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1 Introduction

The term structure of interest rates is fundamental to many areas of financial analysis: pricing and

hedging derivatives, risk management, project analysis, accounting, actuarial science. While all these

areas use the term structure of interest rates, different notions are (or should be) assumed by these

words. For example, before the recent financial crisis, in pricing and hedging derivatives were used

swap rates. Nowadays to price or hedge a derivative instrument correctly, a whole range of different

interest rates are modelled: Libor (or Euribor), Interest Rate Swap rates, Overnight Indexed Swap

rates, repo rates, bond rates, and more. Nevertheless, for some other applications we still need the

term structure of bond rates. For example, pension funds are usually legally restricted in their invest-

ments, so they may find the term structure of (government) bond rates the interest rate of their choice.

Unfortunately, the term structure of bond rates is not readily available on the market. In this paper we

deal with the problem of estimating it from the market data.

Different applications require different approaches to interest rate modelling. Pricing and hedging

derivatives is usually done via stochastic interest rate models, which may describe the risk-neutral

stochastic evolution of the short rate and/or other variables such as its variance, long rate or even the

whole yield curve (as in the Heath-Jarrow-Morton framework). However, these models are designed

to model the short-term fluctuations of interest rates and either imply a non-realistic term structure or

assume that the term structure is directly observable on the market at any moment. Risk management

applications also usually employ stochastic models (although, no more risk-neutral) to sample from a

distribution of future rates in order to assess risks, perform stress-testing and so on. Once again, the

stochastic properties of the model come in front of its term structure fitting possibilities, except when

a significant part of the portfolio is comprised of bonds, which may be the case for pension funds, life

insurance companies, and fixed-income hedge funds. However, fitting the term structure to market data

is most useful when performing fair value pricing for accounting purposes or actuarial assessments. Of

course, for routine marking to market and setting trading limits, the fitting procedure has to be modified

to ensure temporal stability, as for these applications stability and simplicity is usually preferable over

quality and precision. That said, we consider a single-time fitting of the term structure to a snapshot of

the bond market. This problem naturally arises during investment analysis, monetary decision making,
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periodic and occasional reporting and various assessments, external auditing, and cases when the data

sample is limited to a snapshot of the market or when we have reasons to believe that the market has

changed completely since the last time we performed this calculation, so historic data is irrelevant.

Generalizing the setting to continuous everyday fitting poses many new problems, which we partially

address in ongoing research. From now on, we consider only snapshot term structure fitting.

Term structure estimation has a long history, of which we limit ourselves to only the key mile-

stones. For a more detailed exposition we refer the reader to the review article by Schmidt (2011)

or to specialized treatises by James and Webber (2000) and by Andersen and Piterbarg (2010). It

should be noted again that we do not consider stochastic (dynamic) interest rate models here, these are

used mainly for pricing/hedging derivatives and risk management. A recent artice by Jarrow (2014)

presents an overview of dynamic term structure fitting methods. Before reviewing the literature we

need to introduce some notation. We use the words ’term structure’ to denote either the discount

function d(t), the zero-coupon yield r(t) or the instantaneous forward rate s(t). Under continuous

compounding convention, they are linked by a simple relationship:

d(t) = exp [−r(t)t] = exp

[
∫ t

0

s(τ)dτ

]

.

The term structure estimation will mean obtaining an estimate of any of these functions. The existing

methods of the term structure estimation may be divided into three main groups.

1. Ad hoc methods. These are techniques designed to obtain a plausible result, but sometimes lack-

ing financial soundness, intuition, explanation, exploiting a unique idea, or estimating something

else. In the beginning, people used to draw the dots on the (t, r)-plane: one for each bond, its

term to maturity and yield, and connect them with a smooth line by hand. Such a curve was

called a ‘yield curve’ and could give a general notion of the interest rate term structure. The

bootstrap method of Fama (1987), kernel smoothing methods by Linton, Mammen, Nielsen,

and Tanggaard (2001) are other examples of this family.

Before introducing the other two groups, we note that the term structure estimation problem is

ill-posed, because the input data, whatever it is (we come to this later), is finite-dimensional
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while the term structure is an infinite-dimensional object (a function). Therefore to estimate it,

a priori assumptions are made to regularize the problem in some way. According to the nature

of these a priori assumptions or regularizations, we divide the methods into two classes.

