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Abstract. For quantum as well classical slow–fast systems, we develop a general method
which allows one to compute the adiabatic invariant (approximate integral of motion), its
symmetries, the adiabatic guiding center coordinates and the effective scalar Hamiltonian in
all orders of a small parameter. The scheme does not exploit eigenvectors or diagonalization,
but is based on the ideas of isospectral deformation and zero-curvature equations, where the
role of “time” is played by the adiabatic (quantization) parameter. The algorithm includes
the construction of the zero-curvature adiabatic connection and its splitting generated by
averaging up to an arbitrary order in the small parameter.
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1. INTRODUCTION

Let us consider a family of “fast” self-adjoint operators H = H(x) parametrized by points x
running over a “slow” phase space D ≈ R2n with Poisson brackets

{xj , xl} = Jjl, J =

(
0 −I
I 0

)
. (1.1)

Assume that, at each x, the spectrum of H(x) is discrete, the eigenvalues λk(x) are not degenerate
and ordered as λ0(x) < λ1(x) < · · · .

Assume also that the x-dependence of all these objects is smooth and allows us to make the
quantization x → x̂ with Heisenberg commutation relations

[x̂j , x̂l] = −iεJjl. (1.2)

Here ε is a small (adiabatic) parameter. The presence of ε in (1.2) explains that the x-space is said
to be “slow.”

Now one can consider the quantized self-adjoint Hamiltonian Ĥ = H(x̂), where the components
of the vector-operator x̂ = (x̂1, . . . , x̂2n) are assumed to be Weyl-symmetrized. This Hamiltonian
is the main object of our study.

The well-known Born–Oppenheimer method [1–4] provides the opportunity of replacing the

Hamiltonian Ĥ by its “terms” λ̂k = λk(x̂) with accuracy O(ε):

Ĥ −→ λ̂k +O(ε). (1.3)

The procedure (1.3) reduces the Hamiltonian with the operator-valued symbol H to the effective
Hamiltonians with scalar-valued symbols λk.

The general adiabatic approximation problem is to continue the asymptotic expression (1.3) and
to compute higher order corrections to the adiabatic terms

Ĥ −→ Λ̂k, Λk = λk + εμk + ε2νk + · · · (1.4)
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Also one needs not only to compute Λk, but also to describe the reduction operation (1.4) in order

to reconstruct the states of the Hamiltonian Ĥ from the states of the reduced effective Hamiltonian
Λ̂k.

There are known adiabatic approximation schemes [5–9] based on the knowledge of the eigen-
vectors of the operator-values symbol H(x). This approach in higher ε-orders is not very explicit
if the symbol H is not a matrix but an infinite-dimensional operator, and does not allow one to
correlate the quantum adiabatic approximation with the classical scheme known in Hamiltonian
mechanics [10–15].

In the present paper, we avoid both of these difficulties by developing the method of the work
[16]. The main steps of our approach are the following ones.

(i) We represent H(x) = f0(S0(x), x) via an “action” family of operators S0 whose spectrum
is integer. Then we introduce the unitary transform U

−1
0 HU0, which reduces this operator-valued

symbol to f0(S0(x), x) with fixed (frozen) point x ∈ D. The phase space hodograph translation
x → x is a sort of isospectral deformation made by a zero-curvature connection over the phase
space D.

(ii) We consider a unitary operator Û transforming the quantum Hamiltonian Ĥ → Û
−1 · Ĥ · Û

to the “hodograph form” f(S0(x), x̂) with some ε-deformed scalar function f = fε(s, x). Since the
eigenvalues of S0(x) are integers k = 0, 1, 2, . . . , we obtain the desirable adiabatic terms (1.4) in
this way: Λk(x) = fε(k, x).

(iii) In order to derive explicit analytic formulas for the ε-expression (1.4) as well as for the

quantum “action” Ŝ = Û · S0(x) · Û−1 and for the quantum coordinates X̂ = Û · x̂ · Û−1 commuting

with Ŝ, we write out the basic homological equation by using the Groenewold–Moyal ∗-product in
the phase space.

(iv) Instead of direct computation of the operator-value family U = Uε(x), we regard it as a
parallel section over the (ε, x)-space, introduce the corresponding zero-curvature connection, and
try to compute the coefficients of this connection. We observe that the basic homological equation
involves the hodograph transform of this (ε, x)-connection and write out the zero-curvature equation
for the hodograph coefficients.

(v) The obtained pair: homological+zero-curvature equations is our final system, which looks like
an ε-dynamical system (the small parameter ε plays the role of “time”). This system can easily be
solved asymptotically up to any order O(εN ). This produces explicit asymptotic expansions for the
adiabatic terms (1.4), for the quantum adiabatic invariant S = Sε(x) and for the quantum-deformed
slow coordinates Xj = X

j
ε(x).

(vi) The original quantum Hamiltonian, up to O(ε∞), can be finally presented as Ĥ = f(Ŝ, X̂)

with the quantum integral of motion Ŝ and new quantum “slow” coordinates X̂ = ((X̂j)) obeying,
up to O(ε∞), the relations

[Ŝ, X̂j ] = 0, [Xj ,Xl] = −iεJjl (j, l = 1, . . . , 2n).

These commutation relations allow one to restrict Ĥ onto the kth eigensubspace of Ŝ (analogs of
the “Landau levels” for a particle moving in a magnetic field). On these subspaces, the effective

adiabatic Hamiltonians are Λ̂k = f(k, X̂).

Note that the above-mentioned dynamical system for the adiabatic term (effective slow Hamilton-
ian) and for the hodograph coefficients is universal. It does not depend on the original Hamiltonian
or its eigenstates. The information about the concrete physical systems is placed to the “initial”
data at the zero “time” level ε = 0 only.

In principle, this system could provide not asymptotic but exact adiabatic transformation, i.e.,
complete “separation” of fast and slow coordinates. But we have no exact solvability theorem for
this dynamical system even for small ε. Its nonsolvability is equivalent to the nonintegrability, in
the exact sense, of the original Hamiltonian. And conversely: were this system solvable for a small
enough ε, the original Hamiltonian would be exactly integrable.

