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Abstract. Gaudin algebra is the commutative subalgebra in U(g)⊗N gener-
ated by higher integrals of the quantum Gaudin magnet chain attached to a
semisimple Lie algebra g . This algebra depends on a collection of pairwise
distinct complex numbers z1, . . . , zN . We prove that this subalgebra has a
cyclic vector in the space of singular vectors of the tensor product of any finite-
dimensional irreducible g -modules, for all values of the parameters z1, . . . , zN .
The corollary of this result is the Bethe Ansatz conjecture in the Feigin-Frenkel
form which states that the joint eigenvalues of the higher Gaudin Hamiltonians
on the tensor product of irreducible finite-dimensional g -modules are in 1-1
correspondence with monodromy-free opers on the projective line with regu-
lar singularities at the points z1, . . . , zN ,∞ and prescribed residues at singular
points.

1. Introduction

1.1. Gaudin model. The Gaudin model was introduced in [12] as a spin model
related to the Lie algebra sl2 , and generalized to the case of arbitrary semisim-
ple Lie algebras in [13], 13.2.2. The generalized Gaudin model has the following
algebraic interpretation. Let Vλ be an irreducible representation of a semisimple
(reductive) Lie algebra g with the highest weight λ . For any collection of integral
dominant weights (λ) = λ1, . . . , λn , let Vλ = Vλ1 ⊗ · · · ⊗ VλN

. For any x ∈ g ,

consider the operator x(i) = 1 ⊗ · · · ⊗ 1 ⊗ x ⊗ 1 ⊗ · · · ⊗ 1 (x stands at the ith
place), acting on the space Vλ . Let {xa}, a = 1, . . . , dim g , be an orthonormal
basis of g with respect to Killing form, and let z := (z1, . . . , zN ) be a collection
of pairwise distinct complex numbers. The Hamiltonians of the Gaudin model are
the following commuting operators acting in the space Vλ :

(1) Hi =
∑
k ̸=i

dim g∑
a=1

x
(i)
a x

(k)
a

zi − zk
.

We can treat the Hi as elements of the universal enveloping algebra U(g)⊗N . In
[4], the existence of a large commutative subalgebra A(z) ⊂ U(g)⊗N containing Hi

was proved with the help of the critical level phenomenon for the affine Lie algebra
ĝ . For g = sl2 , the algebra A(z) is generated by Hi and the central elements of
U(g)⊗N . In other cases, the algebra A(z) has also some new generators known as
higher Gaudin Hamiltonians. We will call A(z) the Gaudin algebra.

1.2. Bethe Ansatz. The main problem in Gaudin model is the problem of si-
multaneous diagonalization of (higher) Gaudin Hamiltonians. It follows from the
[4] construction that all elements of A(z) ⊂ U(g)⊗N are invariant with respect
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to the diagonal action of g , and therefore it is sufficient to diagonalize the alge-

bra A(z) in the subspace V sing
λ ⊂ Vλ of singular (highest) vectors with respect

to diag(g) (i.e., with respect to the diagonal action of g). In many important
cases, the Gaudin eigenproblem is solved by the algebraic Bethe Ansatz method
which provides an explicit (but complicated) construction of joint eigenvectors for

A(z) in V sing
λ from the solutions of some explicit systems of algebraic equations,

called Bethe Ansatz equations, on some auxiliary variables. The famous Bethe
Ansatz conjecture states that this method always works, i.e. gives an eigenbasis

for A(z) in V sing
λ . In particular, the conjecture says that, for generic z , the alge-

bra A(z) has simple spectrum in V sing
λ and there is a 1-1 correspondence between

the eigenvectors and the solutions of the corresponding system of Bethe Ansatz
equations. The latter was proved in [?] for g = sln . More precisely, it is proved

that the space V sing
λ is always cyclic as A(z)-module, and hence A(z) has simple

spectrum whenever acts by semisimple operators.

1.3. Opers and the eigenproblem for the Gaudin model. In [4], the Bethe
Ansatz equations were interpreted as a “no-monodromy” condition on certain
space of opers on the projective line P1 . Namely, it was shown that A(z) is
isomorphic to the algebra of functions on a certain space of LG-opers on the pro-
jective line P1 . More precisely, this is the space of LG-opers on P1 with regular
singularities at the points z1, . . . , zN and ∞ . Here LG is the Langlands dual group
of G (LG is taken to be of adjoint type), and LG-opers are connections on a prin-
cipal LG-bundle over P1 satisfying a certain transversality condition, as defined in
[1]. The appearance of the Langlands dual group is not accidental, but is closely
related to the geometric Langlands correspondence, through a description of the
center of the completed enveloping algebra of the affine Kac–Moody algebra ĝ at
the critical level in terms of LG-opers on the punctured disc [3, 8, 10].

Thus, we obtain that the spectra of A(z) on a tensor product of g-modules
M1 ⊗ . . . ⊗MN are encoded by LG-opers on P1 satisfying the above properties.
Furthermore, in [4] it was shown that if each Mi is Vλi

, the irreducible finite-
dimensional g-module with dominant integral highest weight λi , then these LG-
opers satisfy two additional properties: they have fixed residues at the points zi ,

determined by λi (we denote the space of such opers by OpLG(P1)
λ
z , it is an

affine space), and they have trivial monodromy. The latter is a finite number of
polynomial conditions on the coefficients of opers which is generically equivalent
to Bethe Ansatz equations.

