regions which called domains. Appearance
and disappearance of separators change the topology of domains splitting. Such situation is
called separator reconnection, which is one of the major reconnection mechanisms [15]. Much
papers [3], [10], [11], [12] were devoted to classi�cation of the magnetic �eld con�gurations
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DESCRIPTION OF DOMAIN STRUCTURES 5

that arise from such point-source models. It is naturally to introduce the following de�nition
which goes back to the classic paper [14], see also [16].

De�nition 1. One says that two coronal magnetic �elds B,B′ are topologically equivalent if
there is a homeomorphism H : M → M sending magnetic lines of B to magnetic lines of B′

with preserving orientation on the lines.

Denote by B the set of the magnetic �elds B with the following properties:

1) each null of B is prone;

2) if two fans of B are intersected then they are either coincide, either have contact
along one curve on the photosphere or have transversal intersection along two symmetric with
respect to the photosphere curves;

3) the closures of the spines of di�erent nulls have no intersection.

Now let B ∈ B.

Theorem 1. For each magnetic �eld B ∈ B there is a circle C ⊂ P which is transversal to

the �ow generated by B on P and such that each fan intersects C at exactly two points.

We will called such circle C by photosphere section. Denote by N the set of nulls of B.
Set W = P \

⋃
p∈N

Sp, F =
⋃
p∈N

Fp and X = C ∩ F . Denote by Nu (N s) the set of positive

(negative) nulls of B. Set Fu =
⋃

p∈Nu
Fp (Fs =

⋃
p∈Ns

Fp), X
u = C ∩ Fu (Xs = C ∩ Fs) and

Xt = Xu ∩Xs.

In order to introduce a combinatorial topological invariant of the magnetic �eld B ∈ B we
recall the following de�nitions.

A �nite graph Γ is an ordered pair (V,E), such that the following conditions hold: V is a
non-empty �nite set of vertices; E is a set of pairs of vertices called edges.

If a graph contains an edge e = (a, b), then each of the vertices a, b is said to be incident

to the edge e and the vertices a and b are said to be connected by the edge e.

A path in a graph is a �nite sequence of its vertices and edges of the form:
b0, (b0, b1), b1, · · · , bi−1, (bi−1, bi), bi, · · · bk−1, (bk−1, bk), bk, k ≥ 1. The number k is called the

length of the path, it is equal to the number of edges involved in the path.

A cycle of length k, k ∈ N in a graph is a �nite subset of vertices and edges of the form
{b0, (b0, b1), b1, · · · , bi−1, (bi−1, bi), bi, · · · bk−1, (bk−1, b0)}. A simple cycle is a cycle all of whose
vertices and edges are pairwise distinct.

A graph Γ is called multi-color graph if the set of vertices or edges of Γ is the union of
�nite number subsets each of which consists of the vertices or edges of the same color.

Two multi-color graphs Γ and Γ′ are said to be isomorphic if there exists a one-to-one
correspondence ξ between the sets of their vertices which preserve the relations of incidence
and the color.

For our invariant we will use three colors, we denote these colors by the letters s, t, u and,
for brevity, refer to these vertices or edges as s-, t-, u-vertices or s-, t-, u-edges. We construct
a multi-color graph ΓB, corresponding to a magnetic �eld B ∈ B as follows (see �gure 2 where
s, t, u are green, blue, red, accordingly):

ISSN 0203�3755 Äèíàìè÷åñêèå ñèñòåìû, 2016, òîì 6(34), �1



6 D.MALYSHEV, O.POCHINKA

Ðèñ. 2. Magnetic �elds and their multi-color graphs

1) the t-vertices are in a one-to-one correspondence with the points of the set Xt;

2) the s-vertices (u-vertices) are in a one-to-one correspondence with the points of the set
Xs \Xt (Xu \Xt);

3) the t-edges are in a one-to-one correspondence with the connected components of C \X
and two vertices of the graph are incident to an t-edge if the corresponding points are boundary
points for corresponding connected component;

4) two vertices of the graph are incident to an s-edge (u-edge) if the corresponding points
are exactly Fp ∩ C for some null p ∈ N s (p ∈ Nu).