Note that although our approach is developed for quantum slow–fast Hamiltonian, it can also
be applied to matrix equations like the Pauli, Dirac, or Maxwell equations. In this case, we obtain
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ADIABATIC APPROXIMATION VIA HODOGRAPH TRANSLATION 199

a “hodograph” alternative to the matrix diagonalization method [17–19]. This method does not
work in the case of degenerate eigenvalues (multiplicity > 1), but the hodograph alternative still
works; see in Section 7 below.

Finally, we stress that the developed method can effectively be used in semiclassical theory and
also in classical mechanics. If the commutators between fast coordinates contain a small parameter
�, and the commutators between slow coordinates are proportional to ε�, then one can compute
all objects in our general scheme by applying the semiclassical technique as � → 0.

It is important to note that in the critical zone � = O(ε) one needs to know not only the first
correction μk in (1.4), but also νk or even higher corrections in order to compute just the zero–order

approximation for the semiclassical wave–functions of Ĥ.

Another important point: from our quantum formulas, by replacing the commutators i
�
[·, ·] by

the Poisson brackets at the limit � = 0, we obtain an alternative way to develop the adiabatic
approximation up to O(ε∞) in the framework of classical Hamiltonian mechanics (see in Section 8
below). In the case of adiabatic Hamiltonian systems, our algorithm turns out to be essentially
different from the action–angle approach [10, 11], the slow manifold approach [12], and the geometric
averaging approach [15]. Our scheme makes it possible to compute the asymptotics up to O(ε∞)
not only for the adiabatic invariant and the reduced Hamiltonian but also for canonical “guiding
center” slow coordinates and non-Abelian fast symmetries. The new geometrical feature which we
incorporate into this classical framework is the curvature-free connection providing the opportunity
to parallel distribute all the objects from the freezed point x over the slow phase space. The new
analytical feature is the ε–dynamics using the adiabatic parameter for the role of “time.”

2. PHASE SPACE HODOGRAPH

Let us replace the set of integers {k} numerating the eigenvalues λk(x) of H(x) by a family of
self-adjoint operators S0(x) whose spectrum is integer. Namely, we represent the operator-values
symbol H as follows:

H(x) = f0(S0(x), x), (2.1)

where
exp{2πiS0(x)} = I, ∀x ∈ D (2.2)

and f0 = f0(s, x) is a smooth real function monotonic in the s coordinate.

The family S0 can formally be defined as S0 =
∑

k�0 kPk, where Pk is the kth eigenprojection

for H. The spectrum of S0(x) consists of the integers k = 0, 1, 2, . . . at each x, and so it follows
from (2.1) that

λk(x) = f0(k, x). (2.3)

One has to pay attention to the following: the spectrum of S0 is discrete and so the choice of
the function f0 is not unique, but the final results do not depend on this choice. The same remark
is applied to all our computations, and we do not mention this specially below.

Note that the representation (2.1) is very common in the classical setting (in Hamiltonian me-
chanics), where an analog of S0 is called, up to O(ε), the adiabatic invariant of a slow–fast system.

Our goal is to construct the quantum adiabatic invariant for the quantum Hamiltonian Ĥ with an
arbitrary accuracy O(ε∞).

First of all, let us point out that, in view of the periodicity condition (2.2), we can connect the
operator S0(x) at any x with the operator S0(x) taken at a fixed point x by a unitary transformation

S0(x) = U0(x) · S0(x) · U0(x)
−1, x ∈ D. (2.4)

This is the so-called “isospectral deformation.” The proof of (2.4) follows from general theorems
[20, 21]; the construction of U0 is discussed in Appendix A.

From (2.1) and (2.4), we see that

H(x) = U0(x) · f0(S0(x), x) · U0(x)
−1. (2.5)
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Thus, the unitary transformed symbol U0(x)
−1 ·H(x) · U0(x) on the kth eigensubspace of S0(x) is

reduced to the scalar term f0(k, x) = λk(x) for any x ∈ D.
This is the way to obtain the scalar symbol without using the diagonalization or eigenvectors of

H(x), but just by shifting all phase space points x into a fixed position x in the family of operators
S0. This procedure can be referred to as the phase space hodograph translation.

Now in order to obtain a quantum analog of (2.5), one needs to replace U0 by a unitary operator

Û = U(x̂) with a deformed symbol U = Uε(x) depending on the parameter ε from (1.2). The scalar
function f0 has to be ε-deformed as well. Thus we replace (2.5) by its quantum analog:

Ĥ = Û · f(S0(x), x̂) · Û−1. (2.6)

In the limit ε = 0, we have
U(x)|ε=0 = U0(x), f |ε=0 = f0, (2.7)

and therefore relation (2.6) is reduced to (2.5) at ε = 0.
Let us introduce the operators

Ŝ = Û · S0(x) · Û−1, (2.8)

X̂ = Û · x̂ · Û−1. (2.9)

Then (2.6) reads

Ĥ = f(Ŝ, X̂). (2.10)

It is also obvious that the Heisenberg commutation relation holds:

[X̂j , X̂l] = −εJjl, (2.11)

and, additionally,
[Ŝ, X̂j ] = 0 ∀j. (2.12)

It follows from (2.12) that the operator Ŝ is the quantum integral of motion for the Hamiltonian Ĥ.

After restriction of (2.10) to the kth eigensubspace of Ŝ, we see that

Ĥ|kth eigensubspace = f(k, x̂′) (2.13)

with operators x̂′ def
= X̂|k-th eigensubspace satisfying relations [x̂′j , x̂′l] = −iεJjl.

Thus we obtain the reduction (1.4) with

Λk(x)
def
= f(k, x). (2.14)

The ε-expansion (1.4) then follows from (2.14):

μk(x) =
∂f

∂ε
(k, x)

∣∣∣∣
ε=0

, νk(x) =
1

2

∂2f

∂ε2
(k, x)

∣∣∣∣
ε=0

, . . . . (2.15)

Conclusion: after the hodograph translation by means of (2.4)–(2.7), the Hamiltonian Ĥ is

transformed to the form (2.10) with the quantum integral of motion Ŝ and can be reduced by
(2.13), (2.14) to the scalar-valued Hamiltonian Λk.