1.4. Bethe ansatz conjecture. The conjecture of completeness of Bethe Ansatz
was reformulated in [4] as there is a bijection between the joint eigenvalues of A(z)

on Vλ and the set of monodromy-free opers from OpLG(P1)
λ
z . In this paper we

prove this conjecture. In fact, we prove the following statement:

Main Theorem. The space of singular vectors in the tensor product of g-modules

V sing
λ is cyclic as an A(z)-module. The annihilator of V sing

λ in A(z) is generated

by the no-monodromy conditions on opers from OpLG(P1)
λ
z .

It was shown in [5] that for real values of the parameters z1, . . . , zN , the algebra
A(z) acts on Vλ1 ⊗ . . .⊗ VλN

by Hermitian operators and hence is diagonalizable.
2



Main Theorem then implies that the spectrum of A(z) on V sing
λ is simple. Since

the property of having simple spectrum is an open condition on the parameters
z1, . . . , zN we have the following

Main Corollary. For generic z1, . . . , zN and any dominant integral λ1, . . . , λN ,
the Gaudin subalgebra A(z1, . . . , zN ) ⊂ U(g)⊗N is diagonalizable and has simple
spectrum on space of singular vectors in the tensor product irreducible g-modules
Vλ1 ⊗ . . . ⊗ VλN

. Moreover, its joint eigenvalues (and hence eigenvectors, up
to a scalar) are in one-to-one correspondence with monodromy-free opers from

OpLG(P1)
λ
z .

The main idea of our proof is to use the inhomogeneous Gaudin algebra Aµ(z)
(or Gaudin algebra with irregular singularities from [6]). This algebra depends on
an additional parameter µ ∈ g = g∗ and for regular µ is a maximal commutative
subalgebra in U(g)⊗N . On the one hand, the analog of Bethe Ansatz conjecture
for non-homogeneous Gaudin algebras turns to be easier than for homogeneous
ones. Namely, by the results of [5], for any regular µ ∈ g and any collection of
pairwise distinct complex numbers z = (z1, . . . , zN ) the algebra Aµ(z) has a cyclic
vector in any tensor product of irreducible finite-dimensional g-modules, and the
annihilator is generated by no-monodromy conditions. On the other hand, in
the case when µ = f , a regular nilpotent element of g∗ ≃ g , the algebra Af (z)
has a decreasing filtration such that the 0-degree component of the associated
(negatively) graded algebra is A(z), and it is possible to check that passing to the
associated graded does not destroy the cyclicity property.

1.5. Covering of M0,N+1 and relation to crystals. The family A(z), as de-
fined, is parameterized by a noncompact complex algebraic variety of configura-
tions of pairwise distinct points on the complex line. On the other hand, every
subalgebra is (in appropriate sense) a point of some Grassmann variety which is
compact. Hence there is a family of commutative subalgebras which extends the
family A(z) and is parameterized by some compact variety. In [18], we show that
the closure of the family A(z) is parameterized by the Deligne-Mumford com-
pactification M0,N+1 of the moduli space of stable rational curves with N + 1
marked points. Moreover, we show that the natural topological operad structure
on M0,n+1 is compatible with that on commutative subalgebras of U(g)⊗N and

describe explicitly the algebras corresponding to boundary points of M0,N+1 . In
section 4 we deduce from the Main Theorem that the subalgebras corresponding

to boundary points of M0,N+1 have a cyclic vector in V sing
λ as well. We deduce

from this the simple spectrum property for the subalgebras attached to all real
points of M0,N+1 .

This allows us to regard the eigenbasis (or, more precisely, the set of 1-

dimensional eigenspaces) of A(z) in V sing
λ as a covering of the space M0,N+1(R).

Denote the fiber of this covering at a point z ∈ M0,n+1(R) by Bλ(z)
sing . The

fundamental group of M0,n+1(R) (called pure cactus group PJN ) acts on this set.

On the other hand, there is an action of the same group on the set B
sing
λ of high-

est elements in the tensor product Bλ1 ⊗ . . .⊗BλN
of the g-crystals with highest
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weights λ1, . . . , λN from the coboundary category formalism. Note that B
sing
λ has

the same cardinality as Bλ(z)
sing . In [18] we have stated the following

Monodromy Conjecture. (Pavel Etingof) The actions of PJN on Bλ(z)
sing

and on B
sing
λ are isomorphic.

The contribution of the present paper to this conjecture is that now the covering
Bλ(z)

sing is well defined for any g .

1.6. The paper is organized as follows. In section 2 we collect basic facts on
Gaudin models and opers. In section 3 we prove the main result of the paper. In
the last section 4 we prove the cyclicity and simple spectrum property for limiting
Gaudin algebras.