Theorem 2. Magnetic �elds B,B′ from B are topologically equivalent if and only if their

multi-color graphs ΓB, ΓB′ are isomorphic.

Theorem 2 motivates to ask the question about the computational complexity of
distinguishing two multi-color graphs corresponding to magnetic �elds. An algorithm solving
the graph isomorphism problem is considered to be e�cient if its running time is bounded by
a polynomial on the number of vertices of input graphs. This problem can really be solved in
polynomial time for the graphs of magnetic �elds.
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DESCRIPTION OF DOMAIN STRUCTURES 7

Theorem 3. Isomorphism of multi-color graphs corresponding to Solar magnetic �elds can

be recognized in polynomial time.

2. Necessary and Su�cient conditions for the topological equivalence of
magnetic �elds from B

To prove the results we compactify the magnetic �eld lines in the places of point-charge
by the bundle of straight lines, such idea was used in [6] for the �nding of the separators
of magnetic �elds in electrically conducting �uids. Then the magnetic lines of the �eld B
coincide geometrically on M with trajectories of a three-dimensional �ow f τ : S3 → S3 with
the following properties:

1) the non-wandering set Ω(f τ ) of f τ consists of �nite number hyperbolic equilibrium
states2 all of them belong to the photosphere P ;

2) all trajectories of f τ are symmetric with respect the photosphere P and number of sinks
coincide with number of sources;

3) the closures of one-dimensional invariant manifolds of di�erent saddle points are disjoint;

4) if two-dimensional invariant manifolds of di�erent saddle points are intersected then
they are either coincide, either have contact along one curve on the photosphere or have
transversal intersection along two symmetric with respect to the photosphere curves.

Denote byG the set of �ows with properties above. By the construction we see the following
interrelation between magnetic �eld B ∈ B and its compacti�cation f τ ∈ G:

- the charges coincide with the sink and source equilibrium states,

- the null points coincide with the saddle equilibrium states,

- the fan (spine) of each null coincides with two-dimensional (one-dimensional) invariant
manifold of the corresponding saddle,

- the separators coincide with heteroclinic curves � connected component of the
intersection of two-dimensional invariant manifolds of the saddle points,

- the magnetic lines of B coincide with the trajectories of f τ on M

- magnetic �elds B,B′ are equivalent if and only if corresponding �ows f τ , f ′τ are
equivalent.

2An equilibrium state w of the �ow fτ is called hyperbolic if the matrix of the linearization at the equilibrium
has no eigenvalues with zero real part. Any hyperbolic equilibrium state w of the �ow fτ possesses invariant
manifolds:
stable manifold W s

w = {y ∈ S3 : lim
τ→+∞

d(fτ (y), w) = 0},

unstable manifold Wu
w = {y ∈ S3 : lim

τ→−∞
d(fτ (y), w) = 0}

which are homeomorphic to Rns , Rnu , where ns, nu � the numbers of the eigenvalues with negative and
positive real parts, correspondingly, d � a metric on S3. We will denote by dim W s

w = ns, dim Wu
w = nu the

dimensions of W s
w and Wu

w .
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8 D.MALYSHEV, O.POCHINKA

Let f τ ∈ G and σ be a saddle point of f τ with the unstable manifold W u
σ and the stable

manifold W s
σ . Denote by Ω1 (Ω2) the set of saddle points σ of f τ such that dim W u

σ =
1 (dim W u

σ = 2) and by Ω0 (Ω3) the set of sinks (sources). Let us set

A =
⋃
σ∈Ω1

cl W u
σ , R =

⋃
σ∈Ω2

cl W s
σ .

The following proposition is due to [16] (see also [5] for details).

Proposition 1. For each �ow f τ ∈ G the following statements hold:

i) S3 =
⋃

x∈Ω(fτ )

W s
x =

⋃
x∈Ω(fτ )

W u
x and each invariant manifold W s

x (W u
x ) is a submanifold3

of S3;

ii) cl W u
x ∩W u

y 6= ∅ if and only if W u
x ∩W s

y 6= ∅;

iii) the sets A,R are pairwise disjoint and each of them is connected.

