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Abstract. Helsgaun has introduced and implemented the lower toler-
ances (α-values) for an approximation of Held-Karp’s 1-tree with the
purpose to improve the Lin-Kernighan Heuristic (LKH) for the Sym-
metric TSP (STSP). The LKH appears to exceed the performance of all
STSP heuristic algorithms proposed to date.

In this paper we improve Helsgaun’s LKH based on an approxima-
tion of Zhang and Looks’ backbones and an extension of double bridges
further combined with implementation details by all of which we guide
the search process instead of Helsgaun’s α-values. Our computational
results are competitive and lead to improved solutions for some of the
VLSI instances announced at the TSP homepage.

Keywords: Traveling Salesman Problem, Lin-Kernighan Heuristic, Tol-
erances, Backbones, Double Bridge Technique.

1 Introduction

The traveling salesman problem (TSP) is the problem of finding a Hamiltonian
cycle with minimum costs of a graph. If the graph has n nodes, a tour T is a
permutation T = (x1, x2, . . . , xn) of the vector (1, 2, . . . , n) with corresponding
costs c(x1, x2, . . . , xn) =

∑n−1
i=1 c(xi, xi+1) + c(xn, x1). This paper focus on the

symmetric case where all costs satisfy c(xi, xj) = c(xj , xi).
Lin and Kernighan introduced a heuristic which is based on the exchange

of k tour edges, called k-swap or k-opt [20]. This local search algorithm still
remains at the heart of the most successful approaches. In fact, Johnson and
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McGeoch [17] describe the Lin-Kernighan (LK) algorithm as the world champion
heuristic for the TSP from 1973 to 1989. Further, this was only conclusively
superseded by chained or iterated versions of LK, originally proposed by Martin
et al.[21,22]. For the TSP, multiple-run heuristics have long been the method of
choice when very high-quality solutions are required. Lin and Kernighan [20] have
suggested to use pseudo-random starting tours to permit repeated application
of their local search procedure. Besides just taking the best of the tours that
are produced, Lin and Kernighan propose to use the intersection of the edge
sets of the tours as a means to guide further runs of their algorithm. Their idea
is to modify the basic procedure so that it will not delete any edge that has
appeared in each of the tours that have been found up to that point. They start
this restricted search after a small number of tours have been found (they use
between two and five tours in their tests). Variations of this idea have been
explored recently by Helsgaun [16], Schilham [26], and Tamaki [28]. Considering
STSP heuristics, Helsgaun’s LKH [16] appears to exceed all further algorithms
including the multiple runs of Chained Lin-Kernighan and some other high-end
STSP heuristics introduced by Applegate et al. [1], Balas and Simonetti [2],
Cook and Seymour [5], Gamboa et al. [6,7], Kahng and Reda [18], Schilham [26],
Tamaki [28], and Walshaw [30].

Zhang and Looks [32] made an interpretation of a backbone for the STSP as an
edge between two cities that appears in all optimal STSP tours. In fact they have
measured edge appearance frequencies to estimate the probabilities of backbone
variables since to find the backbones is not possible without solving the problem
exactly. A theoretical study of backbones is started in Chrobak and Poljak [3]
by proving that the intersection of edges from the optimal STSP and Minimum
Spanning Tree (MST) solution has at least two common edges. Goldengorin et
al. [10,11] have shown that all common edges in all optimal tours have strictly
positive upper tolerances, but Libura [19] has indicated that it is NP-hard to
find out an upper tolerance for an edge in an optimal tour.

Van der Poort [24] has used the upper tolerance of an edge in MST for an
approximation of the upper tolerance of the same edge in an optimal tour and
Helsgaun [16] has used the lower tolerance (α-value) for the same purpose. Gold-
engorin et al. [10,11] and Turkensteen et al. [29] have shown that the arcs with
strictly positive upper tolerance in an optimal Assignment Problem (AP) solu-
tion are common arcs for all optimal AP solutions. Ghosh et al. [8], Goldengorin
and Jäger [9], Goldengorin et al. [12,13], and Turkensteen et al. [29] have ap-
plied the largest (bottleneck) upper tolerance for an arc in an optimal solution
of the relaxed AP to guide a search of either a high quality heuristic or an
exact algorithm for the Asymmetric TSP. Experimentally Helsgaun has used α-
values (lower tolerances) for indicating the most likely edges in an optimal STSP
solution.