1.7. Acknowledgments. I thank Joel Kamnitzer for stimulating discussions.
The article was prepared within the framework of the Academic Fund Program
at the National Research University Higher School of Economics (HSE) in 2015-
2016 (grant 15-01-0062) and supported within the framework of a subsidy granted
to the HSE by the Government of the Russian Federation for the implementation
of the Global Competitiveness Program.

2. Preliminaries

2.1. Gaudin algebras. Gaudin model was introduced in [12] as a spin model
related to the Lie algebra sl2 , and generalized to the case of an arbitrary semisimple
Lie algebra in [13], Section 13.2.2. For any x ∈ g , set

x(i) = 1⊗ · · · ⊗ 1⊗ x⊗ 1⊗ · · · ⊗ 1 ∈ U(g)⊗N

(x at the ith place). Let {xa}, a = 1, . . . , dim g , be an orthonormal basis of g with
respect to Killing form, and let z1, . . . , zN be pairwise distinct complex numbers.
The Hamiltonians of Gaudin model are the following mutually commuting elements
of U(g)⊗N :

(2) Hi =
∑
k ̸=i

dim g∑
a=1

x
(i)
a x

(k)
a

zi − zk
.

In [4], a large commutative subalgebra A(z) containing the Hi ’s was constructed
with the help of the affine Kac–Moody algebra ĝ , which is the universal central
extension of g((t)). Let us briefly describe the construction.

Consider the infinite-dimensional ind-nilpotent Lie algebra g− := g⊗ t−1C[t−1]
– it is a ”half” of the corresponding affine Kac–Moody algebra ĝ . The universal
enveloping algebra U(g−) has a natural (PBW) filtration by the degree with re-
spect to the generators. The associated graded algebra is the symmetric algebra
S(g−) by the Poincaré–Birkhoff–Witt theorem.

There is a natural grading on the associative algebras S(g−) and U(g−) deter-
mined by the derivation L0 defined by

(3) L0(g ⊗ tm) = mg ⊗ tm ∀g ∈ g,m = −1,−2, . . .

There is also a derivation L−1 of degree −1 with respect to this grading:

(4) L−1(g ⊗ tm) = mg ⊗ tm−1 ∀g ∈ g,m = −1,−2, . . .
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Let i−1 : S(g) ↪→ S(g−) be the embedding, which maps g ∈ g to g ⊗ t−1 .
The algebra of invariants, S(g)g , is known to be a free commutative algebra with
rk g generators. Let Φj , j = 1, . . . , ℓ = rk g be some set of free generators of the
algebra S(g)g . The degrees of Φj are dj+1 where dj are the exponents of g . The
following result is due to Boris Feigin and Edward Frenkel, see [8] and references
therein.

Theorem 2.2. There exist commuting elements Sj ∈ U(g−), homogeneous with

respect to L0 , such that grSj = i−1(Φj). Moreover, the elements Lk
−1Sj pairwise

commute for all k ∈ Z+ and j = 1, . . . , ℓ .

Let U(g)⊗N be the tensor product of N copies of U(g). We denote the subspace

1⊗ · · · ⊗ 1⊗ g⊗ 1⊗ · · · ⊗ 1 ⊂ U(g)⊗N , where g stands at the ith place, by g(i) .
Respectively, for any x ∈ U(g) we set

(5) x(i) = 1⊗ · · · ⊗ 1⊗ x⊗ 1⊗ · · · ⊗ 1 ∈ U(g)⊗N .

Let diag : U(g−) ↪→ U(g−)
⊗N be the diagonal embedding (i.e. for x ∈ g− , we

have diag(x) =
n∑

i=1
x(i) ). To any nonzero w ∈ C , we assign the homomorphism

φw : U(g−) −→ U(g) of evaluation at the point w (i.e., for g ∈ g , we have φw(g ⊗
tm) = wmg ). For any collection of pairwise distinct nonzero complex numbers
wi, i = 1, . . . , n , we have the following homomorphism:

(6) φw1,...,wN = (φw1 ⊗ · · · ⊗ φwN ) ◦ diag : U(g−) −→ U(g)⊗N .

More explicitly, we have

φw1,...,wN (g ⊗ tm) =
n∑

i=1

wm
i g

(i).

Consider the following U(g)⊗N -valued functions in the variable w

Sj(w; z1, . . . , zN ) := φw−z1,...,w−zN (Sj).

We define the Gaudin subalgebra A(z) ⊂ U(g)⊗N as a subalgebra generated by
Sj(w; z1, . . . , zN ) for all w ∈ C\{z1, . . . , zN} . Due to Theorem 2.2, this subalgebra
is commutative. The subalgebra A(z) ⊂ U(g)⊗N is also known as Bethe algebra.

Let Si,m
j (z1, . . . , zN ) be the coefficients of the principal part of the Laurent series

of Sj(w; z1, . . . , zN ) at the point zi , i.e.,

Sj(w; z1, . . . , zN ) =

m=degΦj∑
m=1

Si,m
j (z1, . . . , zN )(w − zi)

−m +O(1) as w −→ zi.