Proof of Theorem 1

Theorem 1 follows from lemma below.

Lemma 1. For each �ow f τ ∈ G there is a circle C ⊂ P which is transversal to the �ow

f τ |P and such that two-dimensional invariant manifold of each saddle point intersects C at

exactly two points.

Proof. Let us set φτ = f τ |P . It follows from the description of class G that f τ is a �ow on S3

with �nite hyperbolic non-wandering set, then by Lefschetz formula |Ω0|−|Ω1|+|Ω2|−|Ω3| = 0,
where | · | is the cardinality. In the other side φτ is a �ow on S3 with the same non-wandering
set, then |Ω0| − |Ω1| − |Ω2|+ |Ω3| = 2. Thus

|Ω0| − |Ω1| = 1.

Ðèñ. 3. Neighbourhood U(A)

3Let µ ∈ {0, 1, 2, 3}. A subset Y of S3 is said to be its µ-dimensional submanifold if for every point y of
the set Y there is a neighbourhood Uy of y and a homeomorphism ψy : Uy → R3 for which ψy(Uy ∩ Y ) = Rµ
where Rµ ⊂ R3 is the set of points whose last (3− µ) coordinates are zero.
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DESCRIPTION OF DOMAIN STRUCTURES 9

Let us choose neighbourhood U(A) of the set A on P such that ∂U(A) is transversal all
trajectories in (W s

A \ A) ∩ P (see �gure 3). Due to item iii) of Proposition 1, U(A) has euler
characteristic 1, it means that U(A) is 2-disk. By item i) of Proposition 1, W s

A \A = W u
R \R.

Set Q = W s
A \A and C = ∂U(A). By item i) of Proposition 1 and symmetry property of f τ ,

each two-dimensional manifold of saddle point intersect Q∩P along exactly two trajectories.
Thus C is required photospheric section.

Proof of Theorem 2

We assign a �ow f τ ∈ G for each magnetic �eld B ∈ B, also we have a graph ΓB
corresponding to B. Then theorem 2 follows from the next lemma.

Lemma 2. Flows f τ , f ′τ are topologically equivalent if and only if multi-color graphs ΓB,ΓB′

are isomorphic.

Proof. First, we prove necessity. Suppose that f τ and f ′τ from G are topologically
equivalent, that is, there exists a homeomorphism h : S3 → S3 which sends the trajectories
of f τ to trajectories of f ′τ with preservation of orientation. Let us prove that multi-
color graphs ΓB,ΓB′ are isomorphic. We assume without loss of generality that the graph
ΓB′ was constructed by using the photospheric section C ′ = h(C). Since the conjugating
homeomorphism h takes invariant manifolds of �xed points of f τ to invariant manifolds of
f ′τ with preservation of the stability, it follows that this homeomorphism takes Xs, Xt, Xu

to X ′s, X ′t, X ′u. Then the requaired isomorphism ξ : ΓB → ΓB′ is de�ned by the formula
ξ = πf ′hπ

−1
f where πf , πf ′ are one-to-one maps of the set X, X ′ onto the sets of vertices of

the graph ΓB, ΓB′ , accordingly.
Let us prove su�ciency. Consider the multi-colour graphs ΓB, ΓB′ of the �ows f

τ , f ′τ ∈
G, respectively. Suppose that there exists an isomorphism ξ between the sets of vertices of
ΓB, ΓB′ which preserve the relations of incidence and the color. We construct step by step a
homeomorphism h : S3 → S3 conjugating f τ and f ′τ .

Step 1. Set V = S3 \ (A∪R). Similar to proof of Lemma 1, for each �ow f τ ∈ G there is a
2-sphere Σ ⊂M which is transversal to the �ow f τ |V and such that two-dimensional invariant
manifold of each saddle point intersects Σ at exactly one circles. Moreover, it is possible to
construct Σ such that Σ ∩ P = C. Set Cu = Σ ∩ Fu (Cs = Σ ∩ Fs), Ct = Y u ∩ Y s and do
the same for f ′τ .