We have used Helsgaun’s implementation as a basis and incorporated back-
bone approximations and tolerances to guide the search process and k-swap-kicks
to speed up the search.
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In Section 2 we define the notion of tolerances [10,29]. The following sections
discuss special aspects of TSP optimization that are suitable to enhance Hels-
gaun’s TSP heuristic: the application of k-swap-kicks in Section 3, backbones in
Section 4 and further implementation aspects in Section 5. In Section 6 we give
experimental results which show the efficiency of the proposed methods. In par-
ticular, they allowed us to set world records for two well-known TSP instances
[37]. The paper closes in Section 7 with a summary and suggestions for future
work.

2 Tolerances

Tolerances are successfully used to guide the search process within different
frameworks of heuristics for the Asymmetric [8,9,12], and Symmetric TSP [16].
A theoretical background of the tolerance based approach for solving different
classes of combinatorial optimization problems is outlined in [10,11]. We distin-
guish between two types of tolerances: upper and lower tolerances. We introduce
the concept of tolerances for an “optimal” tour having in our mind that the opti-
mality will be further used with respect to either one of the TSP relaxations (for
example, 1-Tree [16]) or a polynomially searchable neighborhood (for example,
k-opt [14,15,23,25]), since finding an exact tolerance for a NP-hard problem is
also a NP-hard problem.

Given an optimal tour T , we define for each edge x ∈ T (x /∈ T ) the upper
(lower) tolerance as the maximum increase uT (x) (decrease lT (x)) of the edge
length c(x) preserving the optimality of T under the assumption that the lengths
of all other edges remain unchanged. Formally, for the edges x, y and α ∈ R let

cα,x(y) :=
{

c(x) + α, if x = y
c(y), otherwise

be a modification of the cost function which changes the costs for edge x to
c(x) + α. Further let Tc be the set of all optimal tours. The tolerances with
respect to an optimal tour T are defined as follows:

uT (x) := sup{α ∈ R | T ∈ Tc+α,x}, if x ∈ T

lT (x) := sup{α ∈ R | T ∈ Tc−α,x}, if x /∈ T

Let T +(x) be an optimal tour under the condition that it contains x, and
T−(x) be an optimal tour under the condition that it does not contain x. Then
the upper and lower tolerance of x with respect to the optimal tour T can be
computed as follows (see [10]):

uT (x) = c(T−(x)) − c(T ), if x ∈ T (1)

lT (x) = c(T +(x)) − c(T ), if x /∈ T (2)
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3 k-Swap-Kicks

In Helsgaun’s heuristic a greedy initial tour is constructed in each trial, where
a trial is a repeated phase in which an initial tour is permanently improved by
doing k-swaps until no more improving k-swaps can be found (Helsgaun considers
k ≤ 5). The resulting tours are called k-optimal. As the search space for k-swaps
is restricted by a candidate system of all edges, in fact, Helsgaun’s code only
computes approximations of k-optimal tours. Constructing a new initial tour in
each trial leads to the loss of k-optimality. Our idea is to rescue a part of k-
optimality in the next trial instead of constructing a new initial tour. We modify
the k-optimal tour from the last trial by one or more special l-swaps (l > k) and
we choose the resulting tour as the new initial tour. In the literature for k = 4
this technique is known as double bridge technique [17,27]. Figure 1 shows an
example of a double bridge move. If we would use only a simple double bridge
move (a special 4-swap), the 5-swap search would end in the same local minimum
as before. Thus we adopt this technique for special l-swaps with l ≥ 6.

Fig. 1. Double bridge move

In our approach, the edges s1, s2, s3, s4 shown in Figure 1 are replaced by
paths that are segments of the tour, where a segment is an ordered list of nodes.
So a k-segmentation is a split of a tour T into k segments si, so that the con-
catenation in the order s1, s2, . . . , sk gives the original tour T , i.e, concat(s1, s2,
. . . , sk) = T . Given a k-segmentation (s1, s2, . . . , sk) of a tour T , we call the
k-swap which transforms T into the tour T ′ = concat(s1, sk, sk−1, sk−2, . . . , s2)
a k-swap-kick. Clearly this is a natural extension of a double bridge.

4 Backbones

Helsgaun [16] uses α-values to guide the search process of his algorithm which
are lower tolerances to the minimum 1-tree. He shows that using his α-values
instead of costs leads to tours with much better quality.
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In [25] we have introduced and experimented with tolerances for many prob-
lems related to the TSP and different from α-values (e.g. relaxed assignment,
assignment, 2-opt) with the purpose to improve Helsgaun’s heuristic. Most of
these tolerances give worse results in comparison to α-values. In this section, we
introduce our most promising approach, the backbone tolerance.

It might be possible that there is an edge x which is contained in each optimal
tour (x ∈

⋂
Tc). Edges occurring in each optimal tour are called backbones

[4,31,32]. Identifying edges to be a backbone would therefore reduce the problem
size and thus speed up a heuristic solving the TSP. Note that backbones are
exactly the edges with a strictly positive upper tolerance w.r.t. an arbitrary
chosen optimal tour [10].