If one is interested in the asymptotic expansion of Λk as ε → 0, then there is no need to derive
the basic relation (2.10) exactly: one can derive it only asymptotically, up to O(ε∞). This is what
we want to obtain as the result. But at the same time, until the very end, i.e., until the final
equations allowing to compute f , S, X, we do all transformations exactly in ε.
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3. BACKWARD TRANSLATION BY ADIABATICITY (QUANTIZATION) PARAMETER

Now let us recall the composition formula for the Weyl-symmetrized functions in x̂-operators
[22–24]:

ĝ · r̂ = ĝ ∗ r, (g ∗ r)(x) def
= g(x) exp

{
− iε

2
D
←

· J ·D
→

}
r(x). (3.1)

Here we denote D = ∂/∂x and the left–right arrows indicate the x-coordinate to which the deriva-
tives D are applied.

We shall also use the operation � defined by

g � r
def
=

1

ε
(g ∗ r − gr). (3.1a)

Note that it follows from the definition (3.1) of the Groenewold–Moyal ∗-product that

∂

∂ε
(g ∗ r) = − i

2
Dg ∗ JDr, D(g ∗ r) = Dg ∗ r + g ∗Dr. (3.2)

The use of ∗ allows one to replace the hat-quantization notation (̂. . . ) in formulas (2.6), (2.8),
(2.9) by star-algebra products.

In particular, (2.6) can be rewritten as follows:

H = U ∗ F ∗U−1∗, (3.3)

where

F(x)
def
= f(S0(x), x), (3.4)

and the inversion operation . . .−1∗ in (3.3) is taken with respect to the ∗-product (3.1).
Let us note that the operator-valued family U = Uε(x) in identity (3.3), as well as the functions

f = fε(s, x) from (3.4), depends on ε, but the operator-valued symbol H = H(x) does not depend
on ε. Thus, identity (3.3) can, in a sense, be regarded as a parallel transport of F to H back in
the ε-space (i.e., back to the Cauchy data if ε is interpreted as a “time” variable). Thus the phase
space hodograph translation is now completed by the ε-space translation.

Since H does not depend on ε, by applying the ε-derivative to (3.3), one obtains

∂

∂ε
(U ∗ F ∗ U−1∗) = 0. (3.5)

Using (3.2), we then compute from (3.5)

∂

∂ε
U ∗ F ∗ U−1∗ + U ∗ ∂

∂ε
F ∗ U−1∗ + U ∗ F ∗ ∂

∂ε
(U−1∗)− i

2
DU ∗ JDF ∗ U−1∗

− i

2
DU ∗ F ∗ JD(U−1∗)− i

2
U ∗DF ∗ JD(U−1∗) = 0.

(3.6)

From the identity U
−1∗ ∗ U = I, by applying the derivatives with respect to ε and x, we derive

D(U−1∗) ∗U = −U
−1∗ ∗DU,

∂

∂ε
(U−1∗) ∗U = −U

−1∗ ∗ ∂

∂ε
U− i

2
U

−1∗ ∗DU ∗ JU−1∗ ∗DU.

Now let us use these relations in (3.6), introduce the notation
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iU−1∗ ∗DU
def
= A, iU−1∗ ∗ ∂

∂ε
U

def
= B, (3.7)

and also act on (3.6) by U
−1∗∗ and by ∗U, respectively, from left and right. Then (3.6) implies

i[F ∗, B] =
i

2
J [F ∗, A] ∗ A+ 〈〈A ∗, DF〉〉 − ∂

∂ε
F. (3.8)

Here we have introduced the general notation

〈〈Y ∗, Z〉〉 def
=

1

2
(Y ∗ JZ+ JZ ∗ Y), [M ∗, N]

def
= M ∗ N− N ∗M. (3.9)

Both of these general operations are skew-symmetric. It follows from (3.1a) that

[M ∗, N] = [M,N] + ε[M�, N].

Therefore, Equation (3.8) can be written as

i[F,B] = β(F,A,B)− ∂

∂ε
F, (3.10)

where F is given by (3.4) and the operation β is determined by the ∗-product as follows:

β(G,Z,M) =
i

2
J [G∗,Z] ∗ Z+ 〈〈Z∗,DG〉〉+ iε[M�,G]. (3.11)

Equation (3.10) will be referred to as the basic homological equation.
The computation that we have just made can be extended. Let us consider the transformation

G −→ U(G)
def
= U ∗G ∗ U−1∗ (3.12)

applied to an arbitrary operator-valued symbol G = G(x), which is assumed to be ε-independent.
Then, as above, one can compute the ε-derivative of U by applying (3.2) and using the notation (3.7).
The result is the following one:

∂

∂ε
U(G) = U

(
i[G,B]− β(G,A,B)

)
. (3.13)

This equation allows us to compute each next (N + 1)th term in the asymptotic ε-expansion of
U via the previous N terms under the assumption that the N terms of the expansions for B and A

are known.

4. ZERO-CURVATURE EQUATIONS

Now let us look at the operator-valued family U = Uε(x) as at a parallel section of the op-
erator bundle over the (ε, x)-space. The corresponding zero-curvature connection is given by the
x-coefficients A and ε-coefficients B as

iDU ∗ U−1∗ def
= A, i

∂

∂ε
U ∗U−1∗ def

= B. (4.1)

Both A and B smoothly depend on x and ε. They are related to the operator-valued families A
and B (3.7) by means of the unitary transformations (3.12), namely,

A = U(A), B = U(B). (4.2)
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The pair (A,B) can be referred to as the hodograph of the connection, since it represents the
connection coefficients (A,B) parallel transported to the fixed point x ∈ D. Below we use such a
phase-space hodograph representation, because the above homological equation (3.10) can easily
be written via A and B.