By the construction all vertices and all t-edges the multi-color graph form a simple cycle
and ξ preserves such cycle with the preserving of the color of the vertices than there exist an
orientation-preserving homeomorphism hΣ : Σ → Σ′ such that hΣ(Cu) = C ′u, hΣ(Cs) = C ′s

and hΣ(Ct) = C ′t. We denote by lx (l′x) the trajectory of f τ (of f ′τ ) passing through x ∈
S3. According to Proposition 1 there are unique pair of the equilibrium states α(lx), ω(lx)
(α(l′x), ω(l′x)) such that lx ⊂ (W u

α(lx) ∩W
s
ω(lx)) (l

′
x ⊂ (W u

α(l′x) ∩W
s
ω(l′x))). By Proposition 1 we

have the following possibilities for point x ∈ Σ:
- α(lx) ∈ Ω3, ω(lx) ∈ Ω0 for x ∈ Σ \ (Cu ∪ Cs);
- α(lx) ∈ Ω2, ω(lx) ∈ Ω0 for x ∈ (Cu \ Cs);
- α(lx) ∈ Ω3, ω(lx) ∈ Ω1 for x ∈ (Cs \ Cu);
- α(lx) ∈ Ω2, ω(lx) ∈ Ω1 for x ∈ Ct.
For points y1, y2 ∈ cl (lx) denote by [y1, y2] the length of arc [y1, y2] ⊂ lx. For each point

y ∈ lx situated between x and α(lx) (ω(lx)) set ρ(y) = [x,y]
[x,α(lx)] (ρ(y) = [x,y]

[x,ω(lx)]). Similar

situation is for points from Σ′. For any point x ∈ Σ, we set x′ = hΣ(x). As hΣ(Cs) =
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10 D.MALYSHEV, O.POCHINKA

C ′s, hΣ(Cu) = C ′u then on the set lx a homeomorphism hlx : lx → l′x′ is well-de�ned by the
formula

hlx(y) = y′ where ρ′(y′) = ρ(y).

Denote by hV : V → V ′ a map composed from hlx , x ∈ Σ. By the construction hV is a
homeomorphism which sends two-dimensional invariant manifolds of the saddle point σ of f τ

to the two-dimensional invariant manifolds of the saddle point σ′ of f ′τ . Let us show that
hV (ω(lx)) = ω(l′x′) for each x ∈ Σ.

Step 2. Denote by Q ⊂ S3 compact 3-ball bounded by Σ and containing Ω0. Then
Q ⊂W s

Ω0∪Ω1
and the set Dσ = W s

σ ∩Q is a 2-disk for each σ ∈ Ω1. Denote by Y a connected
component of the set Q \W s

Ω1
. Then there is a unique sink ω ∈ Ω0 such that ω ∈ Y ⊂ W s

ω.
Simultaneously there is a unique connected component KY of the set Σ \Cs belonging Y and
such that Y \A =

⋃
x∈KY

(lx∩Y )∪ω. Similar situation is for �ow f ′τ . Since hΣ(Σ\Cs) = Σ′\C ′s

then hΣ(KY ) is a connected component of Σ′ \ C ′s belonging to a connected component Y ′

of the set Q′ \W s
Ω′1

containing a sink ω′ ∈ Ω′0. By the construction hV (Y \A) = Y ′ \A′ and,
hence hV (ω(lx)) = ω(l′x′) for each x ∈ (Σ \ Cs). By the continuously hV (ω(lx)) = ω(l′x′) for
each x ∈ Cs.

Thus hV can be uniquely extended to the sets Ω0,Ω1. We keep the notation hV for the
homeomorphism thus obtained and set p′ = HV (p) for each p ∈ (Ω0 ∪ Ω1).

Step 3. Let σ ∈ Ω1. Denote A
τ �ow in R3 generated by a system of linear equations

ẋ = x,
ẏ = y,

ż = −z.

This �ow has a unique equilibrium state � hyperbolic saddle located at the origin O. Stable

Ðèñ. 4. Linearization of saddle equilibrium state neighborhood
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DESCRIPTION OF DOMAIN STRUCTURES 11

manifold of this saddle is plane XOY , unstable � axis O. Set

U = {(x, y, z) ∈ R3 : (x2 + y2)z2 ≤ 1}.

