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Abstract Let Fa
λ be the PBW degeneration of the flag varieties of type An−1. These varieties

are singular and are acted upon with the degenerate Lie group SLa
n . We prove that Fa

λ

have rational singularities, are normal and locally complete intersections, and construct
a desingularization Rλ of Fa

λ . The varieties Rλ can be viewed as towers of successive
P

1-fibrations, thus providing an analogue of the classical Bott–Samelson–Demazure–Hansen
desingularization. We prove that the varieties Rλ are Frobenius split. This gives us Frobenius
splitting for the degenerate flag varieties and allows to prove the Borel–Weil type theorem
for Fa

λ . Using the Atiyah–Bott–Lefschetz formula for Rλ, we compute the q-characters of
the highest weight sln-modules.

1 Introduction

Let g be a simple Lie group and G be the Lie group of g. Fix a Cartan decomposition
g = b ⊕ n−. Let ga and Ga be the degenerate Lie algebra and Lie group (see [6,7]). Namely,
ga = b ⊕ (n−)a , where (n−)a is an abelian ideal isomorphic to n− as a vector space and b

acts on (n−)a via the isomorphism (n−)a � g/b. The Lie group Ga is a semi-direct product
of the Borel subgroup B and the normal abelian group G

dim n
a , where Ga = (bC,+) is the

additive group of the field.
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56 E. Feigin, M. Finkelberg

Consider the complete flag variety F = G/B. This variety has a degenerate version Fa (see
[6,7]). In this paper we are concerned with the case G = SLn . We denote the corresponding
classical flag variety by Fn and the degenerate version by Fa

n . For simplicity, we consider
only the case of the complete flag varieties in the Introduction. However, in the main body of
the paper we work out the case of general (parabolic) flag varieties as well. The varieties Fa

n
are singular projective algebraic varieties, which can be explicitly described as follows. Fix
a basis w1, . . . , wn in an n-dimensional vector space W and define the projection operators
prd : W → W , prd(

∑n
i=1 ciwi ) = ∑

i �=d ciwi . Let us denote by Gr(d, n) the Grassmannian
of d-dimensional subspaces in W . Then Fa

n is the variety of collections (V1, . . . , Vn−1) of
subspaces, Vd ∈ Gr(d, n) such that

prd+1Vd ⊂ Vd+1, d = 1, . . . , n − 2.

The group Ga acts on Fa
n with an open G

dim n
a -orbit. The varieties Fn

a are flat degenerations
of the classical flags Fn . Our first theorem is as follows:

Theorem 1.1 The varieties Fa
n are normal locally complete intersections (in particular,

Cohen–Macaulay and even Gorenstein).

Recall (see [10,11]) that for each dominant integral g-weight λ there exists a ga-module
V a
λ which is the associated graded of Vλ with respect to the PBW filtration. Similar to the

classical situation (see [16]), there exists a map ıλ from Fa
n to the projectivization P(V a

λ ) (this
map is an embedding if λ is regular). Therefore, one can pull back the line bundles O(1)
from the projective space to Fa

n . We prove the following theorem, which is the degenerate
analogue of the Borel–Weil theorem:

Theorem 1.2 Let g = sln. For any dominant integral weight λ one has:

H0(Fa
n , ı∗λO(1))∗ � V a

λ , H>0(Fa
n , ı∗λO(1)) = 0.

We note that this theorem agrees with the fact that the varieties Fa
n are flat degenerations of

the classical flags Fn . Our main tool for the proof of Theorems 1.1 and 1.2 is an explicit
construction for desingularization of Fa

n . Namely, consider the variety Rn consisting of col-
lections of subspaces Vi, j , 1 ≤ i ≤ j ≤ n − 1 such that Vi, j ∈ Gr(i, n) and the following
conditions hold:

• Vi, j ⊂ span(w1, . . . , wi , w j+1, . . . , wn),
• Vi, j ⊂ Vi+1, j , Vi, j ⊂ Vi, j+1 ⊕ Cw j+1.

We show that Rn is a successive tower of P
1 fibrations (and thus smooth) and the map

πn : Rn → Fa
n sending (Vi, j )1≤i≤ j<n to (Vi,i )

n−1
i=1 is a birational isomorphism. Now the

degenerate Borel–Weil theorem follows from the following result:

Theorem 1.3 The varieties Fa
n and Rn over Fp are Frobenius split. The varieties Fa

n over
Fp and over C have rational singularities.

For the proof we use the Mehta–Ramanathan criterion [17]. Using the Atiyah–Bott–
Lefschetz formula [3,18] we deduce from Theorem 1.2 a q-character formula for the char-
acters of V a

λ (an analogue of the Demazure character formula). The formula is a sum of
contributions of the 2dim n torus fixed points in Rn .

An interesting problem is to generalize the whole picture to the case of arbitrary simple
Lie groups. However the only cases worked out so far are SLn and Sp2n (see [12]). The main
obstacle comes from the complicated structure of the PBW filtration, which is not understood
outside of types A and C .
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Degenerate flag varieties of type A: BW theorem 57

Our paper is organized as follows:
In Sect. 2 we recall main definitions and fix notations.
In Sect. 3 we construct the desingularizations Rλ for the degenerate flag varieties.
In Sect. 4 we prove that the varieties Fa

λ are normal locally complete intersections.
In Sect. 5 we prove that the varieties Fa

λ and their desingularizations are Frobenius split.
In Sect. 6 we prove that the varieties Fa

λ have rational singularities, and use the results of
the previous sections to deduce the analogue of the Borel–Weil theorem and the q-character
formula for V a

λ .

2 Definitions and notations

Let g be a simple Lie algebra. Fix a Cartan decomposition g = n ⊕ h ⊕ n−, b = h ⊕ n.
Let R+ be the set of positive roots for g and αd , ωd , d = 1, . . . , rk(g) be the simple roots
and fundamental weights (see [9]). For a positive root α we sometimes write α > 0 instead
of α ∈ R+. Let fα , α > 0 be an h-eigenbasis of n− and, similarly, eα for n. We denote by
G, B, N , T, N− the Lie groups of g, b, n, h, n−.

Let (n−)a be an abelian Lie algebra with the underlying vector space n−. The degenerate
Lie algebra ga is isomorphic to b⊕(n−)a , where both b and (n−)a are subalgebras, (n−)a is an
abelian ideal and the structure of the b-module on (n−)a � g/b is induced by the adjoint action
(see [6,7]). We denote the corresponding degenerate group by Ga . Thus, Ga � B � (N−)a ,
where (N−)a is an abelian Lie group with the Lie algebra (n−)a , (N−)a � G

M
a , where

Ga = (C,+) is the additive group of the field and M = dim n is the number of positive
roots.

Let λ be a dominant integral weight of g and let Vλ be the corresponding irreducible g-
module with a highest weight vector vλ. We have nvλ = 0, hvλ = λ(h)vλ and Vλ = U (n−)vλ.
We denote by Fλ the generalized flag variety:

Fλ = G · Cvλ = N− · Cvλ ⊂ P(Vλ).

For example, for g = sln the varieties Fωd are isomorphic to the Grassmannians Gr(d, n)
and for regular λ ((λ, ωd) > 0 for all d) the corresponding flag variety Fλ is isomorphic to
the variety of complete flags in C

n . Denote by U (n−)k the PBW (standard) filtration of the
universal enveloping algebra U (n−):

U (n−)k = span(x1 . . . xl , xi ∈ n−, l ≤ k).

The PBW filtration U (n−)kvλ on Vλ is induced by the degree filtration. We denote by V a
λ

the associated graded module:

V a
λ =

⊕

k≥0

V a
λ (k) =

⊕

k≥0

U (n−)kvλ/U (n−)k−1vλ.

The q-character of Vλ (the character of V a
λ ) is defined by the formula

chq V a
λ =

∑

k≥0

qkchVλ(k).

It is easy to see that the structure of g-module on Vλ induces the structures of ga- and
Ga-module on V a

λ . In particular, V a
λ = C[ fα]α>0vλ. The corresponding degenerate flag

variety Fa
λ ⊂ P(V a

λ ) is defined as the closure of the orbit of the line containing vλ:

Fa
λ = Ga · Cvλ = (N−)a · Cvλ.
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58 E. Feigin, M. Finkelberg

In particular, Fa
λ are the G

M
a -varieties (see [1,2,15]).

It is convenient to consider an extension ga ⊕ Cd of the algebra ga , where d is the PBW
grading operator, i.e. [d, b] = 0 and [d, fα] = fα for any positive α. All the ga-modules
V a
λ can be made into the ga ⊕ Cd-modules by setting d = k on V a

λ (k). The corresponding
extended group is Ga

�C
∗. In particular, the torus acting on P(V a

λ ) is of dimension rk(g)+1.
From now on we fix g = sln , G = SLn . Then all positive roots are of the form αi, j =

αi + . . .+ α j , 1 ≤ i ≤ j < n. We denote the corresponding elements fαi, j and eαi, j by fi, j

and ei, j .