2. Parametric methods. One may assume that the unknown function d(·), r(·) or s(·) has a known

parametric form (belongs to a finite-dimensional manifold). Once this assumption is made and

given the number of parameters is sufficiently low, the problem becomes well-posed and may

be solved usually in the least squares sense (although we’ll return to this point later). The key

examples of parametric families used for term structure fitting are by Nelson and Siegel (1987)

and Svensson (1994), which are widely used.

3. Spline methods. Instead of assuming a specific parametric form, one may assume that the

unknown function possesses an extreme property of some kind: minimum length or curvature,

minimum potential energy, etc. Since this kind of regularization usually results in some kinds

of splines, we call these techniques spline methods. However if we just search for the solution

in the form of a particular spline this should be considered as a parametric method, since we

simply assume a specific parametric form of a piecewise defined function. Splines were used

for term structure estimations by McCulloch (1971, 1975); Vasicek and Fong (1982) and many

others.

Since our proposed method belongs to the class of spline methods, we continue reviewing the lit-

erature regarding spline methods. Adams and van Deventer (1994) used smoothing splines, Fisher,

Nychka and Zervos (1995) introduced automatic choice of the smoothing parameter, Waggoner (1997)

had the smoothing parameter depend on t – the term to maturity. Smirnov and Zakharov (2003) ex-

posed the methodologically correct routine by starting from an assumption about an extreme property

and arriving at an exponential-sinusoidal spline via formal mathematical methods.

Since the introducing of the STRIPS program into the US bond market, estimating the term struc-

ture has become a much more simple task and has gradually faded out of the view of US researchers.

However, researchers in other countries, especially in those having less liquid bond markets, have

been trying to devise a perfect estimation method. We mention several of these works. Gimeno (2009)

employ genetic algorithms to fit Nelson-Siegel and Svensson parametric forms to Spanish bond data,
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Sanchez (2004) use fuzzy mathematics to obtain an estimate of the discount function, Lin (2002) uses

B-splines to fit Taiwanese interest rates. Andersen (2008) uses tension splines, Hagan and West (2006)

compare different spline and interpolation techniques for a model dataset. Laurini and Hotta (2010)

introduces Bayesian a extension of a dynamic parametric method of Diebold and Li (2006) and uses it

on Brazilian data. There is a general understanding that parametric methods may do well in developed

bond markets such as in US or Europe but they lack flexibility and the ability to reflect complex term

structures usually found in developing markets, where spline methods are usually used.

Unfortunately, almost all spline methods except the one by Fisher, Nychka and Zervos (1995)

(FNZ) require manual (expert) choice for the smoothing parameter. We present a new spline term

structure estimation method, which does not require manual tuning and compare it to FNZ and some

parametric alternatives.

The rest of the article is organized as follows. Section 2 introduces the rest of the notation and

formulate the mathematical problem. Section 3 solves the mathematical problem to obtain a spline.

Sections 4 and 5 present a numerical procedure to estimate both the spline coefficients and the reg-

ularization parameter. Finally, Section 6 describes our data and compare our method with several

widespread parametric families and with FNZ, which is also a fully automatic spline method. Section

7 concludes.

2 Problem Formulation

Now suppose that there are N bonds traded on the market, with prices Pk, k = 1, . . . , N,, paying

Fi,k, i = 0, . . . , n, k = 1, . . . , N, at times ti respectively. Note that in a typical situation most of the

Fi,k will be zeros since payment times usually do not coincide.

We assume that any coupon bond is equvalent to a portfolio of zero-coupon bonds with appropriate

notionals and maturities. Therefore we can express the theoretical price of the k − th bond, P ∗
k :

P ∗
k =

n
∑

i=0

d(ti)Fi,k,

where d(t) is the (unknown) discount function.
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A discount function must satisfy several constraints in order to be economically reasonable.

1. d(t) should be non-strictly decreasing on its domain;

2. d(t) > 0;

3. d(0) = 1.

Therefore, the problem is to find the discount function d(t) on [0, tn] satisfying the conditions

above and such that.

n
∑

i=0

d(ti)Fi,k ≈ Pk, k = 1, . . . , N,

where the latter is usually considered in the least squares sense, although we consider an improved

version in this paper. For now we just state that the function d(t) minimizes

J1 =
N
∑

k=1

(

Pk −
n
∑

i=1

Fi,kd(ti)

)2

.

Observe that this problem is ill-posed. Actually, only values d(ti) can be determined from these

conditions.