Now let us consider the zero-curvature equations for our connection. They can be expressed in
terms of the hodograph coefficients A and B just as the integrability conditions for the parallel
transport equations (3.7):

iDjU = U ∗ Aj , i
∂

∂ε
U = U ∗ B. (3.7a)

By using (3.2), we derive

DjAl −DlAj − i[Aj
∗, Al] = 0, (4.3)

∂

∂ε
Aj = DjB− i[Aj

∗, B] +
1

2
A ∗ JDAj (4.4)

for any j, l = 1, . . . , 2n.

Note that, at ε = 0, the family U0(x) is related to the “action” family S0(x) and so the initial
data A|ε=0 = A0 can be computed via S0 (see Appendix A). For this initial family A0(x), the
integrability conditions (4.3) in the x-coordinates are of course valid.

Lemma 4.1. It follows from Equation (4.4) that identities (4.3) hold for any ε > 0 if they hold
at ε = 0.

Let us pay attention to the fact that, although the operator Û is assumed to be unitary, its
operator-valued symbol U is not unitary, since U

−1∗ 
= U
−1. That is why the x-coefficients A and

A of the connection and the hodograph are self-adjoint operators, but the ε-coefficients B and B

are not. The latter can be separated into Hermitian and anti-Hermitian parts:

B = B∨ + iB∧, B = B∨ + iB∧. (4.5)

The operators B∧ and B∧ are explicitly determined by the x-coefficients as follows:

B∧ =
i

4
A ∗ JA, B∧ =

i

4
A ∗ JA. (4.6)

The Hermitian parts B∨ and B∨ are related to the x-coefficients via the zero-curvature equation
like (4.4). For instance, (4.4) implies the following equation

∂

∂ε
A j = DjB∨ − i[A j

∗, B∨] +
1

2
〈〈A ∗, JDA j〉〉. (4.7)

Here we use notation (3.9).

Thus the zero-curvature equations are reduced to the ε-evolution system (4.7) for A via B∨, and
to the algebraic identity (4.6) for B∧.

Recall that, for the whole B (4.5) we have the basic homological equation (3.8). The anti-
Hermitian part of this equation holds automatically in view of (4.6). The Hermitian part yields the
equation for B∨ as in (3.10):

i[F,B∨] = βsym(F,A,B∨)−
∂

∂ε
F, (4.8)

where βsym
def
= (β + β∗)/2.

Thus we conclude that the complete ε-evolution system actually consists of two equations,
(4.7)+(4.8).
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5. INTEGRABILITY VIA ε-DYNAMICS

First, we resolve the homological equation (4.8) and separate the equation for B∨ from the
equation for F by using the following statement.

Lemma 5.1. For any “fast” operator-valued family Q(x), the solutions Q
⊥ and Q

& of the
homological equations

i[f(S0(x), x),Q
⊥(x)] = Q(x)−Q

&(x), (5.1)

[S0(x),Q
&(x)] = 0 (5.2)

are given by the formulas

Q
&(x) =

1

2π

∫ 2π

0

eitS0(x)Q(x)e−itS0(x) dt, (5.3)

Q
⊥(x) =

1

2π

∫ 2π

0

dt
∑
m �=0

e−imteitS0(x)Q(x)e−itS0(x) ×
(
f(S0(x) +m,x)− f(S0(x), x)

)−1

.
(5.4)

The operator Q
⊥ has an additional property:

(Q⊥)& = 0. (5.5)

This statement is an analog of Lemma A.1 in Appendix A and can be proved just by direct
substitution of (5.3), (5.4) into (5.1), (5.2).

By applying Lemma 5.1 to Equation (4.8), we obtain two relations

∂

∂ε
F = βsym(F,A,B∨)

&, B∨ = βsym(F,A,B∨)
⊥. (5.6)

Now let us represent the right-hand sides of (5.6) in a more convenient form. Note that

βsym(G,Z,M) = α(G,Z) + iε[M�, G],

where we denote

α(G,Z)
def
= 〈〈Z ∗, DG+

i

2
[G ∗, Z]〉〉 (5.7)

Then property (5.5) reduces the first relation (5.6) to

∂f

∂ε
(S0(x), x) = α

(
f(S0(x), x),A(x)

)&
. (5.8)

This is a dynamical equation for the function f . The role of “time” in this equation is played by
the quantization (adiabaticity) parameter ε from the commutation relations (1.2).

The second relation in (5.6) can be written as follows:

B∨ = α
(
f(S0(x), x),A(x)

)⊥
+ iε[B∨(x)

⊥ �, f(S0(x), x)]. (5.9)

Claim. The complete dynamical system consists of three equations (5.8), (5.9), and (4.7) for
the unknowns f , A and B∨. This system is universal and does not depend on the Hamiltonian or
its eigenstates, etc.

The proof of the solvability of this system is equivalent to the proof of integrability of the original

Hamiltonian Ĥ. Thus, we have reformulated the integrability problem in terms of dynamics in the
ε-space.

The exact solvability of the obtained system is generally a very difficult question even for small
“time” ε. Here we are interested only in the formal asymptotics as ε → 0.
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Theorem 5.1. System (5.8), (5.9), (4.7) plus identity (4.6) explicitly generates the formal as-
ymptotic expansion for the scalar adiabatic Hamiltonian in (2.10)

f = f0 + εf ′ +
ε2

2
f ′′ + · · · , (5.10)

as well as for the hodograph of the zero-curvature connection

A = A0 + εA′ +
ε2

2
A

′′ + · · · , B = B0 + εB′ +
ε2

2
B
′′ + · · · , (5.10a)

starting from the “initial” data at ε = 0. The “initial” data are taken from the information about
the concrete Hamiltonian H. Namely, the function f0 is taken from (2.1), the x-component A0 of
the hodograph is determined by S0 via the parallel translation procedure as in Appendix A, and the
ε-component B0 of the hodograph is derived from (5.9), (4.6) as follows:

B0(x) = α0

(
f0(S0(x), x),A0(x)