Example 2.1 Let λ = ωd . Then V a
ωd

= ⊕min(d,n−d)
k=0 V a

ωd
(k). The space V a

ωd
(k) has a basis

w(S) labeled by collections S = (l1 < . . . < ld) such that 1 ≤ li ≤ n and #{i : li > d} = k.
We note thatw(S) are the images of the wedgeswl1 ∧. . .∧wld . The operators fi, j act trivially
on V a

ωd
unless i ≤ d ≤ j . If this condition is satisfied, then fi, j acts via the usual formula for

the action on a wedge power. Similarly, the operators ei, j act trivially unless i > d or j < d .
The non-trivial operators act by the usual formula.

In contrast with the classical situation, a representation V a
ωd

is no longer isomorphic to
∧d

(V a
ω1
). However, V a

ωd
can be constructed as a wedge power of another ga-module. Namely,

let W (d) be an n-dimensional vector space with a basis w1, . . . , wn . We define a structure
of ga-module on W (d) as follows: fi, j acts trivially unless i ≤ d ≤ j and ei, j acts trivially
unless j < d or i > d . The non-trivial operators act by the usual formulas:

fi, jwk = δi,kw j+1, ei, jwk = δ j+1,kwi .

Then V a
ωd

� ∧d
(W (d)). The following simple lemma will be important for us:

Lemma 2.2 For all 1 ≤ i ≤ j < n the subspaces span(wi+1, . . . , w j ) ⊂ W (i) are
ga-invariant, making the quotients

Wi, j = W (i)/span(wi+1, . . . , w j )

into ga- and Ga-modules.

In what follows we denote the images in Wi, j of the basis vectors wk by the same symbols
wk . For instance, (the images of) w1, . . . , wi , w j+1, . . . , wn form a basis of Wi, j .

Example 2.3 Let λ = ωd . Then Fa
ωd

� Fωd � Gr(d, n) (since the radical in sln correspond-
ing to any fundamental weight is abelian, i.e. fundamental representations are cominuscule).
The torus T acts on Gr(d, n) with a finite number of fixed points, which are labeled by
collections S = (l1, . . . , ld) with 1 ≤ l1 < . . . < ld ≤ n. Let p(S) ∈ Gr(d, n) be the
corresponding point, i.e. p(S) = Cw(S) ∈ P(V a

ωd
). Then Gr(d, n) is the disjoint union of

affine cells Ga · p(S). We note however that these cells are different from the classical ones
B · p(S). Namely, let k be a number such that lk ≤ d < lk+1 and let Td : W → W be an
isomorphism given by

Tdw1 = wd+1, . . . , Tdwn−d = wn, Tdwn−d+1 = w1, . . . , Tdwn = wd .

Then

Ga · p(S) = Td (B · p(lk+1 − d, . . . , ld − d, l1 − d + n, . . . , lk − d + n)) ,

where B acts on Gr(d, n) classically (i.e. as a subgroup of SLn). We note that B considered
as a subgroup of Ga acts on Gr(d, n), but this action is different from the classical one (for
instance, for n = 2 the subgroup B ⊂ SLa

2 acts trivially on P
1). We denote a cell Ga · p(S)

by C(S).
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Degenerate flag varieties of type A: BW theorem 59

For general λ the varieties Fa
λ are not isomorphic to the classical flag varieties. These

varieties enjoy an explicit description as subvarieties inside the product of Grassmannians.
We first consider the case of the complete flag varieties, corresponding to the case of regular
λ. These varieties do not depend on (regular) λ. We denote them by Fa

n .
Let w1, . . . , wn be the standard basis of the fundamental vector representation W = Vω1 .

We denote by prd : W → W the projection operators defined by prd(
∑n

i=1 ciwi ) =∑
i �=d ciwi . In what follows we will need the following properties of Fa

n (see [6,7]).

Proposition 2.4 (1) The degenerate complete flag varieties Fa
n are flat degenerations of the

classical flag varieties Fn.
(2) The variety Fa

n can be realized inside the product of Grassmannians
∏n−1

d=1 Gr(d, n) as
a subvariety of collections (Vd)

n−1
d=1 satisfying:

prd+1Vd ⊂ Vd+1, d = 1, . . . , n − 2.

(3) The variety Fa
n has a cell decomposition

⊔

S1,...,Sn−1

(

Fa
n ∩

n−1∏

i=1

C(Si )

)

,

where the disjoint union is taken over the collections S1, . . . , Sn−1 of subsets Si ⊂ {1, . . . , n}
such that #Si = i and Si ⊂ Si+1 ∪ {i + 1}.

There is an analogue of Proposition 2.4 for the degenerate partial flag varieties. First we
note that Fa

λ � Fa
μ if and only if (λ, ωd ) > 0 is equivalent to (μ, ωd) > 0 for any d . Therefore,

it suffices to consider the weights λ = ωd1 + . . . + ωdk with 1 ≤ d1 < . . . < dk < n and
the corresponding degenerate flag varieties Fa

λ , which we denote by Fa
(d1,...,dk )

, or simply by
Fa

d, where d = (d1, . . . , dk). We recall that the classical analogues Fd are isomorphic to the
partial flag varieties, i.e. to the varieties consisting of collections of subspaces V1, . . . , Vk

such that dim Vi = di and Vi ⊂ Vi+1. For 1 ≤ p ≤ q < n we define the operators
prp,q : W → W via the formula

prp,q

⎛

⎝
n∑

j=1

c jw j

⎞

⎠ =
∑

j<p

c jw j +
∑

j≥q

c jw j .

Then the following proposition holds:

Proposition 2.5 (1) The degenerate partial flag varieties Fa
d are flat degenerations of the

classical partial flag varieties Fd.
(2) The variety Fa

d can be realized inside the product of Grassmannians
∏k

i=1 Gr(di , n) as
a subvariety of collections (Vdi )

k
i=1 satisfying:

prdi +1,di+1 Vdi ⊂ Vdi+1 , i = 1, . . . , k − 1.

(3) The variety Fa
d has a cell decomposition

⊔

S1,...,Sk

(

Fa
d ∩

k∏

i=1

C(Si )

)

,

where the disjoint union is taken over the collections S1, . . . , Sk of subsets Si ⊂ {1, . . . , n}
such that #Si = di and Si ⊂ Si+1 ∪ {di + 1, . . . , di+1}.
Remark 2.6 The image of the embedding Fa

d ⊂ ∏k
i=1 Gr(di , n) can be also described in

terms of the degenerate Plücker relations [6], similar to the classical ones [8].
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60 E. Feigin, M. Finkelberg

3 Desingularization

3.1 Definition

We define a desingularization Rn of the complete degenerate flag varieties Fa
n as follows. Let

Wi, j ⊂ W be the linear span of the vectors w1, . . . , wi , w j+1, . . . , wn .

Definition 3.1 The variety Rn consists of collections V of subspaces Vi, j ⊂ W , 1 ≤ i ≤
j ≤ n − 1 satisfying the following properties:

(i) dim Vi, j = i ,
(ii) Vi, j ⊂ Wi, j ,

(iii) pr j+1Vi, j ⊂ Vi, j+1 ⊂ Vi+1, j+1 for all 1 ≤ i ≤ j ≤ n − 2.

Remark 3.2 Since the subspace Vi, j is embedded into Wi, j , the condition pr j+1Vi, j ⊂ Vi, j+1

is equivalent to the condition

Vi, j ⊂ Vi, j+1 ⊕ Cw j+1.

Remark 3.3 In what follows we often identify pairs (i, j)with positive roots of sln , (i, j) →
αi, j . We also sometimes consider a space Vi, j as being attached to the root αi, j and we write
Vαi, j for Vi, j .

We note that Rn is naturally embedded into the product of Grassmannians

Rn ↪→
∏

1≤i≤ j≤n−1

Gr(i,Wi, j ),

where Gr(i,Wi, j ) is the Grassmannian of i-dimensional subspaces in Wi, j . Define the map
πn : Rn → ∏n−1

i=1 Gr(i, n) by the formula

V = (Vi, j )1≤i≤ j≤n−1 �→ (V1,1, . . . , Vn−1,n−1). (3.1)

Proposition 3.4 The image of πn is equal to Fa
n . The variety Rn is smooth and the map

πn : Rn → Fa
n is a birational isomorphism.