Principles of solving ill-posed problems are described by Tikhonov and Arsenin (1979). Accord-

ing to these principles, we suppose that the sought term structure is smooth, more precisely, that it

minimizes

J2 =

∫ T

0

ξ(s[p](τ))dτ,

where T = tn, s(t) is the spot forward rate for the time t, p is the derivative order and ξ(·) is some

pre-specified transformation function.

To satisfy the conditions stated above, we consider the following change of variables:

d(t) = exp



−
t
∫

0

F (f(τ))dτ



 , (1)
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where f = ξ(s) is the unknown and F = ξ−1 is a specified function.

Plugging this into J1 and adding J2, we get that the unknown function f(t) is the solution of the

following minimization problem:

J1(f) + αJ2(f) =

N
∑

k=1



Pk −
n
∑

i=1

Fi,ke
−

ti∫

0

F (f(τ))dτ





2

+ α

T
∫

0

(f [p])2(τ)dτ → min
f(·)

, (2)

where α is the regularization parameter governing the interplay between precision (J1 term) and

smoothness (J2 term). The regularization parameter is usually set exogenously by an human expert.

In this article we present an algorithm to determine its value from the data.

3 Solving the minimization problem

In the previous section we arrived at the problem

N
∑

k=1

(

n
∑

i=0

Fikd(ti)− Pk

)2

+ α

T
∫

0

(f [p])2(τ)dτ → min
f(·)

, (3)

where

d(ti) = exp



−
ti
∫

0

F (f(τ))dτ



 .

For simplicity consider G(x) = x2 in this section. While further we will extend our solution for more

general case.

Let

ci =

ti
∫

ti−1

f 2(τ)dτ, i = 1, . . . , n. (4)

Notice that this substitution allows us to split our problem into 2 subproblems:

1. Given fixed {ci} (this fixes J1), find the function fc1,...,cn minimizing J2. This is a conditional

minimization problem.

2. Find {ci}, for which fc1,...,cn minimizes the functional J1 + αJ2. This is a finite-dimensional
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optimization problem.

Note that the set {ci} determines d(t) in partition points t1, . . . , tn while the regularization is

responsible for the values of d(t) at intermediate points.

First of all, we solve the minimization problem (3) with the condition (4). The Lagrangian is

L = α

T
∫

0

(f [p])2(τ)dτ +
n
∑

i=1

λi





ti
∫

ti−1

F (f(τ))dτ − ci



 . (5)

A necessary condition for an extremum is:

n
∑

i=1



2α

ti
∫

ti−1

f [p](τ)h[p](τ)dτ + λi

ti
∫

ti−1

F ′(f(τ))h(τ)dτ



 = 0, (6)

for any p times continuously differentiable function h(t).

Further, for convenience, let fi(t) be f(t) restricted to the segment [ti−1, ti]. Integrating by parts,

we have:

α

n
∑

i=1

(

p
∑

s=1

(−1)s
(

f
[p+s−1]
i (ti − 0)h[p−s](ti)− f

[p+s−1]
i (ti−1 + 0)h[p−s](ti−1)

)

+

+

ti
∫

ti−1

(

(−1)pf
[2p]
i (τ) +

λi

2α
fi(τ)

)

h(τ)dτ



 = 0. (7)

Assuming fi ∈ C2p[ti−1, ti],

f
[s]
i (ti − 0) = f

[s]
i+1(ti + 0), i = 2, . . . , n− 1, s = 1, . . . , p (8)

f
[s]
1 (0 + 0) = f [s]

n (T − 0) = 0, s = 1, . . . , p (9)

f
[2p]
i (t) = (−1)p+1 λi

2α
F ′(fi(t)), t ∈ (ti−1, ti), i = 1, . . . , n. (10)

In general case, the analytic solution stops here. However, we present a simple solution for p =

1, F (x) = x2 for illustration purposes.
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This minimization problem could be addressed via the Pontryagin maximum principle along the

lines of Lapshin (2009). However, since an analytic solution is presented only for illustration, we

would like to keep it simple.

Let F (x) = x2, p = 1.

f ′
i(ti − 0) = f ′

i+1(ti + 0), i = 2, . . . , n− 1, (11)

f ′
1(0 + 0) = f ′

n(T − 0) = 0, (12)

f ′′
i (t) =

λi

α
fi(t), t ∈ (ti−1, ti), i = 1, . . . , n. (13)

Solving this system, we get

fi(t) =























C1
i sin

√−γit + C2
i cos

√−γit, γi < 0,

C1
i exp(

√
γit) + C2

i exp(−
√
γit), γi > 0,

C1
i + C2

i t, γi = 0,

(14)

where γi =
λi

α
, and C1

i , C
2
i are constants.