)⊥
+

i

4
A0JA0. (5.11)

Here, on the right-hand side, we use the ε = 0 limit of (5.7), i.e.,

α0(G,Z)
def
= 〈〈Z,DG +

i

2
[G,Z]〉〉0 (5.12)

and the skew-product 〈〈·, ·〉〉0 is the limit of (3.9) at ε = 0:

〈〈Z,Z′〉〉0 =
1

2
(Z · JZ′ + JZ′ · Z). (5.13)

Now let us take into account that actually Eq. (3.13) for the operation U does not contain the
anti-Hermitian part B∧ and is reduced to

∂

∂ε
U(G) = U

(
i[G ∗, B∨]− α(G,A)

)
. (5.14)

Once the asymptotics of the hodograph coefficients A and B are known, Equation (5.14) implies

the asymptotics U = U0 + εU ′ + ε2

2 U ′′ + · · · very easily and explicitly.

Then the connection coefficients A and B can be obtained up to O(ε∞) from (4.2), (5.10a) as
well as the quantum action (2.8) and the quantum slow coordinates (2.9):

S(x) = U(S0(x)) = S0(x) + εS′(x) +
ε2

2
S
′′(x) + · · · , (5.15)

X(x) = U(x) = x+ εX′(x) +
ε2

2
X

′′(x) + · · · . (5.16)

6. FIRST TERMS OF THE ASYMPTOTIC EXPANSIONS

Let us explicitly write out the two leading terms of the asymptotic expansions for all our objects.
At the limit ε = 0, the connection x-coefficients A0 are derived from S0 as it is shown in

Appendix A, just by solving the homological equation

i[S0,A0] = DS0. (6.0)

This can be done in the class of zero-curvature self-adjoint connections which is equivalent to the
existence of the unitary operator family U0 (over the x-phase space) and of the unitary transfor-
mation G −→ U0(G) = U0 ·G · U−1

0 under the fast operator algebra (see Appendix A).
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The ε-coefficient B0 = U0(B0) can be obtained from (5.11). Let us note that if G = U0(G), then

U0(G
&) = G

&, U0(G
⊥) = G

⊥, (6.1)

where the operations & and ⊥ are defined in the same way as in (5.3), (5.4), but using the operator
S0(x) instead of S0(x). Also note that

U0(DG) = DG+ i[A0,G], (6.2)

and so

α0(G)
def
= U0(α0(G,A0)) = 〈〈A0,DG〉〉0 +

i

2
〈〈A0, [A0,G]〉〉0. (6.3)

Thus the transformation U0 produces, in fact, the inverse operation for hodograph translation
from the fixed point x back to x at the “time” level ε = 0.

In particular, from (5.11), taking into account (2.1), we derive

B0 = α0(H)⊥ +
i

4
A0JA0. (6.4)

Now from Equation (5.14) for U = U0+ εU ′+ · · · , we obtain the first ε-correction to the leading
unitary transformation U0 as follows:

U ′(G) = i[G,B0∨]− α0(G). (6.5)

In particular, in the expansion A = U(A) = A0 + εA′ + ε2

2
A

′′ + · · · , from (6.5) we derive

A
′ = i[A0,B0∨]− α0(A0). (6.6)

Similarly, in the expansion B = U(B) = B0 + εB′ + ε2

2
B
′′ + · · · , we derive from (6.5)

B
′ = i[B0,B0∨]− α0(B0).

About the quantum-deformed slow coordinates X
j = U(xj) we first note that, in view of the

commutation relations (1.2), there is an exact formula (see also Appendix B):

X(x) = x+ εJA(x). (6.7)

Thus the asymptotic expansion (5.16) is derived just from the ε-expansion for the x-coefficients A
of the connection as follows:

X(x) = x+ εJA0(x) + ε2JA′(x) + · · · , (6.7a)

where A
′ is given by (6.6).

The first ε-correction in the expansion (5.15) of the quantum adiabatic invariant is given by

S
′ = U ′(

S0(x)
)
= i[S0,B0∨] +

1

2
〈〈DS0,A0〉〉0. (6.8)

In the expansion (1.4) for the adiabatic terms Λk(x), we have λk(x) = f0(k, x). The first
ε-correction μk(x) = f ′(k, x) can be obtained from (5.8), (5.10) at ε = 0:

μk(x) = α0

(
f0(S0(x), x),A0(x)

)&∣∣∣
kth eigenspace of S0(x)

. (6.9)
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Relation (5.8) for f ′ at ε = 0 can also be rewritten by applying the transformation U0 to both of
its sides and by using the identities (6.1)–(6.3). The resulting formula is the following one:

μk = α0(H)&k , (6.10)

where the lower index k means the restriction onto the kth eigenspace of H.
Now let us take into account relation (6.0), which implies DH = Df0(S0, ·) + i[H,A0]. Then

(6.10) is transformed to

μk = −〈A&
0k, ad(λk)〉 −

i

2

(
[H,A0]JA0

)&
k
. (6.11)

Here by ad(λk) we denote the Hamiltonian vector field corresponding to the leading adiabatic term
λk on the slow phase space.

The first summand on the right-hand side of (6.11) represents the Berry contribution generating
the “geometric phase” factor

exp
{
i

∫ x(t)

x(0)

A
&
0k dx

}

along the trajectory x(t) of the vector field ad(λk). This first summand in the effective slow Hamil-
tonian uses only the commutant part A&

0 from the splitting (A.6) of the zero-curvature connection.

The second summand in (6.11) actually depends on the part Ã0 from the splitting (which is or-
thogonal to the commutant of S0) since

(
[H,A0]JA0

)&
=

(
[H, Ã0]JÃ0

)&
. (6.12)

Some formulas for this summand (called the “no name” term) were obtained in different situations
in [16, 25–27].

7. SPECTRAL DEGENERACY AND ADIABATIC
DEFORMATION OF FAST SYMMETRIES

Now one can omit the nondegeneracy condition for the eigenvalues of the operator-valued symbol
H = H(x). Namely, let us assume that H is super-integrable, i.e., it is represented in the form (2.1)
and the commutant of the “action” operator S0 has a noncommutative1 algebra whose generators
L
γ
0 = L

γ
0 (x) obey the relations

[S0(x),L
γ
0 (x)] = 0, [Lγ

0 (x),L
ρ
0(x)] = −iΨγρ(L0(x)). (7.1)

In the last relations, in the right-hand side, the components of the set L0 are assumed to be
Weyl-symmetrized.