Taking the generator Sj corresponding to the quadratic Casimir element
on S(g), one gets the quadratic Gaudin Hamiltonians (2) as the residues of
Sj(w; z1, . . . , zN ) at the points z1, . . . , zN . The following result is well-known
(see e.g. [2] for the proof).

Proposition 2.3. [2]

(1) The elements Si,m
j (z1, . . . , zN ) ∈ U(g)⊗N are homogeneous under si-

multaneous affine transformations of the parameters zi 7→ azi + b (i.e.

Si,m
j (az1 + b, . . . , azN + b) is proportional to Si,m

j (z1, . . . , zN )).
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(2) The subalgebra A(z) is a free commutative algebra generated by the ele-

ments Si,m
j (z1, . . . , zN ) ∈ U(g)⊗N , where i = 1, . . . , n− 1, l = 1, . . . , rk g,

m = 1, . . . , degΦj , and by S
n,degΦj

j (z1, . . . , zN ) ∈ U(g)⊗n , where l =
1, . . . , rk g.

(3) All the elements of A(z) are invariant with respect to the diagonal action
of g.

(4) The center of the diagonal diag(U(g)) ⊂ U(g)⊗N is contained in A(z).

It is easy to see that one can replace S
n,dj+1
j (z1, . . . , zn) in (2) by the generators

of the center of diag(U(g)).

2.4. Inhomogeneous Gaudin algebras. In [17] and [6], the construction of [4]
was generalized. Namely, for any collection z1, . . . , zN and µ ∈ g∗ , there is a
commutative subalgebra Aµ(z) in U(g)⊗n which is invariant with respect to the
diagonal action of the centralizer of µ in g and is maximal with this property. In
particular, A(z) = A0(z) corresponding to µ = 0. Let us describe the generators
of this algebra analogously to Proposition 2.3.

To any µ ∈ g = g∗ , we assign the character ψµ : U(g−) −→ C such that for g ∈ g ,
we have ψµ(g ⊗ tm) = δ−1,mµ(g)). For any collection of pairwise distinct nonzero
complex numbers wi, i = 1, . . . , N , we can twist the homomorphism φw1,...,wN by
µ :

(7) φw1,...,wN ;µ := (φw1 ⊗ · · · ⊗ φwN ⊗ ψµ) ◦ diag : U(g−) −→

−→ U(g−)
⊗(N+1) −→ U(g)⊗N ⊗ C = U(g)⊗N .

More explicitly, we have

φw1,...,wN ;µ(g ⊗ tm) = δ−1,mµ(g) +
N∑
i=1

wm
i g

(i).

Consider the following U(g)⊗N -valued functions in the variable w

Sj(w; z1, . . . , zN ;µ) := φw−z1,...,w−zN ;µ(Sj).

We define the non-homogeneous Gaudin subalgebra Aµ(z) ⊂ U(g)⊗N as a com-
mutative subalgebra generated by Sj(w; z1, . . . , zN ;µ) for all w ∈ C\{z1, . . . , zN} .

Let Si,m
j (z1, . . . , zN ;µ) be the coefficients of the principal part of the Laurent

series of Sj(w; z1, . . . , zN ;µ) at the point zi , i.e.,

Sj(w; z1, . . . , zN ;µ) =

m=degΦj∑
m=1

Si,m
j (z1, . . . , zN ;µ)(w − zi)

−m +O(1) as w −→ zi.

Taking the generator Sj corresponding to the quadratic Casimir element on
S(g), one gets the non-homogeneous quadratic Gaudin Hamiltonians as the
residues of Sj(w; z1, . . . , zN ) at the points z1, . . . , zN .

Hi =
∑
k ̸=i

dim g∑
a=1

x
(i)
a x

(k)
a

zi − zk
+

dim g∑
a=1

µ(xa)x
(i)
a .

From [5] we have the following description of the generators.
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Proposition 2.5. (1) The elements Si,m
j (z1, . . . , zN ;µ) ∈ U(g)⊗N are ho-

mogeneous under simultaneous affine transformations of the parameters

zi 7→ azi + b (i.e. Si,m
j (az1 + b, . . . , azN + b, a−1µ) is proportional to

Si,m
j (z1, . . . , zN ;µ)).

(2) The subalgebra Aµ(z) is a free commutative algebra generated by the el-

ements Si,m
j (z1, . . . , zN ;µ) ∈ U(g)⊗N , where i = 1, . . . , n, j = 1, . . . , ℓ,

m = 1, . . . , dj + 1.

Denote by S∞,m
j (z1, . . . , zN ;µ) ∈ U(g)⊗N the coefficients of the principal part

of the Laurent series of Sj(w; z1, . . . , zN ;µ)wdj+1 at the point ∞ .

Corollary 2.6. One can take as free generators of Aµ(z) the elements Si,m
j (z1, . . . , zN ;µ)

with i = 1, . . . , n − 1, j = 1, . . . , ℓ , m = 1, . . . , dj + 1 AND the elements
S∞,m
j (z1, . . . , zN ;µ) with j = 1, . . . , ℓ, m = 1, . . . , dj + 1.

The following fact on the limit points of the family Aµ(z) is well known, but
missed in the literature.