Proof We note that if V ∈ Rn then

pri+1Vi,i ⊂ Vi,i+1 ⊂ Vi+1,i+1

and thus πn(Rn) ⊂ Fa
n . Now given an element (V1, . . . , Vn−1) ∈ Fa

n , we define a collection
V via the following inductive procedure: Vi,i = Vi and

Vi, j+1 =
{

pr j+1Vi, j , if dim pr j+1Vi, j = i,
pr j+1Vi, j ⊕ Cwm, if dim pr j+1Vi, j = i − 1,

where m ∈ {1, . . . , i} is the minimal number such that wm /∈ pr j+1Vi, j . Then it is easy to
see that V = (Vi, j ) belongs to Rn . Hence πn surjects Rn to Fa

n .
Now we show that Rn can be viewed as a tower of P

1-fibrations. Let us order all positive
roots of sln as follows:

β1 = α1,n−1, β2 = α1,n−2, β3 = α2,n−1, β4 = α1,n−3, β5 = α2,n−2, . . . .

Let Rn(k), k = 1, . . . , n(n − 1)/2 be the variety of collections (Vβl )l=1,...,k , satisfying
properties (i), (ii), (iii) from Definition 3.1 [conditions (i), (ii) and (iii) are applied only to those
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Degenerate flag varieties of type A: BW theorem 61

Vi, j which show up in Rn(k), i.e. for βl = αi, j one has l ≤ k]. Then Rn(n(n − 1)/2) = Rn

and there exist obvious projections Rn(k) → Rn(k − 1). We prove that for all k ≥ 1 the
projections Rn(k) → Rn(k − 1) are fibrations with fibers P

1 (we set Rn(0) = pt).
For k = 1 we have β1 = α1,n−1 and Vβ1 is a one-dimensional space embedded into two-

dimensional space span(w1, wn−1). Therefore Rn(1) � P
1. Now fix some k. Let βk = αi, j .

First, let i �= 1, j �= n −1. Then the i-dimensional subspace Vi, j has to satisfy the conditions

Vi−1, j ⊂ Vi, j ⊂ Vi, j+1 ⊕ Cw j+1 (3.2)

(see Remark 3.2). Suppose we have fixed all subspaces Vβl with l < k (i.e. a point of
Rn(k − 1)). Since Vi−1, j and Vi, j+1 are already fixed, conditions (3.2) say that the possible
choices of Vi, j are labeled by points of

P
1 � P

(
Vi, j+1 ⊕ Cw j+1

Vi−1, j

)

.

Second, let i = 1. Then we have to fix a one-dimensional subspace V1, j living in a two-
dimensional space V1, j+1 ⊕Cw j+1. This gives us again a P

1-fibration. Finally, let j = n −1.
Then we need to fix an i-dimensional subspace Vi,n−1 subject to the conditions

Vi−1,n−1 ⊂ Vi,n−1 ⊂ span(w1, . . . , wi , wn),

which again produces P
1.

It remains to prove that the map πn : Rn → Fa
n is a birational isomorphism. Consider the

subvariety U ⊂ Fa
n consisting of all collections of subspaces (Vi )

n−1
i=1 such that dim Vi = i

and

dim pri+1 . . . prn−1Vi = i

(i.e. the composition of the projections as above has no kernel on Vi ). First note that these
conditions cut out an open subvariety in Fa

n (in fact it is easy to see that U is an affine cell).
In addition, the preimage π−1

n (Vi )
n−1
i=1 consists of a single point, since

Vi, j ⊂ pr j . . . pri+1Vi,i

and both spaces are i-dimensional. ��
Remark 3.5 As we have seen in the proof of Proposition 3.4, the variety Rn can be constructed
as a tower of successive P

1-fibrations ρk : Rn(k) → Rn(k − 1). We can make this statement
a bit stronger. Let us write ρk = ρi, j if βk = αi, j . Then it is easy to see that the maps ρi, j

with fixed j − i “commute”, i.e. for each m = n − 1, . . . , 1 there exist maps

ρ̄m : Rn(m(m + 1)/2) → Rn((m − 1)m/2),

which are the (P1)m fibrations, and ρ̄m = ∏m
i=1 ρi,i+n−m−1.

Denote by ξi, j : Rn → Gr(i,Wi, j ) the projection given by V �→ Vi, j .

Lemma 3.6 For any k = 0, . . . , n − 2 the image of the map
∏

j−i=k ξi, j is isomorphic
to Fa

n−k .

Proof Recall that Vi, j ⊂ Wi, j . Consider an isomorphism

Ai, j : Wi, j → span(w1, . . . , wn− j+i )
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62 E. Feigin, M. Finkelberg

defined by

Ai, j (c1w1 + . . .+ ciwi + c j+1w j+1 + . . .+ cnwn)

= c1w1 + . . .+ ciwi + c j+1wi+1 + . . .+ cnwn− j+i .

Then it is easy to see that this map induces the isomorphism stated in our lemma. ��
Corollary 3.7 We have an embedding Rn ↪→ ∏n−1

k=1 Fa
k .

Corollary 3.8 The varieties Rn(k(k + 1)/2) and Rk are isomorphic.

Proof We note that the spaces involved in the construction of Rn(k(k + 1)/2) are exactly
Vi, j with j − i ≥ n − k − 1. Now the maps Ai, j as above induce the desired isomorphism.

��
We now consider the case of partial flag varieties Fa

d (recall the notation d = (d1, . . . , dk)).
Let P(d1,...,dk ) = Pd be the subset of the set of positive roots of sln corresponding to the radical
of the parabolic subalgebra defined by the simple roots αd1 , . . . , αdk , i.e.

Pd = {αi, j : ∃ l such that (αi, j , ωdl ) > 0}.
We sometimes consider Pd as a subset of N

2 identifying αi, j with the pair (i, j). Let Rd be
the image of the map

∏

(i, j)∈Pd

ξi, j : Rn →
∏

(i, j)∈Pd

Gr(i,Wi, j ).

More concretely, Rd is the variety of collections Vi, j ⊂ W with (i, j) ∈ Pd satisfying
conditions

(i) dim Vi, j = i ,

(ii) Vi, j ⊂ Wi, j ,

(iii) pr j+1Vi, j ⊂ Vi, j+1 if (i, j), (i, j + 1) ∈ Pd,

(iv) Vi, j+1 ⊂ Vi+1, j+1 if (i, j + 1), (i + 1, j + 1) ∈ Pd

from Definition 3.1. Obviously, Rn surjects to Rd by forgetting all components Vi, j but those
with (i, j) ∈ Pd.

Proposition 3.9 For any d the variety Rd is smooth and a natural map Rd → Fa
d defined

by forgetting the off-diagonal (i �= j ) subspaces Vi, j is a desingularization (a birational
isomorphism).

Proof The proof is very similar to the proof for the complete flag varieties. ��
Remark 3.10 In the Introduction the varieties Rd are denoted by Rλ with λ = ωd1 +. . .+ωdk .

3.2 Cell decomposition for Rn

In this section we construct a cell decomposition for Rn which is compatible with the cell
decomposition for Fa

n (i.e. the map πn is cellular).

Lemma 3.11 The group Ga acts naturally on each Gr(i,Wi, j ). The number of Ga-orbits is
finite and the orbits are labeled by torus fixed points. Each orbit is an affine cell.
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Degenerate flag varieties of type A: BW theorem 63

Proof Fix a pair 1 ≤ i ≤ j ≤ n − 1. Recall that Vi, j ⊂ Wi, j . Therefore, Vi, j can be
considered as a point in P(

∧i
(Wi, j )). The spaces

∧i
(Wi, j ) carry a natural structure of

ga- and Ga-modules (see Lemma 2.2). This produces a Ga-action on P(
∧i
(Wi, j )) and thus

on the variety Gr(i,Wi, j ) of i-dimensional subspaces of Wi, j .
Let us consider the smaller group SLa

n− j+i . Using the maps Ai, j from Lemma 3.6 we
endow Wi, j and all its wedge powers with the standard structure of SLa

n− j+i -modules [we

identify
∧k
(Wi, j ) with the SLa

n− j+i -modules V a
ωk

]. Let φ : SLa
n− j+i → GL(

∧k
(Wi, j ))

be the representation map and also let ψ : SLa
n → GL(

∧k
(Wi, j )) be the map defining the

Ga action on
∧k
(Wi, j ). It is easy to see that the images of φ and ψ coincide. Therefore,

Example 2.3 (applied to the group SLa
n− j+i ) implies the statement of our Lemma. ��

We note that the torus fixed points in the Grassmannian of i-dimensional subspaces in
Wi, j are labeled by the sequences

S = (l1 < . . . < li ) ⊂ {1, . . . , i, j + 1, . . . , n}.
In what follows we denote the corresponding point by p(S). We also denote the corresponding
orbit Ga · p(S) ⊂ Gr(i,Wi, j ) by C(S).

Recall that Rn sits inside
∏

1≤i≤ j≤n−1 Gr(i,Wi, j ). The group Ga acts on this product via
the action on each factor.

Lemma 3.12 The variety Rn is invariant with respect to this action and πn : Rn → Fa
n is

Ga-equivariant.