Notice that C1
i , C

2
i , λi depend on c1, . . . , cn. Consequently, we have that f(t) has the form of an

sinusoidal–exponential spline (14). Spline coefficients C1
i , C

2
i , λi can be determined from {ci} by

solving 3n equations.

ti
∫

ti−1

f 2(τ)dτ = ci, i = 1, . . . , n (15)

fi+1(ti + 0) = fi(ti − 0), i = 1, . . . , n− 1 (16)

f ′
i+1(ti + 0) = f ′

i(ti − 0), i = 1, . . . , n− 1 (17)

f ′
1(0 + 0) = f ′

n(T − 0) = 0. (18)

The rest is a finite-dimensional optimization problem. This is not the most computationally effi-

cient way to address this particular problem, however it illustrates the spline nature of the method.
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4 Numerical method

For arbitrary p and F an analytic solution cannot be found, therefore we consider a numerical method.

Let


























J1 =
N
∑

k=1





n
∑

i=1

Fike
−

ti∫

0

F (f(τ))dτ
− Pk





2

,

J2 =
T
∫

0

(f (p))2(τ)dτ,

in the following minimization problem:

J1 + αJ2 → min
f(·)

. (19)

For convenience we introduce the following notation:

Nkf =
n
∑

i=1

Fike
−

ti∫

0

F (f(τ))
, (20)

Nk is an operator mapping the curve space W to R.

We construct an iterative minimization process as follows. Let the previous approximation of f(t)

be denoted as f0(t) and let Dk = ∂Nk

∂f

∣

∣

∣

f=f0
be the Fréchet derivative of the operator Nk at the point

f0. Dk is a linear operator mapping W → R, such that for any function f(·) ∈ W

Nkf −Nkf0 = Dk(f − f0) + r0(f, f0),

where the reminder r0(f, f0) satisfies

||r0(f, f0)||
||f − f0||

→ 0, when ||f − f0|| → 0.

Let

Hif =

ti
∫

0

F (f(t))dt
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By the chain rule,

Dkf = −
∑

i

Fike
−Hif0

∂Hi

∂f

∣

∣

∣

∣

∣

f=f0

. (21)

The derivative of Hi may be calculated via

Hif−Hif0 =

ti
∫

0

(F (f(τ))− F (f0(τ))) dτ =

ti
∫

0

(F ′(f0(τ))(f(τ)−f0(τ))+o(f(τ)−f0(τ)))dτ =

=

ti
∫

0

F ′(f0(τ))(f(τ)− f0(τ))dτ + o(||f − f0||).

Consequently,

∂Hi

∂f

∣

∣

∣

∣

f=f0

=

ti
∫

0

F ′(f0(τ))f(τ)dτ.

Plugging this into (21), we obtain the expression for the operator Dk:

Dkf = −
n
∑

i=1

e
−

ti∫

0

F (f0(τ))dτ
Fik

ti
∫

0

F ′(f0(τ))f(τ)dτ. (22)

By the Riesz representation theorem, for a bounded linear operator Dk there is a unique ηk ∈ W ,

s.t. for any f ∈ W Dkf = 〈ηk, f〉 and also ||Dk|| = ||ηk||.

Let’s find ηk:

−
n
∑

i=1

e
−

ti∫

0

F (f
−
(τ))dτ

Fik

ti
∫

0

F ′(f−(τ))h(τ)dτ = 〈ηk, h〉 , ∀h ∈ W. (23)

Let W be equipped with the following scalar product:

〈ηk, h〉 =
p−1
∑

s=0

η
(s)
k (0)h(s)(0) +

T
∫

0

η
(p)
k (τ)h(p)(τ)dτ.
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Statement 1. ηk(t) has the form:

ηk(t) = −
n
∑

i=1

exp



−
ti
∫

0

F (f−(τ))dτ



Fik×

×
ti
∫

0

F ′(f−(τ))





p−1
∑

s=0

tsτ s

(s!)2
+

T
∫

0

(t− u)p−1
+ (τ − u)p−1

+

(p− 1)!2
du



dτ (24)