Proposition 2.7. We have

lim
s−→0

Aµ(sz1, . . . , szN ) = lim
s−→0

Asµ(z) = diag(Aµ) ·A(z) ⊂ U(g)⊗N

for any regular µ ∈ g. More precisely, both diag(Aµ) and A(z) contain the center
Z of the diagonal U(g) in U(g)⊗N , and the product diag(Aµ) ·A(z) is in fact the
tensor product diag(Aµ)⊗Z A(z).

Proof. Indeed, the RHS has the same number of algebraically independent gener-
ators of the same degrees as that of Aµ(z1, . . . , zN ). So we just have to check that
the limiting subalgebra contains both diag(Aµ) and A(z). The first is generated
by the limits of S∞,m

j (z1, . . . , zN ;µ) and the second is generated by the limits of

Si,m
j (z1, . . . , zN ;µ). �

2.8. Opers on the projective line. Consider the Langlands dual Lie algebra
Lg whose Cartan matrix is the transpose of the Cartan matrix of g . By LG we
denote the group of inner automorphisms of Lg . We fix a Cartan decomposition

Lg = Ln+ ⊕ Lh⊕ Ln−.

The Cartan subalgebra Lh is naturally identified with h∗ . We denote by L∆,
L∆+ , and LΠ the root system of Lg , the set of positive roots, and the set of
simple roots, respectively. We denote by Lb+ the Borel subalgebra Ln+ ⊕ Lh .

Set

p−1 =
∑

α∨∈Π∨

e−α∨ ∈ Lg.

Let

ρ =
1

2

∑
α∈∆+

α ∈ h∗ = Lh.

The operator Ad ρ defines the principal gradation on Lg , with respect to which we
have a direct sum decomposition Lb+ =

⊕L
i≥0 bi . Let p1 be the unique element of
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degree 1 in Ln+ such that {p−1, 2ρ, p1} is an sl2 -triple (note that p−1 has degree
−1). Let

Vcan =
ℓ⊕

i=1

Vcan,i

be the space of Ad p1 -invariants in Ln+ , decomposed according to the principal
gradation. Here Vcan,i has degree di , the ith exponent of Lg (and of g). In
particular, Vcan,1 is spanned by p1 . Now choose a linear generator pj of Vcan,j .

Consider the Kostant slice in Lg ,

Lgcan =

p−1 +
ℓ∑

j=1

yjpj , y ∈ C

 .

By [14], the adjoint orbit of any regular element in the Lie algebra Lg contains a
unique element which belongs to Lgcan . Thus, we have canonical isomorphisms

(8) Lgcan−̃→Lg/LG = Lh/LW = h∗/W = g∗/G.

Denote by π the factorization map Lg −→ Lg/LG = Lgcan . For an affine curve
U = SpecR and an étale coordinate t on U , the space OpLG(U) of LG-opers on
U is isomorphic to the quotient of the space of connections of the form

d+ (p−1 + v(t))dt, v(t) ∈ Lb+ ⊗R

by the free action of the group LN+ ⊗ R of regular algebraic maps U −→ LN+ ,
where LN+ is the maximal unipotent subgroup of LG such that Lie LN+ = Ln+ .
Each oper has a unique representative of the form

d+

p−1 +

ℓ∑
j=1

vj(t)pj

 dt, vj(t) ∈ R.

In particular, the space OpLG(D
×) of LG-opers on the formal punctured disc

D× = SpecC((t)) is isomorphic to the space of connections of the form

d+

p−1 +

ℓ∑
j=1

vj(t)pj

 dt, vj(t) ∈ C((t)).

We will consider opers on P1 with regular singularities at a finite number of
points. The oper has regular singularity at z ∈ P1 if has the following form in
local coordinate t at z :

d+

p−1 +

ℓ∑
j=1

(vj(t− z)−(dj+1) + o((t− z)−(dj+1)))pj

 dt.

The residue of such oper at the point z is π(p−1 − ρ+
∑ℓ

j=1 vjpj) ∈ Lg/LG .

We denote by OpLG(z) the space of LG-opers on P1\{z1, . . . zN ,∞} with reg-
ular singularities at the points zi, i = 1, . . . , N , and at ∞ . Each oper from this
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space may be uniquely represented in the following form:

d+

p−1 +
N∑
i=1

ℓ∑
j=1

dj∑
n=0

v
(i)
j,n(t− zi)

−n−1pj

 dt,

where

(9)

N∑
i=1

m∑
n=0

v
(i)
j,n

(
m

n

)
zm−n
i = 0

for any j = 1, . . . , ℓ and m = 0, . . . , dj − 1. Thus, OpLG(z) is an affine space of
dimension 1

2(dim g+ rk g)(N − 1) + rk g .