In [4,31,32] the probability of being a backbone of an edge x is approximated
by the relative frequency of occurring in approximated k-optimal tours found
during an initialization phase. In our context approximated k-optimal means
k-optimal for the restricted search space, i.e. only for the edges in the candidate
system.

We measure by means of this relative frequency the probability of being a
backbone of an edge x and call it a backbone approximation. In other words, the
relative frequency of an edge will play the opposite role of its cost.

The main distinction between an exact and a heuristic algorithm is that an
exact algorithm proves the optimality of an outputted solution on the whole set
of feasible solutions and a heuristic makes a choice of the best solution among
a small subset of feasible solutions. If this small subset contains an optimal
solution, then the heuristic outputs an optimal solution, otherwise it outputs
the best within that small subset. If we replace the optimal solution by the
best solution in a small subset and treat it as an optimal one, then we are
able to introduce the upper and lower tolerances w.r.t. the best solution for
all edges of this small subset. If the small subset is defined for the set of all
approximated tours found during an initialization phase, then we have arrived
to the notions of approximated backbone tolerances. Using (1) and (2), these
approximated backbone tolerances can be computed as follows:

For an edge e which is contained in any best approximated tour found during
the initialization phase, the upper approximated backbone tolerance of e is defined
as the difference of the optimum value of all approximated tours not containing
e minus the optimum value of all approximated tours.

For an edge e which is not contained in a best approximated tour (but
in at least one approximated tour), the lower approximated backbone toler-
ance of an edge e is defined as the difference of the optimum value of all ap-
proximated tours containing e minus the optimum value of all approximated
tours.

Note that the approximated backbone tolerance is a measure of how likely an
edge is in an optimal tour. Whereas backbone approximations use an average
value over all tours, approximated backbone tolerances are dominated only by
the best tours found during the initialization phase.
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5 Implementation Aspects

Based on the ideas of k-swap-kicks and backbones, we have developed a new
version of Helsgaun’s heuristic.

In all experiments we use the same standard parameters for Helsgaun’s heuris-
tic, with two exceptions: we use 5 independent runs instead of 10 indepen-
dent runs and the internal constant maxdim = 15, 000 instead of 2, 000 (where
maxdim denotes the maximum dimension for which the costs of the edges are
fully cached into a matrix in memory), as we have observed that increasing this
internal constant considerably improves the general heuristic speed.

At the beginning of the algorithm a set of independent greedy initial tours is
chosen, which are improved by one or more trials of Helsgaun’s original heuristic,
where a trial ends, when 5-swaps can find no further improvement. After this
initialization phase we determine a new candidate system depending on back-
bone approximations. In this way backbone approximations are used to guide the
search process instead of Helsgaun’s α-values. The decision to apply backbone
approximations instead of approximated backbone tolerances is traced back to
the fact that the experiments made so far show that approximated backbone tol-
erances give worse results than backbone approximations in average. Neverthe-
less, we believe that approximated backbone tolerances are the better approach,
thus more sophisticated heuristics have to be found.

Furthermore, in the main phase of the algorithm an initial tour for the next
trial is constructed by applying multiple l-swap-kicks (l > k) randomly to the
approximated k-optimal tour from the last trial. Thus a local optimum can be
left with rescuing a lot of k-optimality. Each such start with a new initial tour is
called step. We choose – like in Helsgaun’s original implementation – the number
of trials as the number of nodes n.

We use two different implementations: one is tuned for speed, the other for
tour quality. In the first implementation which we tuned for speed, at the end of
the initialization phase the tour edges are sorted using a randomized quicksort
to identify duplicates and to count the occurrence for computing the backbone
approximations. In contrast, in the second implementation which we tuned for
quality we use (double) hashing instead of quicksort as it saves memory and
thus enables to handle larger problems and longer initialization phases (hash-
ing behaved slower than quicksort in our experimental runs). Additionally in
the second implementation, the independent initial tours are chosen randomly
instead of greedily (this is more effort but leads to slightly better tours) and
k-swap-kicks are used with tuned parameters, e.g. we use a better distribution
function for the segments.

6 Experimental Results

The following experiments were executed on Intel Xeons 2.4 GHz with 1G RAM.
In total we investigated about 4.5 years of running time for all these experiments.
All times are given in the format “hours:minutes:seconds”.
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We tested the algorithms BB. . . T1 (the first implementation tuned for speed),
BB. . .T2 (the second implementation tuned for quality), and LKH (the original
version of Helsgaun). For example BB5P2T1 means that a backbone approx-
imation is used after an initialization of cardinality 5% of the dimension (i.e.
�0.05 ∗ n� initial tours are constructed independently) and each step consists of
2 trials.