Proof. Write the Taylor expansion for f(t) ∈ W with a reminder in the integral form:

f(t) =

p−1
∑

s=0

ts

s!
f (s)(0) +

T
∫

0

(t− u)p−1
+

(p− 1)!
f (p)(u)du. (25)

The proof is done via direct verification. Compute η
(s)
k :

η
(s)
k (0) =

n
∑

i=1

exp



−
ti
∫

0

F (f0(τ))dτ



Fik

ti
∫

0

F ′(f0(τ))
τ s

s!
dτ, s = 0, . . . , p− 1,

η
(p)
k (τ) =

n
∑

i=1

exp



−
ti
∫

0

F (f0(τ))dτ



Fik

ti
∫

0

F ′(f0(τ))
(τ − u)p−1

+

(p− 1)!
du.

Consequently,

〈ηk, h〉 =
p−1
∑

s=0

n
∑

i=1

exp



−
ti
∫

0

F (f0(τ))dτ



Fik

ti
∫

0

F ′(f0(τ))
τ s

s!
dτh(s)(0)+

+

T
∫

0

n
∑

i=1

exp



−
ti
∫

0

F (f0(τ))dτ



Fik

ti
∫

0

F ′(f0(τ))
(τ − u)p−1

+

(p− 1)!
duh(p)(τ)dτ =

=

n
∑

i=1

exp



−
ti
∫

0

F (f0(τ))



Fik





p−1
∑

s=0

ti
∫

0

F ′(f0(τ))
τ s

s!
dτh(s)(0)+

+

T
∫

0

ti
∫

0

F ′(f0(τ))
(τ − u)p−1

+

(p− 1)!
duh(p)(τ)dτ



 (26)

Function F ′(f0(τ))
(τ−u)p−1

+

(p−1)!
h(p)(τ) is integrable on [0, T ]× [0, ti], therefore by the Fubini theorem the
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order of integration in the second term can be changed.

n
∑

i=1

exp



−
ti
∫

0

F (f0(τ))



Fik





p−1
∑

s=0

ti
∫

0

F ′(f0(τ))
τ s

s!
dτh(s)(0)+

+

T
∫

0

ti
∫

0

F ′(f0(τ))
(τ − u)p−1

+

(p− 1)!
duh(p)(τ)dτ



 =

=

n
∑

i=1

exp



−
ti
∫

0

F (f0(τ))



Fik

ti
∫

0

F ′(f(τ))





p−1
∑

s=0

τ s

s!
h(s)(0) +

T
∫

0

(τ − u)p−1
+

(p− 1)!
h(p)(u)du



 (27)

Plugging (25) in, we arrive at the proof.

Now that we have found the operators Dk : Dkf = 〈ηk, f〉, we may describe the iterative mini-

mization process.

4.1 Iteration description

For convenience we denote λ = α
N

. Then rewrite minimization problem:

N
∑

k=1

(Nkf − Pk)
2 +Nλ

T
∫

0

(f (p))2(τ)dτ → min
f(·)

. (28)

Let us consider the linear approximation of operators Nk:

Nkf ≈ Nkf− +Dk(f − f−),

where f− is still the current approximation to the unknown function f .

So, instead of (28) we consider the following partially linearized problem

N
∑

k=1

(Dkf − yk)
2 +Nλ

T
∫

0

(f (p))2(τ)dτ → min
f(·)

, (29)

where yk = Pk −Nkf− +Dkf−.

Now we find the minimizer of (29).
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For applying the theory of Wahba (1990), we break the space W into the direct sum of subspaces

W = W 0 +W 1, where

• W 0 is the subspace of polynomials, whose degree is less or equal than p− 1. Functions ϕj(t) =

tj

j!
, j = 0, . . . , p - 1 form a basis of W 0.

• W 1 is the subspace of functions satisfying f(0) = f ′(0) = . . . f (p−1)(0) = 0.

As Dk is a bounded linear operator, the following theorem, proved by Wahba (1990) (Theorem

1.3.1, p. 11) is applicable:

Theorem 4.1. The solution of (29) fλ(t) has the form:

fλ(t) =

p
∑

j=1

djϕj(t) +

N
∑

k=1

ckξk(t), (30)

where

d = (d1, . . . , dp)
′ = (T ′M−1T )−1T ′M−1y, (31)

c = (c1, . . . , cN)
′ = M−1(I − T (T ′M−1T )−1T ′M−1)y, (32)

T = {Dkϕj}, k = 1, . . . , N, j = 1, . . . , p, (33)

M = Σ +NλI, (34)

Σ = {〈ξi, ξj〉}, (35)

ϕj(t) =
tj

j!
, (36)

ξk = P1ηk, (37)

and P1 is the orthogonal projector from W onto W 1.