Following [6] and [5], we denote by OpLG(P1)z;π(−µ) the space of LG-opers on

P1\{z1, . . . zN ,∞} with regular singularities at the points zi, i = 1, . . . , N , and
with irregular singularity of order 2 at the point ∞ with the 2-residue π(−µ) ∈
Lg/LG = g∗/G , where π : g∗ −→ g∗/G is the projection. Each oper from this space
may be uniquely represented in the following form:

d+

p−1 +

ℓ∑
j=1

µjpj +

N∑
i=1

ℓ∑
j=1

dj∑
n=0

u
(i)
j,n(t− zi)

−n−1pj

 dt,

where

p−1 +
ℓ∑

j=1

µjpj

is the (unique) element of Lgcan contained in the LG-orbit corresponding to the
G-orbit of µ ∈ g∗ under the isomorphism (8). Thus, OpLG(P1)z;π(−µ) is an affine

space of dimension 1
2(dim g+ rk g)N .

We will be interested in the special case of OpLG(P1)z;π(−µ) when µ is the prin-

cipal nilpotent element f ∈ g . Since π(f) = 0, the space OpLG(P1)z;π(−f) is the

space of opers with singularities as above but with zero 2-residue at ∞ ∈ P1 .
Hence the space OpLG(P1)z is naturally a subspace in OpLG(P1)z;π(−f) . On

the punctured disc D×
∞ at ∞ (with the coordinate s = t−1 ) each element of

OpLG(P1)z;π(−f) may be represented by a connection of the form (see [6, Sec-
tion 5.4]):

d−

p−1 −
ℓ∑

j=1

s−2dj−1uj(s)pj

 ds, uj(s) =

∞∑
n=0

uj,ns
n.

The equations (9) which define subspace OpLG(P1)z inside OpLG(P1)z;π(−f) can
be rewritten as uj,n = 0 for j = 1 . . . , ℓ, n = 0, . . . , dj − 1.

2.9. Gaudin algebra and opers. We have the following relation between Gaudin
algebras and spaces of opers, see [4, 6, 5].

Proposition 2.10. There is an isomorphism A(z) ≃ C[OpLG(P1)z]. For reg-
ular µ there is an isomorphism Aµ(z) ≃ C[OpLG(P1)z;π(−µ)]. The gener-
ators Φ1, . . . ,Φℓ of S(g)g can be chosen such that these isomorphisms take
Sj(t; z1, . . . , zN ) (resp. Sj(t; z1, . . . , zN ;µ)) to vj(t).
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Next, it is proved in [6, Theorem, 5.7], that for any collection of g-modules Mi

with highest weights λi , i = 1, . . . , N , the natural homomorphism

Aµ(z) −→ End(M1 ⊗ · · · ⊗MN )

factors through the algebra of functions on the subspace OpLG(P1)
λ
z;π(−µ) ⊂

OpLG(P1)z;π(−µ) which consists of the opers with the 1-residue π(−λi − ρ) at
zi . Moreover, for integral dominant λi the action of Aµ(z) on the tensor product
of the finite-dimensional modules Vλi

factors through the algebra of functions on

monodromy-free opers from OpLG(P1)
λ
z;π(−µ) .

For every integral dominant weight λ , the set of monodromy-free opers on the
punctured disc D×

z at z with the regular singularity with the residue −λ − ρ at
z is defined by finitely many polynomial relations. These polynomial relations are
indexed by positive roots of g , see [11].

For any collection of integral dominant weights λ1, . . . , λN attached to the

points z1, . . . , zN , we denote by P
z;µ;λ
zk;α the polynomial in v

(i)
j,n expressing the ”no-

monodromy” condition at zk corresponding to the root α ∈ ∆+ . We have the
following result:

Theorem 2.11. [5] For any N -tuple of pairwise distinct complex numbers z1, . . . , zN ∈
C and any regular µ the subalgebra Aµ(z1, . . . , zN ) ⊂ U(g)⊗N has a cyclic vector
in V(λi) = Vλ1 ⊗ · · · ⊗ VλN

. The annihilator of V(λi) in Aµ(z1, . . . , zN ) is gener-

ated by the no-monodromy conditions P
z;µ;λ
zk;α . In particular, the joint eigenvalues

of Aµ(z1, . . . , zN ) in Vλ (without multiplicities) are in one-to-one correspondence

with the monodromy-free opers from OpLG(P1)
(λi)
(zi);π(−µ) .

Remark. This theorem can be regarded as an inhomogeneous version of the
Bethe Ansatz conjecture. It turns to be much easier than the homogeneous

one since the polynomials P
z;µ;λ
zk;α form a regular sequence in the polynomial ring

C[OpLG(P1)
(λi)
(zi);π(−µ)] and hence one can check that the dimension of the quotient

ring coincides with the dimension of Vλ . There is no analogous argument for the
homogeneous Gaudin model.

The set of common zeroes of the restrictions P
z;0;λ
zk;α of the polynomials P

z;f ;λ
zk;α

to the subspace OpLG(P1)z ⊂ OpLG(P1)
λ
z;π(−f) is the set of monodromy-free opers

from OpLG(P1)
λ
z .

3. Main results

3.1. Formulation of the Main Theorem.

Theorem 3.2. The space of singular vectors in the tensor product of g-modules

V sing
λ is cyclic as an A(z)-module. The annihilator of V sing

λ in A(z) is generated

by the no-monodromy conditions P
z;0;λ
zk;α on opers from OpLG(P1)

λ
z .