It is immediately veri�ed that U is invariant with respect to the �ow Aτ . Due to [13] there is a
neighborhood Vσ ⊂ S3 of the saddle equilibrium state σ and a homeomorphism Hσ : Vσ → U
such that the homeomorphism sends the trajectories of �ow f τ |Vσ to the trajectories of �ow
Aτ |U (see �gure 4). Similar neighborhood Vσ′ and a homeomorphism Hσ′ : Vσ′ → U exist
for �ow f ′τ . Set Hσ,σ′ = H−1

σ′ Hσ : Vσ → Vσ′ . Without loss of generality we can assume that
homeomorphism Hσ,σ′ sends one-dimensional separatrix of σ which contains a sink ω in its
closure to one-dimensional separatrix of σ′ which contains a sink ω′ in its closure (in opposite
case we use ζHσ instead Hσ where ζ(x, y, z) = (x, y,−z)).

Step 4. For µ ∈ (0, 1) let us set

Uµ = {(x, y, z) ∈ R3 : (x2 + y2)z2 ≤ µ}

and Vσ,µ = H−1
σ (Uµ). Choose µ such that Hσ,σ′(Vσ,µ) \W u

σ ⊂ HV (Vσ). Set Z = cl (Vσ \ Vσ,µ)
and Z ′ = cl (HV (Vσ)\Hσ,σ′(Vσ,µ)). By the construction the sets Z,Z ′ consists of two connected
components Z+, Z−, Z

′
+, Z

′
− each of them is homeomorphic to W = S1 × R1 × [0, 1]. Denote

by HZ+ : Z+ → W, HZ− : Z− → W, HZ′+
: Z ′+ → W, HZ′−

: Z ′− → W corresponding

homeomorphisms sending trajectories of �ows to lines {s}×R1×{t}. For t ∈ [0, 1], δ ∈ {+,−}
set Wt = S1 × R1 × {t} and

Hδ,0 = HZδHσ,σ′H
−1
Zδ
|W0 : W0 →W0, Hδ,1 = HZδHVH

−1
Zδ
|W1 : W1 →W1.

As HV and Hσ,σ′ send trajectories of f τ to trajectories of f ′τ then Hδ,0, Hδ,1 have view

Hδ,0(s, r, 0) = (Hδ,0,s(s), Hδ,0,r(r), 0), Hδ,1(s, r, 1) = (Hδ,1,s(s), Hδ,1,r(r), 1).

Let us de�ne homeomorphism Hδ,t : Wt →Wt by formula

Hδ,t(s, r, t) = ((1− t)Hδ,0,s(s) + tHδ,1,s(s), (1− t)Hδ,0,r(r) + tHδ,1,r(r), t).

Denote by HZδ,Z
′
δ

: Zδ → Zδ′ homeomorphism composed for each t ∈ [0, 1] by

H−1
Z′δ
Hδ,tHZδ |H−1

Zδ
(Wt)

. Let us de�ne homeomorphism HVσ by formula

HVσ(x) =

{
HZδ,Z

′
δ
(x), x ∈ Zδ,

Hσ,σ′(x), x ∈ Vσ,µ.

By similar way we can de�ne homeomorphism HVσ for each σ ∈ Ω2. The required
homeomorphism h : S3 → S3 is de�ned by

h(x) =

 HV (x), x ∈ S3 \ (
⋃

σ∈(Ω1∪Ω2)

Vσ),

HVσ(x), x ∈ Vσ, σ ∈ (Ω1 ∪ Ω2).
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12 D.MALYSHEV, O.POCHINKA

3. Algorithm to solve the distinguishing problem for multi-color graphs

In this section, we consider the distinguishing problem for multi-color graphs and present
an e�cient algorithm for its solution. An algorithm to solve the problem is considered to
be e�cient if it occupies polynomial time on the number of vertices of a given graph. The
notion of an e�ciently solvable problem rises to A. Cobham, who asserts that a problem
can be feasibly computed on some computational device only if it can be computed in time,
bounded by a polynomial on the length of input data [4]. The complexity status of the general
graph isomorphism problem, i.e. for graphs of the general type, is unknown. That is, neither
polynomial-time solvability neither intractability was proved for it. The graphs, associated
with Solar magnetic �elds, have some peculiar combinatorial properties. Namely, they have
bounded degrees of vertices. Recall that degree of a vertex of a graph is the number of edges
incident to it. A �nite graph is called simple if it does not contain coloured vertices, loops,
multiple and directed edges, coloured edges, simultaneously.