Using (31) and (32), we can find the solution fλ(t) to the problem (29).

After this we consider a new linearization in the vicinity of a new current approximation and

repeat the iterative process for finding the minimizer of the problem (19) using new linearizations of

operators Nk.
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This procedure is an analog of the Gauss-Newton method for nonlinear models Bates ans Watts (1988),

but we do not linearize the full functional, only a part of it, while the second part remains nonlinear.

4.2 Different bond weights

Our procedure can easily accommodate different weights for different bonds. It might be necessary,

for example, to reflect the fact that the prices of different bonds can be observed with varying precision,

which is usually measured by the bid-ask spread, and therefore require different fitting accuracy. For

this, our minimization problem (3) should be modified as follows:

N
∑

k=1

wk

(

n
∑

i=1

Fikd(ti)− Pk

)2

+ α

T
∫

0

(f [p])2(τ)dτ → min
f(·)

, (38)

The numerical algorithm remains virtually unchanged. Indeed, the operator Nk can be redefined

as

Nkf =
√
wk

n
∑

i=1

Fik exp



−
ti
∫

0

F (f(τ))



,

and prices Pk can be replaced by P ′
k =

√
wkPk. Thus, after the change of variables we are back at the

same minimization problem.

5 Estimation of the smoothing parameter

The selection of the smoothing parameter is an important task, because the wrong choice might

yield economically unsound results. We suggest using two statistical methods: a generalized cross–

validation method and a generalized maximum likelihood method to select the smoothing parameter

(Wahba, 1990; Ke and Wang, 2002). In what follows, we briefly describe each of the methods, and

write the final expressions for the choice of the smoothing parameter for both of them.
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5.1 Cross-validation method

The idea of the ordinary leave-out-one cross-validation method is that the parameter λ should mini-

mize the OCV score:

OCV (λ) =
1

N

N
∑

k=1

(yk −Nkf
[k])2, (39)

where f [k] is the minimizer of

∑

i 6=k

(yi −Nif)
2 +Nλ

T
∫

0

(f (p))2(τ)dτ. (40)

The OCV score is the residual of fitting any single bond price via the term structure estimated from

all data, except for this very single bond, summarized over all bonds.

Ke and Wang (2002) show that OCV (λ) can be approximated as

OCV (λ) ≈ 1

N

N
∑

k=1

(yk −Nkf)
2/(1− akk)

2, (41)

where

aij =
∂Nif

∂f

∂f

∂yj
. (42)

Elements aij forms the matrix A. From we can get















D1fλ

· · ·

DNfλ















= A(λ)y.

Wahba (1990) obtains the following formula:

I − A(λ) = nλQ2(Q
′
2MQ2)

−1Q′
2, (43)
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where Q1, Q2 are the orthogonal matrices forming the QR-decomposition of the matrix T :

T = (Q1 : Q2)







R

0






. (44)

Now let us consider a generalized version of this method. Instead of akk we use the value µ1 =

N−1
∑N

i=1 aii = tr(A)/N in (41). Then the parameter λ is the minimizer of

V (λ) =
1

N

N
∑

k=1

(Nkf − Pk)
2 /

[

1

N
tr(I − A)

]2

. (45)

The generalized method allows to the obtaining of certain invariant properties as opposed to the

ordinary cross-validation method Wahba (1990).

5.2 Generalized maximum likelihood method

For the unknown parameter λ, we a construct maximum likelihood estimate in a certain stochastic

model corresponding to the minimization problem (30). Consider the following stochastic model

linking observations Yk to a known functional Dk of an unknown random function F :

Yk = DkF + εk, k = 1, . . . , N, (46)

18



where

ε ∼ N (0, σ2I),

F (t) =

p
∑

i=1

θiϕi(t) +
√
bX(t),

θ ∼ N (0, aI),

b is a positive constant,

ϕi(t) =
ti

i!
,

X(t) is a Gaussian stochastic process:

EX(t) = 0, EX(t)X(s) = R1(t, s).