Proof First, take b ∈ B ⊂ Ga and fix a point V = (Vi, j ) ∈ Rn . We need to show that for
any 1 ≤ i ≤ j ≤ n − 1

bVi−1, j ⊂ bVi, j ⊂ bVi, j+1 ⊕ Cw j+1. (3.3)

We note that Wi−1, j ⊂ Wi, j and the B-action on Wi−1, j is a restriction of the action on Wi, j .
Therefore, the first embedding in (3.3) follows. To prove the second embedding we note that
Cw j+1 is a b-submodule in Wi, j and the quotient module is isomorphic to Wi, j+1.

Now take g ∈ (N−)a . We need to prove that for any 1 ≤ i ≤ j ≤ n − 1

gVi−1, j ⊂ gVi, j ⊂ gVi, j+1 ⊕ Cw j+1.

The proof is very similar to the proof of (3.3) and we omit it. ��
Let S = (Si, j )1≤i≤ j≤n−1 be a collection of sets such that #Si, j = i and Si, j ⊂

{1, . . . , i, j + 1, . . . , n}. We call such a collection admissible if

Si−1, j ⊂ Si, j ⊂ Si, j+1 ∪ { j + 1}. (3.4)

The following lemma is simple, but important for us.

Lemma 3.13 A point p(S)= ∏
1≤i≤ j≤n−1 p(Si, j ) belongs to Rn if and only if S is admissible.

If a point p = ∏
1≤i≤ j<n pi, j , pi, j ∈ C(Si, j ) belongs to Rn, then the collection S = (Si, j )

is admissible. ��
For an admissible collection S we introduce the notation

C(S) = Rn ∩
∏

1≤i≤ j≤n−1

C(Si, j ).
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We have the decomposition

Rn =
⋃

admissible S

C(S).

Our next goal is to show that C(S) is an affine cell and to compute it dimension.
For a number l, −n < l ≤ n we set l = l if l > 0 and l = l + n otherwise. So 1 ≤ l ≤ n.

Theorem 3.14 C(S) is an affine cell for any admissible S. The map πn is cellular, mapping
C(S) to C(S1,1, . . . , Sn−1,n−1).

Proof We need to do two things: first, to construct coordinates on a cell C(S) and, second,
to construct coordinates on each fiber of the map

C(S) → C(S1,1, . . . , Sn−1,n−1)

such that this map becomes a trivial fibration with an affine fiber. We start with the first part.
We want to construct coordinates on C(S). Namely, we need to attach coordinates to

collections of subspaces (Vi, j )1≤i≤ j<n ∈ Rn . We do it by decreasing induction on j − i . We
start with j − i = n − 2, i.e. i = 1, j = n − 1. Then either S1,n = (n) or S1,n = (1). In
the first case the cell C((n)) is a point and in the second case V1,n−1 is spanned by a single
vector v1 + avn and a is our first coordinate. Assume that we have attached coordinates to
all subspaces Vi, j with j − i > k and we proceed with j − i = k. We consider three cases.

Let i = 1. Then the only condition we have is V1, j ⊂ V1, j+1 ⊕ Cv j+1. Let S1, j = (l).
There are two cases: l = j + 1 and l �= j + 1. In the first case we do not have to add any
coordinates, since C(( j + 1)) ⊂ Gr(1,W1, j ) is a point. Let l �= j + 1 and let v ∈ V1, j+1 be
a basis vector. Then a basis vector for V1, j is of the form v + aw j+1 and therefore we have
added one more coordinate.

Let j = n − 1. Then we have the condition Vi−1,n−1 ⊂ Vi,n−1. We know that Si,n−1 =
Si−1,n−1 ∪ {l}. There are two cases: l = i and l �= i . First, let l = i . Let m = {1, . . . , i −
1, n}\Si−1,n . Since Vi−1,n is (i − 1)-dimensional, we need to specify one more basis vector
in Vi,n−1 in order to fix it. This basis vector has to be of the form

wi + ci−1wi−1 + . . .+ c1w1 + cnwn, ck ∈ C

We note that by adding an appropriate vector from Vi−1,n−1, any vector of the form as above
can be reduced to wi + awm . This gives one additional coordinate. Second, let l �= i . Then
l = {1, . . . , i − 1, n}\Si−1,n . A basis vector we have to add to Vi−1,n−1 in order to fix Vi,n−1

is of the form

wl + cl−1wl−1 + . . .+ c1w1 + cnwn, ck ∈ C.

Since wi never appears in the decomposition as above, such a vector (modulo Vi−1,n−1) is
equal to wl and we do not have to add a coordinate.

Let i > 1, j < n − 1. Then we have

Si−1, j ⊂ Si, j ⊂ Si, j+1 ∪ { j + 1}, Vi−1, j ⊂ Vi, j ⊂ Vi, j+1 ⊕ Cw j+1.

First, let Si, j = Si, j+1, i.e. j + 1 /∈ Si, j . Let l = Si, j \Si−1, j . Then a basis vector we have to
add to Vi−1, j in order to fix Vi, j is of the form

wl + cl−1wl−1 + . . .+ c1w1 + cnwn + . . .+ c j+1w j+1.

Since this vector has to belong to Vi, j+1, the only freedom we have is a coefficient c j+1 (note
that l �= j + 1). Therefore, we have to add one additional coordinate in this case. Second, let
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Si, j �= Si, j+1, i.e. j + 1 ∈ Si, j . Then Si, j = Si, j+1\{m} ∪ { j + 1}. Recall l = Si, j \Si−1, j .
A basis vector we have to add to Vi−1, j in order to fix Vi, j is of the form

wl + cl−1wl−1 + . . .+ c1w1 + cnwn + . . .+ c j+1w j+1. (3.5)

Recall that for a number l, −n < k ≤ n we set l = l if l > 0 and l = l+n otherwise. There are
two cases now: l − j < m − j and l − j > m − j . Let l − j < m − j . Then the vector wm

never appears in the decomposition (3.5) and therefore there exists a single vector in Vi, j+1

of the form (3.5). Thus no new coordinates have to be added. Finally, let l − j > m − j .
Then a vector wm is present in (3.5). Therefore, there exists exactly one-parameter family of
vectors in Vi, j+1 of the form (3.5). Thus one additional coordinate has to be added.

To complete the proof of the theorem we need to construct coordinates on the fibers of the
map C(S) → C(S1,1, . . . , Sn−1,n−1). To do this, one need to fix a collection of subspaces
Vi,i ∈ C(Si,i ) such that (Vi,i )

n−1
i=1 ∈ Fa

n and then start looking at all possible values of other
Vi, j ∈ C(Si, j ) moving from lower values of j − i to higher ones. The procedure is very
similar to the one worked out above, so we omit the details. ��
Corollary 3.15 For an admissible S the dimension of the cell C(S) is equal to the sum of
n(n − 1)/2 terms gi, j labeled by pairs 1 ≤ i ≤ j ≤ n − 1. Each summand is either 0 or 1
and is given by the following rule:

• Let i = 1, j = n − 1. If S1,n = (1), then g1,n−1 = 1. Otherwise g1,n−1 = 0.
• Let i = 1 and S1, j = (l). If l �= j + 1, then gi, j = 1. Otherwise gi, j = 0.
• Let j = n − 1. Let {l} = Si,n−1\Si−1,n−1. If l = i , then gi, j = 1. Otherwise gi, j = 0.
• Let i > 1 and j < n − 1.

If j + 1 /∈ Si, j , then gi, j = 1.
If j + 1 ∈ Si, j , set l = Si, j \ Si−1, j , m = Si, j+1 \ Si, j . If l − j > m − j , then

gi, j = 1. Otherwise gi, j = 0.

Proof Follows from the explicit construction of the coordinates on C(S). ��
Corollary 3.16 The relative dimension dim C(S) − dim C(Si,i )

n−1
i=1 is equal to the sum of

(n − 1)(n − 2)/2 terms hi, j labeled by pairs 1 ≤ i < j ≤ n − 1. Each summand is either 0
or 1 and is given by the following rule. Let l = Si, j \Si, j−1, m = Si+1, j \Si, j . Then hi, j = 0
if and only if m − j < l − j and j ∈ Si, j−1.

Proof Follows from the explicit construction of the coordinates on C(S). ��
We note that the desingularization πn is small up to n = 4, semismall up to n = 7, but

not semismall starting from n = 8.
Finally, we note that Theorem 3.14 as well as Corollaries 3.15 and 3.16 have their obvious

parabolic analogues. Namely, let us call a collection S = (Si, j )(i, j)∈Pd d-admissible, if
condition (3.4) holds provided the corresponding pairs of indices are in Pd. Then the following
theorem holds:

Proposition 3.17 (1) Rd is a disjoint union of the cells

⊔

d−admissible S

⎛

⎝Rd ∩
∏

(i, j)∈Pd

C(Si, j )

⎞

⎠ .

(2) The map Rd → Fa
d is cellular.