This Theorem has an obvious corollary which is often referred to as Bethe ansatz
conjecture (in the Feigin-Frenkel form):

10



Corollary 3.3. There is a bijection between the set of joint eigenvalues of

A(z) (without multiplicities) on V sing
λ and the set of monodromy-free opers from

OpLG(P1)
λ
z .

Moreover, generically (e.g. for all real values of the parameters) there are no
multiplicities.

Corollary 3.4. For generic z1, . . . , zN ∈ C the subalgebra A(z) ⊂ U(g)⊗N has

simple spectrum in V sing
λ = (Vλ1 ⊗ · · · ⊗ VλN

)sing . Hence the joint eigenvectors

for higher Gaudin Hamiltonians in V sing
λ are in one-to-one correspondence with

monodromy-free opers from OpLG(P1)
λ
z . All real z1, . . . , zN are generic in this

sense.

Proof. It is proved in [5] that for real values of the parameters z and µ , the
algebra Aµ(z) acts on Vλ by Hermitian operators hence diagonalizable. On the

other hand, by the Main Theorem, A(z) has a cyclic vector in V sing
λ . Hence for

real z the algebra A(z) acts with simple spectrum on V sing
λ . The latter is a Zariski

open condition on the parameters hence the assertion. �
3.5. Proof of the Main Theorem. Let e, f, h be a principal sl2 -triple in g such
that h ∈ h and e ∈ n+ . Then f is a regular element of g . Consider the subal-
gebra Af (z) ⊂ U(g)⊗N . The operator ad diag(h) defines a grading on U(g)⊗N =⊕
k∈Z

U(g)⊗N
k , where U(g)⊗N

k := {x ∈ U(g)⊗N | diag(h)x− x diag(h) = 2kx} . This

grading induces an increasing filtration on U(g)⊗N such that U(g)(k) :=
⊕
i≤k

U(g)k ,

k ∈ Z . Note that Af (z) ⊂ U(g)(0) , hence we get a bounded increasing filtration on
Af (z). The associated graded grAf (z) is naturally a commutative subalgebra in

grU(g)⊗N = U(g)⊗N and is clearly the same as the limit lim
t−→0

Atf (z). The 0-th

graded component of this subalgebra is A(z) ⊂ U(g)⊗N .
Consider the action of Af (z) on Vλ . By [5], Vλ is cyclic as a Af (z)-module. The

operator diag(h) defines a grading on Vλ which agrees with the grading of U(g)⊗N

defined above and with the decomposition into g-isotypic components with respect
to the diagonal g-action Vλ =

⊕
ν Iν (here Iν = mνVν are isotypic components

with respect to diagonal g). Clearly we have V
n+
λ =

⊕
ν
Itopν (here the superscript

top means the top degree part with respect to the diag(h)-grading). Now we

want to deduce the cyclicity of Itopν with respect to A(z) from the cyclicity of Vλ
with respect to Af (z). The main difficulty is that the decomposition Vλ =

⊕
ν Iν

does not agree with the action of Af (z). However, the following holds (and it is
sufficient for our purposes):

Lemma 3.6. There is a decomposition Vλ =
⊕

ν Jν such that it is preserved by
Af (z) and grJν = Iν .

Proof. The isotypic components Iν are the joint eigenspaces for the center Z
of the diagonal U(g). Since the direct sum is finite Vλ =

⊕
ν Iν , it is in fact

the decomposition into the eigenspaces for a single (sufficiently generic) element

C ∈ Z . Since Z ⊂ A(z) ⊂ grAf (z), for any C ∈ Z there exists C̃ ∈ Af (z)
11



such that C̃ = C + N where degN < 0. Consider πλ(C̃), the image of C̃ in

End(Vλ). We have the Jordan decomposition πλ(C̃) = πλ(C̃)s + πλ(C̃)n where

both πλ(C̃)s and πλ(C̃)n are polynomials of πλ(C̃), hence lie in πλ(Af (z)). Since

πλ(C) is semisimple and πλ(C̃)n is a nilpotent operator expressed as a polynomial

of πλ(C + N), we have deg πλ(C̃)n < 0. Hence πλ(C̃)s = πλ(C) modulo lower

degree. Hence the projectors to the eigenspaces of πλ(C̃)s are the the projectors
to the eigenspaces of C modulo lower degree. Thus the desired decomposition
of Vλ is the decomposition into the eigenspaces with respect to πλ(C̃)s for some
generic C ∈ Z . �

By [5], Vλ is cyclic as a Af (z)-module. Hence each Jν is cyclic with re-

spect to Af (z). In particular, the quotient J
(top)
ν /J

(top−1)
ν is cyclic with re-

spect to Af (z)/Af (z)(−1) = A(z). On the other hand, according to Lemma 3.6

J
(top)
ν /J

(top−1)
ν is isomorphic to Itopν = mνVnu

n+ as A(z)-module. Hence the space
of highest vectors of each diagonal g-isotypic component in Vλ is cyclic as A(z)-

module, and hence the whole space V sing
λ is a cyclic A(z)-module. The first

assertion of the Theorem is proved.
To prove the second assertion of the Theorem, we note that the filtration on the

coordinate ring C[OpLG(P1)z;π(−f)] defined by the isomorphism with Af (z) has,
according to Proposition 2.10, the following meaning in terms of opers: the degrees

of the generators are deg uj,n = −dj + n , deg v
(i)
j,n = 0. Hence the 0-th compo-

nent of grC[OpLG(P1)z;π(−f)] with respect to this filtration is C[OpLG(P1)z] . The
same holds for the quotients by the “no-monodromy” relations: the 0-th compo-

nent of grC[OpLG(P1)
λ
z;π(−f)] is C[OpLG(P1)