Proof of Theorem 3

It is known that for some concrete constant c∗ and function f(·) the isomorphism problem
can be solved in O(f(∆)nc

∗∆ln(∆)) time for simple n-vertex graphs with maximum degree ∆
[9]. For each �xed k, this result gives a polynomial-time algorithm to solve the isomorphism
problem in the class of all simple graphs having degrees of all vertices at most k. This
observation and the facts that the graphs of Solar magnetic �elds have degrees of all vertices
at most three, the three colors are used to color their vertices and edges lead to the following
idea. By the graphs ΓB1 and ΓB2 of magnetic �elds B1 and B2, we construct simple graphs
Γ′B1

and Γ′B2
such that ΓB1 and ΓB2 are isomorphic if and only if Γ′B1

and Γ′B2
are isomorphic.

The graphs Γ′B1
and Γ′B2

will have degrees of all vertices at most 9, which implies polynomial
complexity of their distinguishing, by the result of Luks.

Recall that a multi-color graph is a graph Γ, equipped by two functions c1 : V (Γ) −→
{1, 2, . . . , k1} and c2 : E(Γ) −→ {1, 2, . . . , k2}. Let ∆(Γ) be the maximum degree of vertices
of the graph Γ. By Γ, we construct a simple graph Γ′ as follows. An s-star implantation into

an edge (a, b) of a graph is to delete the edge from the graph, add vertices c, c1, . . . , cs and
the edges (a, c), (c, b), (c, c1), (c, c2), . . . , (c, cs). Inscribing an s-cycle in a vertex v of a graph
is to add vertices v1, v2, . . . , vs−1 and the edges (v, v1), (v1, v2, ), . . . , (vs−2,
vs−1), (vs, v) to the graph. For each v ∈ V (Γ), we inscribe a c1(v) + 2-cycle in v. For each
e ∈ E(Γ), we implant a c2(e)+∆(Γ)-star into e. Clearly, the number of vertices of Γ′ is at most
(k1 +2)|V (Γ)|+(k2 +∆(Γ)+1)|E(Γ)| and degrees of all its vertices are at most k2 +∆(Γ)+2.
As the sum of degrees of vertices of Γ is equal to 2|E(Γ)|, |E(Γ)| ≤ 1

2∆(Γ)|V (Γ)|. Hence,
|V (Γ′)| ≤ 1

2((k2 + ∆(Γ) + 1)∆(Γ) + 2k1 + 4)|V (Γ)|. Given Γ′, one can uniquely restore Γ
as follows. All vertices of Γ′ having degrees at least ∆(Γ) + 3 are the central vertices of the
implanted stars. This observation permits to restore all edges of Γ with their colors. Deleting
all vertices of all stars from Γ′ produces a disjoint sum of |V (Γ)| simple cycles. The number of
vertices in each of the cycles determines the color of the corresponding vertex of Γ. Therefore,
two multi-color graphs Γ1 and Γ2 are isomorphic if and only if the corresponding simple graphs
Γ′1 and Γ′2 are isomorphic. We may consider that |V (Γ1)| = |V (Γ2)| = |V | and ∆(Γ1) =
∆(Γ2) = ∆, c1 : V (Γi) −→ {1, 2, . . . , k1} and c2 : E(Γi) −→ {1, 2, . . . , k2} for each i = 1, 2,
otherwise Γ1 and Γ2 are not isomorphic. Therefore, isomorphism of Γ1 and Γ2 can be tested
in O(f(k2 + ∆ + 2)(1

2(∆(k2 + ∆ + 1) + 2k1 + 4))c
∗(k2+∆+2)ln(k2+∆+2)|V |c∗(k2+∆+2)ln(k2+∆+2))

time. For the graphs of magnetic �elds, ∆ = k1 = k2 = 3.
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