(3) The dimensions and relative dimensions are equal to the sum of terms gi, j and hi, j from
Corollaries 3.15 and 3.16 with (i, j) ∈ Pd.
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4 Normality

4.1 Complete flag varieties

We first construct a quiver realization of the complete degenerate flag varieties. Let
W1, . . . ,Wn−1,Wn be a collection of fixed spaces with dim Wi = i . Additionally, we fix a
basis e1, . . . , en in Wn and the projections prk along ek . We now construct an affine scheme
Qn as follows. A point of Qn is a collection of linear maps

Ai : Wi → Wn, i = 1, . . . , n − 1, B j : W j → W j+1, j = 1, . . . , n − 2

subject to the relations

Ai+1 Bi = pri+1 Ai , i = 1, . . . , n − 2. (4.1)

The following picture illustrates the construction:

We also consider an open part Q◦
n ⊂ Qn consisting of collections (Ai , B j ) such that

ker Ai = 0 for all i . The group  = ∏n−1
i=1 GL(Wi ) acts freely on Q◦

n via the change of
bases. Consider the map

Q◦
n → Fa

n , (Ai , B j ) �→ (Im A1, . . . , Im An−1).

Lemma 4.1 The map Q◦
n → Fa

n is locally trivial -torsor in the Zariski topology. The
dimension of Q◦

n (and thus of Qn) is equal to n(n − 1)/2 + 12 + 22 + . . .+ (n − 1)2.

Proof Consider the embedding Fa
n ↪→

∏n−1
d=1 Gr(d, n). For a point p ∈ Fa

n let U � p be an
open part of

∏n−1
d=1 Gr(d, n) such that all tautological bundles on Grassmannians are trivial on

U . Let U ′ = U ∩Fa
n . Then on U ′ the map Q◦

n → Fa
n has a section. Now using the action on

Qn we obtain that Q◦
n → Fa

n is-torsor. In particular, dim Q◦
n = dim Qn = dim Fa

n +dim .
��

We note that Qn is a subscheme in the affine space

n−1∏

i=1

Hom(Wi ,Wn)×
n−2∏

i=1

Hom(Wi ,Wi+1). (4.2)

Lemma 4.2 Qn is a complete intersection.

Proof The condition Ai+1 Bi = pri+1 Ai produces n × i equations (the number of equations
is equal to dim Hom(Wi ,Wn)). Now our lemma follows from the equality

dim Qn =
n−1∑

i=1

ni +
n−2∑

i=1

i(i + 1)−
n−2∑

i=1

ni.

��
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Theorem 4.3 The degenerate flag varieties Fa
n are normal locally complete intersections (in

particular, Cohen–Macaulay and even Gorenstein).

Proof Since Q◦
n → Fa

n is a torsor, it suffices to prove that Q◦
n is a normal reduced scheme

(i.e. a variety). Since Q◦
n is locally complete intersection, the property of being reduced

(resp. normality) of Q◦
n follows from the fact that the singularities of Q◦

n are contained in the
subvariety of codimension at least two by the virtue of Proposition 5.8.5 (resp. Theorem 5.8.6)
of [13]. Using again that Q◦

n → Fa
n is a torsor, it suffices to prove that the codimension of the

variety of singular points of Fa
n is at least two. We prove this statement in a separate lemma.

��
Lemma 4.4 Fa

n is smooth off codimension two.

Proof There are two ways to prove the statement. The first one uses the representation theory
of quivers and is worked out in [5], Theorem 5.5. The second way is more direct. Namely,
let us use the desingularization πn : Rn → Fa

n . Since Rn is smooth, it suffices to show that
that the map πn is an isomorphism on all cells of (complex) codimension one. Dimension
counting from Corollary 3.15 implies that the codimension one cells are labeled by pairs
1 ≤ a ≤ b ≤ n − 1 and the collection S = (Si, j ) corresponding to a pair (a, b) is as follows:

Si, j =
{ {1, 2, . . . , i} if (i < a or j > b),

{1, 2, . . . , i}\{a} ∪ {b + 1}, otherwise.
(4.3)

It is easy to see from Corollary 3.16 that the resolution map πn is an isomorphism on such
cells. ��
4.2 Parabolic flag varieties

Our goal is to generalize the results from the previous subsection to the case of the general
parabolic degenerate flag varieties. So let d = (d1, . . . , dk) be a collection with 1 ≤ d1 <

. . . < dk ≤ n. We define an affine scheme Qd as follows. As above, we fix the spaces Wdi ,
i = 1, . . . , k with dim Wdi = di . A point of Qd is a collection of linear maps

Ai : Wdi → Wn, i = 1, . . . , k, B j : Wd j → Wd j+1 , j = 1, . . . , k − 1

subject to the relations

Ai+1 Bi = prdi +1 . . . prdi+1 Ai , i = 1, . . . , n − 2. (4.4)

We also define Q◦
d ⊂ Qd as an open part defined by the conditions ker Ai = 0 for all i . The

group d = ∏k
i=1 GL(Wdi ) acts freely on Q◦

d via the change of bases and, as in the case of
the complete flag varieties, Q◦

d/d � Fa
d, i.e. Q◦

d is a d-torsor over Fa
d. Moreover, explicit

computation as above shows that Qd is a complete intersection. Now the following theorem
holds:

Theorem 4.5 The degenerate flag varieties Fa
d are normal locally complete intersections (in

particular, Cohen–Macaulay and even Gorenstein).

Again, as in the complete case, we only need to prove that each variety Fa
d is smooth

outside of the codimension two subvariety. This is proved for a wider class of varieties in
[5]. Here we present a more direct proof.
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Proposition 4.6 Fa
d is smooth off codimension two.

Proof As in Lemma 4.4 it suffices to construct a desingularization Yd of Fa
d such that the

map τd : Yd → Fa
d is one-to-one off codimension two. Unfortunately, Rd does not do the

job (it is too big). We refine it in the following way. Let Yd be the variety of subspaces Vdi ,d j ,
1 ≤ i ≤ j ≤ k satisfying the following properties:

dim Vdi ,d j = di , Vdi ,d j ⊂ Wdi ,d j ,

Vdi ,d j ⊂ Vdi+1,d j , prd j +1 . . . prd j+1 Vdi ,d j ⊂ Vdi ,d j+1 .

The projection map τd is defined by (Vdi ,d j )
k
i, j=1 �→ (Vdi ,di )

k
i=1 (i.e. simply forgetting the

off-diagonal entries).
The varieties Yd are smooth and can be viewed as towers of fibrations with fibers iso-

morphic to the Grassmann varieties. More precisely, these towers are constructed as follows.
First, the subspace Vd1,dk varies in Gr(d1,Wd1,dk ). Second, we consider Vd1,dk−1 and Vd2,dk .
For the former, the only condition is

Vd1,dk−1 ⊂ Vd1,dk ⊕ span(wdk−1+1, . . . , wdk ),

which produces the fibration over Gr(d1,Wd1,dk )with a fiber Gr(d1, d1+dk−dk−1). Now the
conditions for Vd2,dk are Vd1,dk ⊂ Vd2,dk ⊂ Wd2,dk , producing a fibration over Gr(d1,Wd1,dk )

with a fiber Gr(d2 − d1, n − dk + d2 − d1). Proceeding further, we see that Yd is a tower of
fibrations with fibers being Grassmannians.

As in the case of complete flag varieties, the varieties Yd possess a cellular decomposition.
Namely, the cells are labeled by collections S = (Sdi ,d j ), 1 ≤ i ≤ j ≤ k satisfying the usual
properties

#Sdi ,d j = di , Sdi ,d j ⊂ {1, . . . , di , d j + 1, n},
Sdi ,d j ⊂ Sdi+1,d j ⊂ Sdi+1,d j+1 ∪ {d j + 1, . . . , d j+1}.

A cell C(S) is defined as the intersection Yd ∩ ∏
i, j C(Sdi ,d j ). For example, the big cell in

Yd is given by Sdi ,d j = {1, . . . , di }. It is easy to see that τd is one-to-one on this cell. In
order to prove the proposition it suffices to show that τd is an isomorphism on all cells of
codimension one. Let us describe these cells.

First consider a single Grassmannian Gr(d, n). The unique codimension one cell is C(S)
with S = {2, . . . , d, n}. Using this observation and the construction of Yd as a tower of
successive fibrations with fibers being Grassmanians, we obtain the following description of
codimension one cells in Yd. These cells are labeled by pairs 1 ≤ a ≤ b ≤ k and a collection
S corresponding to such a pair is given by

Sdi ,d j =
{ {1, 2, . . . , di }, if (i < a or j > b),

{1, 2, . . . , di }\{da−1 + 1} ∪ {db+1}, otherwise

[(compare with (4.3)]. It is easy to check that the map τd is an isomorphism on such cells.
��

5 Frobenius splitting

The goal of this section is to show that the varieties Fa
n over Fp are Frobenius split. The

general references are [17,4]. We first recall the definition. Let X be an algebraic variety
over an algebraically closed field of characteristic p > 0. Let F : X → X be the Frobenius
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morphism, i.e. the identity map on the underlying space X and the p-th power map on the
space of functions. Then X is called Frobenius split if there exists a projection F∗OX → OX

such that the composition OX → F∗OX → OX is the identity map. The Frobenius split
varieties enjoy the following important property (see. e.g. Proposition 1 of [17]):

Proposition 5.1 Let X be a Frobenius split projective variety with a line bundle L such that
for some i and all large enough m Hi (X,Lm) = 0. Then Hi (X,L) = 0.