We repeat some of the notion used:

T = {Dkϕj}, k = 1, . . . , N, j = 1, . . . , p,

Σ = {〈ξi, ξj〉},

ϕj(t) =
tj

j!
,

ξk = P1ηk,

where P1 is the orthogonal projector onto W 1.

We will also use the QR-decomposition of the matrix T :

T = (Q1 : Q2)







R

0






.

Using (46) and the fact that the sum of independent normal random variables is normal, we find that

the observations are normally distributed with known parameters:

Yk ∼ N (0, b(ηTT ′ + Σ+NλI)), (47)
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where η = a/b.

Now we formulate a theorem by Wahba (1990) stating the relationship of the original problem and

the stochastic model:

Theorem 5.1. Let

F̃a(t) = E(F (t) | Yk = yk, k = 1, . . . , N),

and also fλ(t) is the minimizer of

N
∑

k=1

(yk −Dkf)
2 +Nλ

T
∫

0

(f (k))2(τ)dτ,

where λ = σ2/Nb. Then ∀t the following equality holds

lim
a→+∞

F̃a(t) = fλ(t).

Thus, if we get the maximum likelihood estimate in (47) with η → +∞, the corresponding func-

tion fλ(t) will be the solution of the original minimization problem. To obtain the maximum likelihood

estimate, we make the change of variables













z

. . .

w













=













Q′
2

. . .

1√
η
T ′













y. (48)

This substitution allows us to split the vector y into two parts, where w in the limit does not depend

on the parameter λ:

z ∼ N (0, b(Q′
2ΣQ2 +NλI)), lim

η→+∞
Ezw′ = 0,

lim
η→+∞

Eww′ = b(T ′T )(T ′T ).
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Therefore, to obtain the negative log-likelihood function it is sufficient to use only z:

GML(λ) =
z′(Q′

2ΣQ2 +NλI)−1z

[det(Q′
2ΣQ2 +NλI)−1]1/(n−p)

, (49)

Then, returning to y, we find that λ is the minimizer of

GML(λ) =
y′(I − A(λ))y

[det+(I − A(λ))]1/(n−p)
, (50)

where det+ is a product of nonzero eigenvalues.

The minimizer will be the maximum likelihood estimator of our regularization parameter λ.

5.3 Applying results

We described two methods of choosing the regularization parameter: generalized cross–validation and

generalized maximum likelihood. As a result, we have that λ is determined as the minimum of (45)

for GCV or of (50) for GML.

We can now write the final algorithm for yield curve fitting:

1. Select the initial approximation. Practice shows that a constant interest rate works quite effec-

tively.

2. For a fixed λ compute the new approximation for f using (30)–(35).

3. Estimate λ using (45) or (50).

4. The iterative process 2–3 then continues until the difference between the old and the new ap-

proximations becomes less than a pre-specified value.

Although the convergence of the algorithm has not been studied because of the complexity of the

problem, in practice it converges in few iterations. Table 1 presents the statistics of the number of

trials until convergence for our dataset.

21



Table 1: Iterations for convergence

Number of iterations Number of trials

3 127

4 163

5 47

> 5 3

Table 2: Market liquidity statistics

Number of traded bonds 10 11 12 13 14 15 16 17 18 19 20

Number of days 1 3 5 16 10 23 40 94 80 61 9

6 Testing

We compare our method with others using data on Russian bonds provided by Cbonds.info. The data

includes daily closing price and bid & ask closing quotes for Russian domestic government bonds

from 10 Jan 2012 untill 14 may 2013. For each bond we also have the schedule of its promised cash

flows. Typically bonds are coupon bearing with interest semi-annually or quarterly. This particular

market was selected for two reasons. Russia is one of the few countries where bonds are exchange-

traded, and the Russian bond market is rather illiquid, which makes term structure estimation a worthy

problem. Table 2 presents the liquidity statistics of the market. The first row is the number of bonds

traded in the market. The second row is the number of days with this number of bonds traded on this

day. One can see from the table 2 that the liquidity of the market is relatively low.

We compare our method with several alternatives. Parametric methods by Nelson and Siegel

(1987) and Svensson (1994) are the most used parametric term structure fitting methods. Svensson’s

generalization of Nelson-Siegel parametrization models the spot forward rate s(t) as

s(t) = β0 + β1e
− t

τ1 + β2
t

τ1
e
− t

τ1 + β3
t

τ2
e
− t

τ2 ,

where β0, β1, β2, β3, τ1, τ2 are the model parameters.