The nonzero rank of the tensor ((Ψγρ)) in (7.1) provides a nontrivial degeneracy Mk > 1 of the
eigenvalue λk(x).

Of course, the concrete realization of the symmetry algebra (7.1) is defined up to a gauge
transformation only. Therefore, one can choose the following special gauge (see also Appendix A):

L
γ
0 = U0(L

γ
0(x)) or L

γ
0 (x) = U0(x) · Lγ

0(x) · U0(x)
−1, x ∈ D. (7.2)

In order to produce the quantization x → x̂, we construct, up to O(ε∞), the adiabatically
deformed symmetries L

γ = L
γ
ε (x) by using the transformation U (3.12), i.e., via the following

formula
L
γ = U(Lγ

0 (x)). (7.3)

1For this reason, the diagonalization method used in the matrix approximation scheme [18, 19] does not work in the

case of degenerate eigenvalues λk: the commutant of a diagonal matrix contains not only diagonal matrices in this

case.
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Thus L̂γ = Û · Lγ
0(x) · Û−1, and in view of (2.6), (2.8), (2.9), we have the commutation relations

[Ĥ, L̂γ ] = 0, [Ŝ, L̂γ ] = 0, [X̂, L̂γ ] = 0. (7.4)

Since one knows the complete asymptotic expansion as ε → 0 for the transformation U = Uε,
formula (7.3) provides the asymptotic expansion for Lγ .

Then we can try to apply the same “dynamical” scheme of the adiabatic approximation as in the
above sections. The goal is to obtain, up to O(ε∞), a representation like (2.10) and commutation
relations (2.11), (2.12).

The critical place in this approach is the equation for F in (5.6). The right-hand side of this
equation (see it also in Eq. (5.8)) is an operator commuting with S0(x). The last fact is due to
the averaging operation & (5.3) staying in this right-hand side. But now, in the presence of the
symmetry algebra (7.1), one cannot claim that if an operator commutes with S0(x), then it must
be a function in S0(x). Now such an operator may be a function in the generators Lγ

0(x) as well.

Thus from the first equation in (5.6), one can reconstruct F only as a function

F = f
(
S0(x),L0(x), x

)
, f = fε(s, l, x). (7.5)

Therefore, Eq. (5.8) is now replaced by the following one:

∂f

∂ε

(
S0(x),L0(x), x

)
= α

(
f
(
S0(x),L0(x), x

)
,A0(x)

)&

. (7.6)

But the initial data for f is still f |ε=0 = f0(s, x), i.e., at ε = 0, as follows from (2.5), it is a function
in s, x but not in the symmetry algebra arguments lγ .

In the same way, we now have to change the arguments of f in (5.9), (5.10).

After solving up to O(ε∞) the ε-dynamical system (5.8), (5.9), (4.7) with new arguments of f ,
we obtain not (2.10), but

Ĥ = f(Ŝ, L̂, X̂), f = f0(s, x) + εf ′(s, l, x) + · · · (7.7)

plus relations (2.11), (2.12). The first ε-correction f ′ in (7.7) is derived from the identity

f ′(S0(x),L0(x), x) = α
(
f0(S0(x), x),A0(x)

)&
. (7.8)

By applying the transformation U0 to both sides of (7.8), one can rewrite this relation as follows:

f ′(S0(x),L0(x), x) = A
&
0 (x) · JDf0

(
S0(x), x

)
− i

2

(
[H(x),A0(x)]JA0(x)

)&
. (7.9)

Conclusion. In the presence of a noncommutative symmetry algebra of the fast operator-valued

symbol H, we have the asymptotic representation (7.7) for the Hamiltonian Ĥ. This representation
reduces the Hamiltonian to the scalar term at the zero order in ε. But in higher ε-orders, there still
remains the dependence in fast symmetry generators:

Ĥ = f0(Ŝ, X̂) + εf ′(Ŝ, L̂, X̂) +O(ε2). (7.10)

After restricting (7.10) to the kth eigensubspace of Ŝ, we obtain

Ĥ

∣∣∣
kth subspace

= λk(x̂
′) + εμk(L̂

′, x̂′) +O(ε2), (7.11)
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where μk(l, x)
def
= f ′(k, l, x), x̂′ def

= X̂

∣∣
kth subspace

, L̂′ def
= L̂

∣∣∣
kth subspace

, and the commutations relations

repeat (7.1), (7.4), (2.11):

[L̂′γ , L̂′ρ] = −iΨγρ(L̂′), [L̂′γ , x̂′j ] = 0, [x̂′j , x̂′l] = −iεJjl. (7.12)

In order to eliminate the fast-coordinate dependence from the Hamiltonian (7.11), at least up
to O(ε2), one needs information about the trajectories of the vector field ad(λk) on the slow phase
space D.

For instance, let us assume that all these trajectories x(t) are periodic. Then the fast operator
corresponding to (7.11),

−i
d

dt
+ μk

(
L0(x), x(t)

)
, (7.13)

will act in the space of “fast” eigenvectors of S0(x) periodic in the t-coordinate. Let us consider the
monodromy operator for (7.13) and compute its eigenvalues, i.e., determine the Floquet multipliers

m
(j)
k , j = 1, . . . ,Mk. These multipliers will be functions in the Hamiltonian λk, as well as in its

symmetries κ1, . . . ,κ2N−1, i.e.,

m
(j)
k = m

(j)
k (λk,κ), {λk,κ

(l)} = 0, {κ(l),κ(m)} = Φlm(κ). (7.14)

In this way, we reduce the operator (7.11) to the series of “slow” Hamiltonians

λ̂k + εm
(j)
k (λ̂k, κ̂) +O(ε2) (7.15)

over the algebra with commutation relations

[κ̂(l), κ̂(m)] = −iεΦlm(κ̂) +O(ε3), [λ̂k, κ̂
(l)] = O(ε3). (7.16)

Thus, in the degenerate case, the first ε-correction in the effective slow Hamiltonian (7.15) is
determined by the Floquet multipliers of the periodic operator (7.13) related to (7.11).