In order to prove Frobenius splitting of Fa
n , we use two statements from [17], which we

recall now. The first one is Proposition 4 of [17]:

Proposition 5.2 Let f : Z → X be a proper morphism of algebraic varieties such that
f∗OZ = OX . Then if Z is Frobenius split, then X is also Frobenius split.

Corollary 5.3 If Rn is Frobenius split, then Fa
n is Frobenius split as well.

Proof The normality of Fa
n implies πn∗ORn = OFa

n
. ��

In order to prove that Rn is Frobenius split we use the Mehta–Ramanathan theorem
(Proposition 8 of [17]) which we recall now:

Theorem 5.4 Let Z be a smooth projective variety of dimension M and let Z1, . . . , Z M be
codimension one subvarieties satisfying the following conditions:

(i) For any I ⊂ {1, . . . ,M} the intersection ∩i∈I Zi is smooth of codimension #I .
(ii) There exists a global section s of the anti-canonical bundle K −1 on Z such that the zero

divisor of s equals Z1+. . .+Z M +D for some effective divisor D with ∩M
i=1 Zi /∈ suppD.

Then Z is Frobenius split and for any subset I ⊂ {1, . . . ,M} the intersection Z I = ∩i∈I Zi

is Frobenius split as well.

In our situation Z = Rn over a field k = Fp and M = n(n − 1)/2 is the number of
positive roots. Let us construct the divisors Z1, . . . , Z M . For convenience, we denote them
by Zi, j , 1 ≤ i ≤ j ≤ n − 1. Recall that we have a tower of successive P

1-fibrations
ρl : Rn(l) → Rn(l − 1) such that Rn(M) = Rn . For each l we construct a section sl of ρl as
follows. We note that in order to specify an element in the fiber ρ−1

l V for some V ∈ Rn(l −1)
it suffices to determine the space (ρl(V))i, j , where βl = αi, j . We consider three cases. First,
let i = 1. Then we put

(sl(V))1, j = kw j+1.

Second, let j = n − 1. Then

(sl(V))i,n−1 = kwn ⊕ kwi−1 ⊕ . . .⊕ kw1.

Finally, let i �= 1 and j �= n − 1. Then we set

(sl(V))i, j = Vi−1, j+1 ⊕ kw j+1.

It is easy to check that with such a definition the resulting element belongs to Rn(l). In what
follows we denote the image sl(Rn(l − 1)) by sl or by si, j (recall βl = αi, j ).

Let fl = ρl+1 . . . ρM : Rn → Rn(l). Define

Zl = Zi, j = {V ∈ Rn : flV ⊂ sl}.
In other words, the divisor Zl can be constructed step by step compatibly with the fibrations
ρ• in such a way that at the l-th step one takes not the whole preimage, but the section sl

only.
Let Li, j , 1 ≤ i ≤ j ≤ n − 1 be the i-dimensional bundle on Rn with fiber Vi, j at a

point V. We set ωi, j = det−1 Li, j .
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Theorem 5.5 We have

K −1
Rn

= O
(

M∑

l=1

Zl

)

⊗
n−1⊗

i=1

ωi,i ⊗
n−2⊗

i=1

ωi,i+1.

We first prove a lemma. Let B be a smooth projective variety and let L2 be a two-
dimensional bundle on B with a line subbundle L1. Let ρ : E → B be a P

1-fibration with
E = P(L2). Let s : B → E be a section of ρ defined by L1. In what follows we denote the
section s(B) ⊂ E simply by s.

Lemma 5.6 For a line bundle F on E such that the restriction of F to a fiber of ρ is equal
to O(k) one has

F = O(ks)⊗ ρ∗(F |s ⊗ O(−ks)|s).
Proof We note that F ⊗ O(−ks) restricts trivially to a fiber of ρ and therefore can be pulled
back from some line bundle on the section. ��

We apply this lemma to the case B = Rn(l − 1), E = Rn(l), ρ = ρl , s being a section
constructed above. The bundles L1 and L2 in our situation are described as follows: the fiber
of L1 at a point V ∈ Rn(l − 1) is equal to

Vi−1, j+1 ⊕ kw j+1

Vi−1, j
(5.1)

and the fiber of L2 at a point V is equal to

Vi, j+1 ⊕ kw j+1

Vi−1, j
. (5.2)

For F we first take K −1
Rn(l)

and then ωi, j , where βl = αi, j .

Lemma 5.7 Let i �= 1 and j �= n − 1. Then

K −1
E = O(2si, j )⊗ ρ∗(K −1

B )⊗ ρ∗(ωi, j+1 ⊗ (ω∗
i−1, j+1)

⊗2 ⊗ ωi−1, j ).

Let i = 1. Then

K −1
E = O(2s1, j )⊗ ρ∗(K −1

B )⊗ ρ∗(ω1, j+1).

Let j = n − 1. Then

K −1
E = O(2si,n−1)⊗ ρ∗(K −1

B )⊗ ρ∗(ωi−1,n−1).

Proof We prove the first formula (the rest of the proof is very similar). Our main tool is
Lemma 5.6. Let s = si, j . We note that the restriction of K E to the fibers of the map ρ equals
O(−2). Also

O(s)|s � Hom(L1,L2/L1) � TE/B ,

where TE/B is the normal line bundle to s � B. Consider the exact sequence

0 → TE/B → TE → ρ∗TB → 0.

Since KE = det T ∗
E , we obtain K E = det T ∗

E/B ⊗ det ρ∗T ∗
B . Therefore, Lemma 5.6 gives

K −1
E = O(2s)⊗ ρ∗(K −1

B )⊗ ρ∗(T ∗
E/B).

Now explicit computation of TE/B = L∗
1 ⊗ (L2/L1) [using (5.1) and (5.2)] gives the desired

formula. ��
We now take F = ωi, j (recall βl = αi, j and ρ = ρl : Rn(l) → Rn(l − 1)).
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Lemma 5.8 Let i �= 1 and j �= n − 1. Then

ωi, j = O(si, j )⊗ ρ∗(ωi, j+1 ⊗ ω∗
i−1, j+1 ⊗ ωi−1, j ).

Let i = 1. Then

ω1, j = O(s1, j )⊗ ρ∗(ω1, j+1).

Let j = n − 1. Then

ωi,n−1 = O(si,n−1)⊗ ρ∗(ωi−1,n−1).

Proof We note that the restriction of ωi, j to the fibers of ρ equals to O(1). Now the formula
can be proved by an explicit computation using Lemma 5.6. ��
Corollary 5.9 K −1

Rn
= ⊗n−1

i=1 ω
⊗2
i,i .

Proof We substitute the expression for O(si, j ) in terms of ωi, j from Lemma 5.8 into the
formulas from Lemma 5.7. ��
Corollary 5.10 Theorem 5.5 holds.

Proof Recall the (P1)m-fibrations ρ̄m : Rn(m(m+1)/2) → Rn(m(m−1)/2), where n−1 ≥
m ≥ 1. Using Lemmas 5.7 and 5.8 we obtain

K −1
Rn

=
n−1⊗

i=1

O(Zi,i )⊗
n−1⊗

i=1

ωi,i ⊗
n−3⊗

i=1

ω∗
i,i+2 ⊗ ρ̄∗

n−1 K −1
Rn((n−1)(n−2)/2).

Using Corollary 3.8 and Lemmas 5.7 and 5.8 again, we rewrite further

K −1
Rn

=
n−1⊗

i=1

O(Zi,i )⊗
n−2⊗

i=1

O(Zi,i+1)⊗

n−1⊗

i=1

ωi,i ⊗
n−2⊗

i=1

ωi,i+1 ⊗
n−4⊗

i=1

ω∗
i,i+3 ⊗ ρ̄∗

n−2ρ̄
∗
n−1 K −1

Rn((n−2)(n−3)/2).

Continuing further, we arrive at the desired formula. ��
Corollary 5.11 The varieties Rn and Fa

n are Frobenius split.

Proof According to Theorem 5.4 it suffices to find a section of the line bundle

n−1⊗

i=1

ωi,i ⊗
n−2⊗

i=1

ωi,i+1.

which does not vanish at the point ∩M
l=1 Zl . But it is easy to see that this line bundle does not

have any base points at all. ��
Theorem 5.12 All the degenerate partial flag varieties Fa

d are Frobenius split.