The model by Cox, Ingersoll and Ross (1985) is a general equilibrium model, which describes the

stochastic dynamics of the short rate. One can infer the term structure equation from these dynamics.
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Table 3: Fitting accuracy for different methods

Method MAE RMSE MAE Normalized RMSE Normalized

N-S 0.2911 0.4787 3.9201 10.4407

Svensson 0.2122 0.2643 3.2797 8.8879

CIR 0.2170 0.2861 5.5097 17.8905

FNZ 0.2717 0.3004 2.9625 7.4074

G-curve 0.2452 0.3263 3.5723 9.7635

Our Method 0.1132 0.1512 0.7878 1.1857

Here we treat this term structure equation as just one more parametric fitting method, setting aside all

dynamic interpretations.



































Q(t) = exp [−A(t)−B(t)r0] ,

A(t) = 2α
σ2

{

ln
[

(γ+β)(1−e−γt)
2γ

+ e−γt
]

+ γt
}

− α(γ+β)t
σ2 ,

B(t) = 2(1−e−γt)
(γ+β)(1−e−γt)+2γe−γt ,

γ =
√

β2 + 2σ2.

This is not the most common parametrization, but our experience shows that this parametrization is

the easiest to estimate. When considering stochastic dynamics, the restriction 2β > σ2 is usually

imposed to ensure the positivity of the short rate. We relax this restriction since we only consider

snapshot fitting. Fisher, Nychka and Zervos (1995) model is one of the most popular spline term

structure fitting models, and almost the only one which does not require an exogenous smoothing

parameter. We also add to our comparison the G-curve by Balabushkin (2004), a dynamic parametric

approach based on an extension of Svensson parametrization and Extended Kalman Filter, because it

is the official term structure model used by the exchange in the Russian market.

Fitting results are reported in Table 3. For each method we report Mean Absolute Error (MAE),

Root Mean Squared Error (RMSE), and the normalized MAE and RMSE. Normalized versions are

obtained by normalizing the fitting error by the quoted bid-ask spread of the bond being fitted. All

compared methods have been modified to accommodate these weights.

One can see that our method significantly outperforms others. One might think that this may be

due to the low values of α (that is, due to the lack of smoothing). However, a visual inspection (see

Figure 1) reveals that the constructed term structures are all quite similar, and the one constructed by
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Table 4: Measures of smoothness

Method Length of the Length of the
∫

(r′′)2dx of the
∫

(f ′′)2dx of the

yield curve forward curve yield curve forward curve

Our method 16.1136 16.7672 0.1486 0.1511

N-S 16.4865 18.4099 0.5712 0.5654

Svensson 18.4607 18.6050 0.6201 0.6148

CIR 16.1384 17.7763 0.2134 0.3452

FNZ 17.2605 24.0861 0.3810 0.4433

G-curve 16.1809 18.2778 0.5512 0.6028

our method is even more smooth than the one constructed by FNZ. To further back this statement,

we also report several measures that are often used for evaluating the smoothness of a zero-coupon

yield curve (van Deventer and Uyemura (1992)). In particular, the smoothness of the zero-coupon

yield curve can be measured as its length (or the length of the forward curve), another approach is

to calculate the integral of the square of the second derivative (of spot or forward rates). In Table 4

we present different smoothness measures for all methods. Our method uses the smoothness of the

forward curve in the problem formulation (although our objective does not coincide with the reported

smoothness measure), so we would expect the values in the last column to be slightly biased towards

the new method. The smoothness is not the key fitting performance measure. The fitted curve only

has to be smooth enough, although if one method produces fitted curves which exhibit at the same

time more accuracy and more smoothness, then this method should be considered superior, because

accuracy and smoothness represent the two conflicting goals. The same holds if one estimate is better

in accuracy and has the same smoothness or vice versa.
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Figure 1: Term structures fitted by different methods.

7 Conclusion

We have described the mathematical problem of the nonparametric estimation of interest rate term

structure, proposed its regularization and presented an iterative numerical algorithm that automatically

estimates the regularization parameter. The proposed algorithm has several desirable properties unlike

most alternative methods, it guarantees the non-negativeness of interest rates, it takes into account

the liquidity of the market and the uncertainties of observable quoted prices (via different weights for

different bonds). However, the main advantage of the proposed method is that it does not need an

exogenously defined smoothing (regularization) parameter, as it is automatically determined within

the algorithm, which is essential when dealing with noisy data.
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