8. ADIABATIC APPROXIMATION IN SEMICLASSICAL AND CLASSICAL MECHANICS

We can extend the above scheme to the case where the fast operator algebra is represented by
functions in generators ŷα whose commutation relations contain a small semiclassical parameter �,
namely,

[ŷα, ŷβ ] = −i�J αβ , J =

(
0 −I
I 0

)
. (8.1)

At the same time, the commutation relations (1.2) between slow coordinates are replaced by

[x̂j , x̂l] = −i�εJjl. (8.2)

Let us consider the Hamiltonian Ĥ = H(x̂) with x̂j obeying the slow relations (8.2) and with the
operator-valued symbol H(x) = H(ŷ;x), where the fast coordinates ŷα obey relations (8.1). Thus,
the function H = H(y;x) is a scalar Hamiltonian on the phase space product R

2N × D with the
Poisson brackets

{·, ·}ε = {·, ·}0 + ε{·, ·}, (8.3)

where the brackets {·, ·}0 over R2N are generated by the tensor J from (8.1) and {·, ·} are brackets
(1.1) over D ⊂ R

2n.

We assume that, for any fixed x, the Hamiltonian H(ŷ;x) is super-integrable and can be repre-

sented via an action operator S0(x)
def
= S0(ŷ;x) as in (2.1):

H(ŷ;x) = f0(S0(x), x). (8.4)
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Then the semiclassical adiabatic approximation problem is formulated as follows: to find a symbol

f = fε(s, l, x) = f0(s, x) + εf ′(s, l, x) + · · · , (8.5)

as well as the symbols S = Sε(y;x), L = Lε(y;x), X = Xε(y;x) up to O(ε∞), in such a way that
the operators

Ŝ = Sε(ŷ; x̂), L̂ = Lε(ŷ; x̂), X̂ = Xε(ŷ; x̂) (8.6)

satisfy the relations

[Ŝ, L̂γ ] = 0, [L̂γ , L̂ρ] = −i�Ψγρ(L̂),

[Ŝ, X̂j ] = [L̂γ , X̂j ] = 0, [X̂j , X̂l] = −i�Jjl
(8.7)

and represent the Hamiltonian Ĥ = H(ŷ; x̂) up to O(ε∞) by the formula

Ĥ = f(Ŝ, L̂, X̂). (8.8)

The solution of this �-scaled adiabatic problem is described as in the above sections by making
some obvious renotation.

Now in the obtained �-scaled formulas, let us pass to the limit � = 0 taking into account that
the commutator i

�
[·, ·] becomes the Poisson brackets (8.3) at � = 0. In this way, one can derive an

algorithm for adiabatic approximation in the classical mechanics setting.
As we saw above, this algorithm is based on three basic ideas:
(i) hodograph translation over x-phase space and over ε-parameter space;

(ii) zero-curvature equations over (ε, x)-space;

(iii) dynamics by ε as “time” coordinate.
The introduced combination of these ideas probably is new, although each of them, if taking

separately, looks somewhat familiar in the theory of integrable and nearly integrable equations
[28–30].

Let us formulate our final algorithm for the adiabatic approximation in Hamiltonian mechanics.

Over the fast–slow space with brackets (8.3), one has a Hamiltonian H = H(y;x) possessing the
zero-order adiabatic invariant S0. This means that

H(y;x) = f0(S0(y;x);x), (8.9)

and for any fixed x, all trajectories of S0(y;x) in the fast y-space are 2π-periodic. For some frozen

x, denote by ((Lγ
0 )) a basis of symmetries of S0

def
= S(·;x) over the y-space, i.e.,

{S0,L
γ
0}0 = 0, {Lγ

0 ,L
ρ
0}0 = Ψγρ(L0). (8.10)

The problem is the following: to construct f , S, Lγ, X j as power series in ε in such a way that

H = f(S,L,X ), (8.11)

and so that the following relations be valid, up to O(ε∞):

{X jX l}ε = εJjl, {S,X j}ε = {Lγ ,X j}ε = 0,

{S,Lγ}ε = 0, {Lγ ,Lρ}ε = Ψγρ(L).
(8.12)

In particular, it follows from (8.11), (8.12) that the function S is in involution with the Hamil-
tonian:

{H,S}ε = 0, (8.13)
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and thus S is the adiabatic invariant for H up to O(ε∞).
Our algorithm consists of the following steps:
(1) to find the “initial data” A0, B0 at ε = 0 for hodograph coefficients of a zero-curvature

connection over (ε, x)-space;

(2) to write out and asymptotically solve the ε-dynamical system for the function f of the type
(8.5), as well as for the hodograph coefficients A, B;

(3) by using A, B to write out and asymptotically solve the ε-dynamical system for the canonical
transformation g = gε which generates the functions S, Lγ , X j from their “initial data” at ε = 0
and x = x:

S = g∗S0, Lγ = g∗Lγ
0 , X j = g∗xj . (8.14)

Let us carry out these steps.

Denote by Y (y, τ) the 2π-periodic in τ trajectories of S0, and introduce the averaging operation

ϕ(y) →
〈
ϕ
〉
(y)

def
=

1

2π

∫ 2π

0

ϕ
(
Y (y, τ)

)
dτ, (8.15)

as well as the “integration” operation

ϕ(y) → I
(
ϕ(y)

) def
=

1

2π

∫ 2π

0

ϕ
(
Y (y, τ)

)
(τ − π) dτ. (8.16)

These two operations are the classical analogs of the operations & and # used in Appendix A and
in Lemma 5.1.