Proof We note that the resolution Rd can be realized inside Rn as an intersection⋂
(i, j)/∈Pd

Zi, j . Therefore, Theorem 5.4 guaranties the Frobenius splitting for Rd. Now the
normality of Fa

d implies the desired Frobenius splitting for Fa
d. ��
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We close this section with the following remark. The divisors Zi, j produce a cell decompo-
sition for Rn . Namely, introduce the following notations: Zi, j = Zβ if β = αi, j ; and for

a subset I ⊂ R+: Z I = ⋂
β∈I Zβ . We set

◦
Z I := Z I \

(⋃
J�I Z J

)
. Then we have a cell

decomposition

Rn =
⊔

I⊂R+

◦
Z I .

In general, these cells are different from the cells of Rn we are using in this paper (however

we conjecture that the codimension one cells do coincide). For example, the image πn(
◦
Z I )

is not always a cell. The first example is sl4, I = {α1,1, α3,3, α1,2, α2,3}. In this case πn(
◦
Z I )

� P
1.

6 The BW-type theorem and graded character formula

6.1 Rational singularities

We prove that the varieties Fa
d over Fp and over C have rational singularities. Recall the

desingularization Yd introduced in the proof of Proposition 4.6.

Lemma 6.1 The variety Fa
d is Gorenstein, i.e. the dualizing complex KFa

d
is a line bundle.

The resolution τd : Yd → Fa
d is crepant, i.e. KYd = τ ∗

d KFa
d
.

Proof We know that Fa
d is a locally complete intersection. By the adjunction formula, it

follows that Fa
d is Gorenstein. According to the proof of Proposition 4.6, the map τd : Yd →

Fa
d is one-to-one off codimension two in Yd. Hence, the canonical line bundle KYd coincides

with τ ∗
d KFa

d
off codimension two. Hence the desired equality KYd = τ ∗

d KFa
d
. ��

Remark 6.2 Corollary 5.9 says that the canonical line bundle of the complete degenerate flag
variety is given by KFa

d
= ∏n−1

i=1 (ω
∗
i,i )

⊗2.

Theorem 6.3 For the projection τd : Yd → Fa
d we have a canonical isomorphism

R(τd)∗O = O, i.e. (τd)∗O = O and Ri (τd)∗O = 0 for all i > 0.

Proof We know that Fa
d is normal, so that (τd)∗O = O. Recall the Grauert–Riemenschneider

vanishing theorem [14]:

Ri (τd)∗KYd = 0 for all i > 0. (6.1)

This theorem holds for all varieties over C, but not over Fp . However, in Lemma 6.4 we
show that (6.1) is true over Fp . Since KYd = τ ∗

d KFa
d

is the pull-back of a line bundle, the
projection formula says

Ri (τd)∗(τ ∗
d L) = (L ⊗ K −1

Fa
d
)⊗ Ri (τd)∗KYd = 0

for any line bundle L on Fa
d. Using the projection formula again, we arrive at the desired

vanishing of higher direct images of O. ��
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The following lemma is due to the anonymous referee.

Lemma 6.4 Formula (6.1) is true over Fp.

Proof Theorem 5.4 together with Theorem 1.3.14 from [4] imply (6.1) over Fp provided
that τd is one-to-one outside the union of all divisors Zi, j . So our goal is to show that if
V ∈ Yd satisfy V /∈ ⋃

i, j Zi, j , then all the entries Vk,l are determined by the diagonal
subspaces Vk,k . Since prl+1Vk,l ⊂ Vk,l+1 it suffices to prove that wl+1 /∈ Vk,l for all k, l.
Assume that for some k, l we have wl+1 ∈ Vk,l . Let k0 be the smallest number such that
wl+1 ∈ Vk0,l . If k0 = 1, then V ∈ Z1,l . Now let k0 > 1. Then prl+1Vk0−1,l = Vk0−1,l+1

(since wl+1 /∈ Vk0−1,l ). Therefore we arrive at

Vk0,l = Vk0−1,l ⊕ span(wl+1) = Vk0−1,l+1 ⊕ span(wl+1)

and thus V ∈ Zk0,l . ��
6.2 The BW-type theorem

In this subsection we prove an analogue of the Borel–Weil theorem. Let λ be a dominant
integral weight. Consider the map ıλ : Fa

n → P(V a
λ ). Define a line bundle Lλ = ı∗λO(1)

on Fa
n .

Proposition 6.5 We have

H>0(Fa
n ,Lλ) = H>0(Rn, π

∗
n Lλ) = 0.

Proof We give two proofs here. The first short one is due to the referee and uses deep results
on Frobenius splitting from [4]. The second one uses partial degenerate flag varieties and
their desingularizations.

Recall (see [4], Definition 1.4.1) that a scheme X is called Frobenius split relative to a
Cartier divisor D (or simply D-split) if there exists a OX -linear mapψ : F∗(OX (D)) → OX

such that for a canonical section σ of OX (D) the composition

φ = ψ ◦ F∗(σ ) : F∗OX → OX

is a Frobenius splitting for X (i.e. the composition OX → F∗OX
φ−→ OX is the identity

map). Combining Theorem 5.4, Theorem 5.5 and [4], Proposition 1.4.12, we obtain that Rn

is (p − 1)(D1 + D2)-split, where D1 is the divisor of zeroes of
⊗n−1

i=1 ωi,i and D2 is the
divisor of zeroes of

⊗n−2
i=1 ωi,i+1. Using [4], Remark 1.4.2, (ii) we obtain that Rn is D1-split

as well. Since D1 is pulled back from a line bundle on Fa
n , our Lemma follows from [4],

Theorem 1.4.8 (i).
Now let us give the second proof. We note that since Fa

n has rational singularities, the
equalities

Hk(Fa
n ,Lλ) � Hk(Rn, π

∗
n Lλ)

hold for all k ≥ 0. Now assume λ is regular. Then since the map Fa
n → P(V a

λ ) is an
embedding, the line bundle Lλ is very ample. Therefore, for any k and big enough N one has
Hk(Fa

n ,L⊗N
λ ) = 0. This implies Hk(Fa

n ,Lλ) = 0, because Fa
n is Frobenius split over Fp for

any p. For a non regularλ, let Fa
d be the corresponding degenerate parabolic flag variety, which

is embedded into P(V a
λ ). Then we have the following commutative diagram of projections:
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Let L′
λ be a line bundle on Fa

d which is the pull back of the bundle O(1) on P(V a
λ ). Then Lλ =

μ∗L′
λ. Since L′

λ is very ample, and Fa
d is Frobenius split over Fp for any p, Hk(Fa

d,L′
λ) = 0

(for positive k). Since Fa
d has rational singularities, Hk(Rd, π

∗
dL′

λ) = Hk(Fa
d,L′

λ)(= 0 for
positive k). Now since η is a fibration with the fibers being towers of successive P

1-fibrations,
we obtain Hk(Rn, η

∗π∗
dL′

λ) = Hk(Rd, π
∗
dL′

λ)(= 0 for positive k). Finally, since Fa
n has

rational singularities, and η∗π∗
dL′

λ = π∗
n Lλ, we arrive at Hk(Fa

n ,Lλ) = Hk(Rn, π
∗
n Lλ) =

Hk(Rn, η
∗π∗

dL′
λ)(= 0 for k > 0). ��

Proposition 6.6 We have H0(Fa
n ,Lλ)∗ � H0(Rn, π

∗
n Lλ)∗ � V a

λ .

Proof We note that there exists an embedding (V a
λ )

∗ ↪→ H0(Fa
n ,Lλ). In fact take an element

v ∈ (V a
λ )

∗ � H0(P(V a
λ ),O(1)). Then restricting to the embedded variety Fa

n we obtain a
section of Lλ. Assume that it is zero. Then v vanishes on the open cell (N−)a · Cvλ. But the
linear span of the elements of this cell coincides with the whole representation V a

λ . Therefore,
the restriction map (V a

λ )
∗ → H0(Fa

n ,Lλ) is an embedding.
We recall that the varieties Fa

n are flat degenerations of the classical flag varieties. Since
the higher cohomology of Lλ vanish (see Proposition 6.5), we arrive at the equality of the
dimensions of H0(Fa

n ,Lλ) and of Vλ. Therefore, the embedding (V a
λ )

∗ → H0(Fa
n ,Lλ) is

an isomorphism. ��
Combining Propositions 6.5 and 6.6 we obtain the analogue of the Borel–Weil theorem

for degenerate flags:

Theorem 6.7 We have

H0(Fa
n ,Lλ)∗ � H0(Rn, π

∗
n Lλ)∗ � V a

λ ,

H>0(Fa
n ,Lλ) = H>0(Rn, π

∗
n Lλ) = 0.