6.1 Comparison of Quality for the First Trials

First we compare two variants BB3P2T1 and BB5P2T1 with LKH consider-
ing tour quality, more exactly considering the following measure. As the main
differences appear in the first trials, we consider only this area.

Let P be the set of analyzed problems, cX
j,p(i) the costs of the tour found by

heuristic or tolerance X at Trial i in Run j for a problem p ∈ P . Further let
cbest(p) be the costs of the currently best known tour for problem p ∈ P with
dimension np and R the number of runs. Then we define:

avg.excessX(i) =
1

|P |
∑

p∈P

1
R

R∑

j=1

cX
j,p(

i·np

100 ) − cbest(p)
cbest(p)

(3)

As test instances we use the 33 smallest unsolved problems of the national
and VLSI instances [34,37].

In Figure 2 the results are shown. We consider at the x-axis the number of
trials in percentage up to 20 % of all trials.

Fig. 2. Average quality of the national and VLSI instances for the first trials
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We observe that the average difference to an optimal solution or to the best
known lower bound is reduced by 21.73 % for BB3P2T1 and by 24.09 % for
BB5P2T1 after all trials.

6.2 Improved Instances

During our experiments we have either improved or confirmed the same quality
for many TSP instances from the TSP homepage [36]. Two of them xsc6880 and
frh19289 were placed at the website [37] as currently best solutions. Note that
despite the efforts of many researchers during recent three years we have not
only found better tours, but also much faster in terms of normalized times [33].
In Table 1 the detailed results can be found. In the last column you find the
normalized running times according to the DIMACS Implementation Challenge.
The current overview of this competition can be found in [33].

Table 1. Results for the improved instances

Problem lb Found by Old ub Algorithm New ub Time Normalized
xsc6880 21,507 Nguyen 21,537 BB3P1T1 21,535 1:28:47 6:08:52
frh19289 55,163 Helsgaun 55,801 BB5P1T1 55,799 49:02:58 125:03:37

6.3 Comparison of Time and Quality

For these experiments again we use the 33 smallest unsolved problems of the
national and VLSI instances (because of too large times, some larger problems
are only tested by the first implementation tuned for speed). Table 2 and Fig-
ure 3 show the results of these experiments. The exact values of average time
and average excess can be found in the second and third column of Table 2,
respectively. In Figure 3, the average computation time for 5 independent runs
is plotted. Thus the more left a point is, the faster the corresponding algorithm
is. Smaller excess means better tours in average (see (3)).

We observe that six parameter settings of our versions found faster and better
tours in average than Helsgaun’s version. The version BB1P3T1 is the fastest al-
gorithm which gives nearly the same tour quality as LKH. The backbone version
BB3P2T2 finds in average the best tours, but needs more time than LKH.

The k-swap-kicks were the main reason for the speed-up, as for each following
trial less k-swaps are needed to find an approximated k-optimal tour. Also we
do not need to construct a new initial tour, which additionally saves some time.
The shorter the initialization phase is, the worse is the backbone approximation.

7 Summary and Future Research Directions

In this paper we have improved Helsgaun’s version of the Lin-Kernighan Heuris-
tic (LKH) which is the world champion heuristic for the Symmetric TSP (STSP)
from 1998 to the current date applied to large instances including the World TSP
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Table 2. Average time and average quality for the national and VLSI instances

Version Avg. time in sec. Avg. excess in %
LKH 03:27:47 0.024493
BB1P3T1 00:45:32 0.024716
BB3P1T1 00:55:16 0.016972
BB3P2T1 01:12:29 0.019171
BB3P10T1 02:51:05 0.017121
BB5P10T1 04:13:03 0.015167
BB10P3T1 03:06:33 0.011782
BB1P2T2 02:51:27 0.012631
BB1P3T2 03:16:58 0.012869
BB3P1T2 04:03:36 0.012502
BB3P2T2 05:10:07 0.009563
BB3P3T2 05:32:54 0.010899
BB3P5T2 07:22:21 0.013636

[38] with 1,904,711 cities. Our improvements are based on a fundamental notion
of a backbone edge, coined by Zhang and Looks [32]. Unfortunately to find a
backbone edge has the same computational complexity as to find an optimal
tour (see e.g., [3,10]). We have avoided this difficulty by using the notion of
backbone approximation which can be efficiently computed, compared to the
exact tolerance the computation of which for an optimal tour is also NP-hard.
We have used the backbone approximation to guide the search process instead of
Helsgaun’s α-values (or exactly lower tolerances) computed for the corresponding
1-Tree relaxation of the STSP. Furthermore we have introduced approximated
backbone tolerances which lead to slightly worse experimental results than back-
bone approximations. Nevertheless, we will investigate approximated backbone
tolerances in more detail, as we believe that we can obtain even better results
when applying this approach.