λ
z ] . The natural homomorphism from

C[OpLG(P1)
λ
z ] to the image of A(z) in End(V sing

λ ) is surjective by definition. For

the second assertion of the Theorem, it suffices to show the injectivity of this
homomorphism.

Lemma 3.7. Let L ⊂ Jν be any lifting of J
(top)
ν /J

(top−1)
ν to Jν . Then we have

Jν = L+Af (z)(−1)L.

Proof. It is sufficient to check that Iν = Itopν + grAf (z)(−1)I
top
ν , i.e. that the iso-

typic component of Vν is generated from its highest weight space by the negatively
graded part of grAf (z). We have grAf (z) ⊂ diag(Af ), the generators of Af are
either central or have negative degree, and by the results of [5] each Vν is generated
by Af from its highest vector. �

By Lemma 3.6, we have dimπλ(Af (z))/πλ(Af (z)−1) ≤ dimV sing
λ . On the

other hand, πλ(Af (z)) = C[OpLG(P1)
λ
z;π(−f)] by [5]. Hence dimC[OpLG(P1)

λ
z ] =

dim(C[OpLG(P1)
λ
z ]/C[OpLG(P1)

λ
z ]−1) ≤ dimV sing

λ . On the othe hand, by the first

assertion of the Theorem, the dimension of the image of A(z) in End(V sing
λ ) is

greater or equal to dimV sing
λ . Thus C[OpLG(P1)

λ
z ] and the image of A(z) in

End(V sing
λ ) have the same dimension and we are done. �
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4. Limiting Gaudin subalgebras.

The family A(z), as defined, is parameterized by a noncompact complex al-
gebraic variety of configurations of pairwise distinct points on the complex line.
On the other hand, every subalgebra is (in appropriate sense) a point of some
Grassmann variety which is compact. Hence there is a family of commutative sub-
algebras which extends the family A(z) and is parameterized by some compact
variety. In [18], we show that the closure of the family A(z) is parameterized by the
Deligne-Mumford compactification M0,N+1 of the moduli space of stable rational
curves with N + 1 marked points. The commutative subalgebras corresponding
to boundary points of M0,N+1 are described in [18] as follows.

For any partition of the set {1, 2, . . . , N} =M1∪ . . .∪Mk , define the homomor-
phism

DM1,...,Mk
: U(g)⊗k ↪→ U(g)⊗n,

taking x(i) ∈ U(g)⊗k , for x ∈ g, i = 1, . . . , k , to
∑

j∈Mi

x(j) .

For any subset M = {j1, . . . , jm} ⊂ {1, 2, . . . , N} , with j1 < . . . < jm , let
IM : U(g)⊗m ↪→ U(g)⊗n be the embedding of the tensor product of the copies

of U(g) indexed by M , i.e. IM (x(i)) := x(ji) ∈ U(g)⊗N for any x ∈ g, i =
1, . . . ,m . Clearly, all these homomorphisms are g-equivariant and every element
in the image of DM1,...,Mk

commutes with every element of IMi([U(g)⊗mi ]g) for
i = 1, . . . , k . This gives us the following “substitution” homomorphism defining
an operad structure on the spaces [U(g)⊗n]g

(10) γk;M1,...,Mk
= DM1,...,Mk

⊗
k⊗

i=1

IMi : [U(g)⊗k]g ⊗
k⊗

i=1

[U(g)⊗mi ]g
U(g)⊗N

−−−−−→
g

.

Proposition 4.1. [18] All subalgebras corresponding to boundary points of M0,N+1

are images of products of some A(z) under compositions of the homomorphisms
γ .

The proof of Theorem 3.18 of [18] shows that our Main Corollary implies that

the action of A(z) for any z ∈M0,N+1 on V sing
λ is cyclic. Hence A(z) has simple

spectrum on V sing
λ for any point z ∈ M0,N+1(R). We summarize this in the

following

Proposition 4.2. For any z ∈ M0,N+1 the subalgebra A(z) ⊂ U(g)⊗N has a

cyclic vector in V sing
λ = (Vλ1 ⊗ · · · ⊗ VλN

)sing . For any z ∈ M0,n+1(R) the subal-

gebra A(z) ⊂ U(g)⊗N has simple spectrum in V sing
λ = (Vλ1 ⊗ · · · ⊗ VλN

)sing .

Corollary 4.3. For any collection λ of dominant integral weights, the spectra of

the algebras A(z) with real z in the space V sing
λ form a unbranched covering of

M0,n+1(R).
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