Similarly one proves a parabolic version of the BW-type theorem:

Theorem 6.8 Let λ be a d-dominant weight, i.e. (λ, ωd) > 0 implies d ∈ d. Then there
exists a map ıλ : Fa

d → P(V a
λ ). We have

H0(Fa
d, ı∗λO(1))∗ � V a

λ , H>0((Fa
d, ı∗λO(1))) = 0.

6.3 The q-character formula

We now compute the q-character (PBW-graded character) of the modules V a
λ (for combi-

natorial formula see [10]). For this we use the Atiyah–Bott–Lefschetz fixed points formula
applied to the variety Rn (so our formula is an analogue of the Demazure character formula).
Recall that the T -fixed points on Rn are labeled by the admissible collections S = (Si, j ), i.e.
those satisfying Si, j ⊂ {1, . . . , i, j + 1, . . . , n}, #Si, j = i and

Si, j ⊂ Si+1, j ⊂ Si+1, j+1 ∪ { j + 1}. (6.2)

In order to state the theorem we prepare some notations. Assume that we have fixed the sets
Si−1, j and Si, j+1. Then condition (6.2) says that there exist exactly two variants for Si, j ,
namely

Si, j = Si−1, j ∪ {a} or Si, j = Si−1, j ∪ {b},
where {a, b} = Si, j+1 ∪ { j + 1}\Si−1, j . Given a collection S we denote the numbers a, b as
above by as

i, j and bs
i, j . We have:

Si, j = Si−1, j ∪ {as
i, j }, Si, j+1\Si−1, j = {as

i, j , bs
i, j }.
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We denote by S′
i, j the set (Si, j \{as

i, j }) ∪ {bs
i, j }.

Example 6.9 Let n = 3, S1,1 = (2), S1,2 = (1) and S2,2 = (1, 3). Then

aS
1,1 = 2, aS

1,2 = 1, aS
2,2 = 3 and bS

1,1 = 1, bS
1,2 = 3, bS

2,2 = 2.

Recall that the variety Rn sits inside the product of Grassmann varieties
∏

1≤i≤ j<n

Gr(i,Wi, j ). Each
∧i
(Wi, j ) is acted upon by ga ⊕ Cd and therefore each Grassmannian

carries a natural action of the group Ga
�C

∗, where the additional C
∗ part corresponds to the

PBW-grading operator. So we have an n-dimensional torus T � C
∗ acting on Gr(i,Wi, j ). A

T -fixed point p(S) ∈ Rn is a product of the fixed points p(Si, j ) ∈ Gr(i,Wi, j ). We denote
by γ (Si, j ) ∈ h∗ ⊕ Cd the (extended) weight of the vector p(Si, j ) ∈ Wi, j . Explicitly, let
Si, j = (l1, . . . , li ). Then

γ (Si, j ) = (ωl1 − ωl1−1)+ . . .+ (ωli − ωli −1)+ #{r : lr > i}d.
(here ω0 = ωn = 0). For an element

γ = m1ω1 + . . .+ mn−1ωn−1 + md∗ ∈ h∗ ⊕ Cd∗

we denote by eγ the element (eω1)m1 . . . (eωn−1)mn−1 qm in the group algebra (so, q = ed∗
).

Example 6.10 Let z1 = eω1 , . . . , zn−1 = eωn−1 . Then for Si, j = (l1, . . . , li )

eγ (Si, j ) = zl1 z−1
l1−1 . . . zli z

−1
li −1q#{r : lr>i}.

In particular, for n = 3, i = j = 1 we have

S1,1 = (1) : γ (1, 1) = ω1, eγ (1,1) = z1;
S1,1 = (2) : γ (1, 1) = ω2 − ω1 + d, eγ (1,1) = z−1

1 z2q;
S1,1 = (3) : γ (1, 1) = −ω2 + d, eγ (1,1) = z−1

2 q.

We need one more piece of notations to formulate the theorem. Let ıλ : Fa
n → P(V a

λ ) be
the standard map (which is an embedding for regular λ). We denote by γλ(S) the (extended)
weight of ıλ(p(S)) (note that this weight depends only on the diagonal entries Si,i ). In other
words, γλ(S) = ∑n−1

i=1 �iγ (Si,i ) where λ = ∑n−1
i=1 �iωi .

Theorem 6.11 The q-character of the representation V a
λ is given by the sum over all admis-

sible collections S of the summands

eγλ(S)
∏

1≤i≤ j<n

(
1 − eγ (S

′
i, j )e−γ (Si, j )

) . (6.3)

Proof Recall the Atiyah–Bott–Lefschetz formula (see [3,18]): let X be a smooth projective
algebraic M-dimensional variety and let L be a line bundle on X . Let T be an algebraic
torus acting on X with a finite set F of fixed points. Assume further that L is T -equivariant.
Then for each p ∈ F the fiber Lp is T -stable. We note also that since p ∈ F , the tangent
space Tp X carries a natural T -action. Let γ p

1 , . . . , γ
p

M be the weights of the eigenvectors of
T -action on Tp X . Then the Atiyah–Bott–Lefschetz formula gives the following expression
for the character of the Euler characteristics:

∑

k≥0

(−1)kchHk(X,L) =
∑

p∈F

chLp
∏M

l=1(1 − e−γ p
l )
. (6.4)
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We apply this formula in our situation: X = Rn , L = π∗
n Lλ with the action of the extended

torus T �C
∗. Since H>0(Rn, π

∗
n Lλ) = 0, the Euler characteristics coincides with the charac-

ter of the zeroth cohomology, i.e. with the character of (V a
λ )

∗. Therefore, for each admissible
S we need to compute the character of π∗

n Lλ at p(S) and the eigenvalues of the torus action
in Tp(s)Rn . Further, the sum in (6.4) runs over the set of T -fixed points in Rn and for each
summand the numerator in the S-th term is exactly the character of the dual line (ıλπn p(S))∗,
which equals to e−γλ(S) (the minus sign comes from the fact that Lλ = ı∗λO(1) and a fiber of
O(1) is the dual line). It only remains to compute the torus action in the tangent space Tp(S)Rn .

Recall that Rn is a tower of successive P
1-fibrations Rn(l) → Rn(l − 1). Fix an admissi-

ble S. Then the surjections Rn → Rn(l) define the T -fixed points p(S(l)) in each Rn(l) (note
that S(l) consists of Si, j such that for βk = αi, j one has k ≤ l). For each l = 1, . . . ,M we
denote by vl ∈ Tp(S(l))Rn(l) a tangent vector to the fiber of the map Rn(l) → Rn(l − 1) at
the point p(S(l − 1)). Then it is easy to see that the weights of the eigenvectors of the T
action in Tp(s)Rn are exactly the weights of the vectors vl , l = 1, . . . ,M .

So let us fix an l, 1 ≤ l ≤ M and i, j with αi, j = βl . Let us denote by Yl the set of all
pairs (t, u) such that for the root αt,u = βr one has r ≤ l. Then the fiber P

1 of the map
Rn(l) → Rn(l − 1) at the point p(S(l − 1)) consists of all collections (Vt,u) with (t, u) ∈ Yl

subject to the following conditions:

• Vt,u = p(St,u) if αt,u �= βl ,
• Vi, j ⊃ p(Si−1, j ),
• Vi, j ⊂ p(Si−1, j )⊕ CwaS

i, j
⊕ CwbS

i, j
.

Now it is easy to see that the character of the tangent vector to this fiber at the point p(S(l−1))

is equal to eγ (S
′
i, j )eγ (Si, j )

−1
(recall aS

i, j ∈ Si, j and S′
i, j = (Si, j \{aS

i, j }) ∪ {bS
i, j }). ��

Remark 6.12 We note that the Euler characteristics
∑

k≥0

(−1)kchHk(Rn, π
∗
n Lλ)

is equal to ch(V a
λ )

∗. But in each summand (6.3) both numerator and denominator differ from
the corresponding summand in the Atiyah–Bott–Lefschetz formula (6.4) by the changed of
variables zi → z−1

i and q → q−1. Via this change we pass from the character of (V a
λ )

∗ to
the character of V a

λ .

Example 6.13 Let n = 2. Then the formula above says

chq Vmω = zm

1 − qz−2 + z−mqm

1 − q−1z2 = zm + qzm−2 + . . .+ qm z−m .

Example 6.14 Let n = 3. Then the contribution of a fixed point with S1,1 = (2), S1,2 = (1),
S2,2 = (1, 3) is given by

q2

(1 − z−1
1 z−1

2 q)(1 − z2
1z−1

2 q)(1 − z−1
1 z2

2q)

and the contribution of a fixed point with S1,1 = (2), S1,2 = (3), S2,2 = (1, 3) is given by

q2

(1 − z1z2q−1)(1 − z1z−2
2 )(1 − z−2

1 z2)
.

We note that these are exactly the points which are mapped by π3 to the only singular point
of Fa

3 , which is torus fixed and labeled by S1,1 = (2), S2,2 = (1, 3).
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