Another improvement is based on a generalization of double bridge move (a
special 4-swap) which can be considered as a k-swap-kick for k ≥ 6 and allows us
to speed up the LKH. The above mentioned improvements are incorporated into
two different implementations of LKH the first of which is tuned for speed at
the initialization phase by a randomized quicksort for computing the backbone
approximations. The second implementation is tuned for quality by using the
double hashing which reduces the necessary memory and allows us to handle
larger instances. Our computational experiments show that, for example, the
first implementation leads to an essential quality improvement of outputted tours
w.r.t. either the known lower bounds (for instances with unknown optimal tours)
or optimal solutions by at least 21% compared to the LKH. Despite the efforts of
many researchers during recent three years we have found not only better tours
but also much faster in terms of normalized times.

An interesting direction of research is to apply the k-swap-kicks not randomly
but guide them by using tolerances for some other promising data structures like
stem and cycle including ejection chains for solving large scale STSP instances.
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We believe that our notions of backbone approximations and approximated back-
bone tolerances can be applied for construction improvement type heuristics for
other computationally difficult combinatorial optimization problems the first of
which is the Capacitated Vehicle Routing Problem and its variations induced by
distance-capacitated, time windows, pickup and delivery constraints.

Our source code is available at [35].
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27. Stützle, T., Grün, A., Linke, S., Rüttger, M.: A Comparison of Nature Inspired
Heuristics on the Traveling Salesman Problem. In: Deb, K., Rudolph, G., Lutton,
E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) Parallel Problem
Solving from Nature-PPSN VI. LNCS, vol. 1917, pp. 661–670. Springer, Heidelberg
(2000)

28. Tamaki, H.: Alternating Cycles Contribution: A Tour Merging Strategy for the
Traveling Salesman Problem. Research Report MPI-I-2003-1-007, Max-Planck-
Institut für Informatik, Saarbrücken, Germany (2003)

29. Turkensteen, M., Ghosh, D., Goldengorin, B., Sierksma, G.: Tolerance-Based
Branch and Bound Algorithms for the ATSP. European Journal Oper. Res., 1–
14 (to appear, 2007)

30. Walshaw, C.: A Multilevel Approach to the Traveling Salesman Problem. Oper.
Res. 50(5), 862–877 (2002)

31. Zhang, W.: Configuration Landscape Analysis and Backbone Guided Local Search:
Part I: Satisfiability and Maximum Satisfiability. Artificial Intelligence 158(1), 1–26
(2004)



Improving the Efficiency of Helsgaun’s Lin-Kernighan Heuristic 111

32. Zhang, W., Looks, M.: A Novel Local Search Algorithm for the Traveling Salesman
Problem that Exploits Backbones. In: Kaelbling, L.P., Saffiotti, A. (eds.) IJCAI
2005. Proceedings of the 19th International Joint Conference on Artificial Intelli-
gence, pp. 343–350 (2005)

33. DIMACS Implementation Challenge: www.research.att.com/∼dsj/chtsp/
34. National Instances from the TSP Homepage:

www.tsp.gatech.edu/world/summary.html
35. Source code of this paper. http://www.informatik.uni-halle.de/ti/forschung

/toleranzen/quelltexte/index.en.php
36. TSP Homepage: www.tsp.gatech.edu/
37. VLSI Instances from the TSP Homepage:

www.tsp.gatech.edu/vlsi/summary.html
38. World TSP from the TSP Homepage: www.tsp.gatech.edu/world/

www.research.att.com/~dsj/chtsp/
www.tsp.gatech.edu/world/summary.html
http://www.informatik.uni-halle.de/ti/forschung/toleranzen/quelltexte/index.en.php
http://www.informatik.uni-halle.de/ti/forschung/toleranzen/quelltexte/index.en.php
www.tsp.gatech.edu/
www.tsp.gatech.edu/vlsi/summary.html
www.tsp.gatech.edu/world/

	Improving the Efficiency of Helsgaun’s Lin-Kernighan Heuristic for the Symmetric TSP
	Introduction
	Tolerances
	$k$-Swap-Kicks
	Backbones
	Implementation Aspects
	Experimental Results
	Comparison of Quality for the First Trials
	Improved Instances
	Comparison of Time and Quality

	Summary and Future Research Directions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