By solving the equation {S0,A0}0 = DS0, we find the “free” connection form A0 = A0j dx
j in

the zero-curvature class:

DjA0l −DlA0j + {A0j ,A0l}0 = 0, j, l = 1, . . . , 2n. (8.17)

This can be done by the splitting A0 = Ã0 + 〈A0〉 in which Ã0 = I(DS0) and 〈A0〉 = a0(S0,L0, ·),
where a0 is a solution of δa0 = −c̃0 with c̃0(S0,L0, ·) = 〈{Ã0, Ã0}0〉 (for details, see Appendix A).

Note that in this splitting the first summand Ã0 and its curvature c̃0 are related to the classical
Hannay angle [8, 13], while the second summand a0 is related to the quantum Berry phase in
(6.12),since the classical limit of A

&
0 is just 〈A0〉. The mentioned above condition δa0 = −c̃0

represents the relationship between Hannay and Berry contributions (see also in [7]), but the fact
that this condition actually establishes vanishing of the curvature for the complete “free” connection
A0 probably was missed.

In view of (8.17) one can correctly define the multi–Hamiltonian flow y → Y0 generated by
A0(·, x) in which the slow coordinate x plays the role of “multi–time” with the “initial data”

Y0

∣∣
x=x

= y. We index this flow by Y0
def
= Y

x,x
0 and refer to it as to free translation. This family

of mappings translates the fast y–fiber over a fixed x onto fast y–fibers over all x, and obeys the

relation Y
x,x
0 =

(
Y

x,x
0

)−1
. Any function f over x can be distributed to fast fibers over all x by

means of f
def
=

(
Y

x,x
0

)∗
f which determines a parallel section with respect to our “free” connection:

Df +A0, f0 = 0.

Lemma. The zero–order adiabatic invariant as well as its symmetries are consistent with free
translations, i.e.,

S0

(
Y

x,x
0 , x

)
= S0(y, x),L0

(
Y

x,x
0 , x

)
= L0(y, x). (8.18)

Free translations acting as symplectic mappings between fast fibers transform the family of energy
levels and the fast flow of S0 over a fixed x to the family of energy levels and the fast flow of S0(·, x)
over each x ∈ D.

Now one can define the mapping of the whole slow–fast bundle

g0 : (y, x) → (Y0(y, x), x), Y0(y, x)
def
= Y

x,x
0 (y). (8.19)
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This mapping is canonical with respect to brackets (8.3) at the “time” level ε = 0. This is the

classical analog of the quantum mapping U0. Then we choose A0
def
= g−1∗

0 A0 or A0(y, x)
def
=

CalA0(Y
x,x
0 (y), x). This is the classical analog of the quantum hodograph A0 = U−1

0 (A0) (see
Appendix A).

Another hodograph coefficient at ε = 0 is determined by a formula similar to (5.11):

B0 = ω−1
0 I

(
A0JDf

0
+

1

2
A0J{f0

,A0}0
)
, (8.20)

where f
0
and ω0 are related to f0 as follows:

f
0

def
= f0

(
S0(y), x

)
, ω0

def
= ∂f0

(
S0(y), x

)
. (8.21)

At the second step, let us write out the ε-dynamical system of f , B, A (an analog of (5.8), (5.9),
(4.7)):

∂

∂ε
f =

〈
AJDf +

1

2
AJ{f ,A}ε

〉
,

B = ω−1I
(
AJDf +

1

2
AJ{f ,A}ε

)
− εω−1{f, I(B)},

∂

∂ε
Aj = DjB − {Aj ,B}ε +

1

2
AJDAj .

(8.22)

Here f and ω are related to the unknown f similarly to (8.21), i.e., f
def
= f(S0(y), x) and

ω
def
= ∂f(S0(y), x).
Starting from the “initial” data at ε = 0,

f |ε=0 = f0 (8.21), B|ε=0 = B0 (8.20), A|ε=0 = A0,

we compute from (8.22) the complete asymptotic expansions for f , B, A as ε → 0.
At the third step, we write out the ε-dynamical equation for the canonical mapping g which is

the classical analog of the transformation U (3.12) at � = 0. The “initial” data for this mapping is
g|ε=0 = g0 (8.19). From Eq. (3.13), we derive

g(y, x) =
(
Y(y, x),X (y, x)

)
, (8.23)

where

∂

∂ε
Y = Jκ(Y,X ), Y

∣∣∣
ε=0

= Y0(y, x),
∂

∂ε
X = Jθ(Y,X ), X

∣∣∣
ε=0

= x, (8.24)

and the 1-forms κ, θ are defined by

κ
def
=

1

2
∂Aj/∂y · JjlAl + ∂B/∂y, θ

def
= A+

ε

2
DAjJ

jlAl + εDB. (8.25)

After solving (8.24) asymptotically as ε → 0, we then apply (8.14) and find

S = S0(Y) or S(y;x) = S0(Y(y, x);x),
Lγ = Lγ

0(Y) or Lγ(y;x) = L0(Y(y, x);x).
(8.26)

This completes the algorithm.
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Remark. Formulas (8.26) use only the Y–part of the solution of the system (8.24). Another,
i.e.,X–part of this solution generates the guiding center coordinates X j which meet canonical
relations (8.12). Note that new fast coordinates Y are also canonical:

{YjY l}ε = εJ jl, {Y,X}ε = 0.

We can determine the curvature-free adiabatic connection in the classical framework analogously
to its quantum version (4.2), namely: A = A(Y,X ). It is related to the slow (guiding center)
coordinates and to new fast coordinates as follows:

X = x+ εJA, DY + {A,Y}ε = 0.

The connection A generates free translations Y x,x by the same way as our “free” connection A0

generates the translations Y
x,x
0 at the level ε = 0 (see above).

Note that (8.11),(8.14) imply g−1∗H = f(S0,L
γ
0 , x). Thus the dynamics on the slow phase space

is generated by the vector field JDf = g−1∗J∇clH. Here ∇cl def
= D+ {A, ·}ε is the classical version

of the quantum covariant derivative ∇ (see Appendix A). Therefore one can say that the curvature-
free adiabatic connection A controls the adiabatic inertia of the system. Indeed: the condition of
total inertial behavior JDf = 0 is equivalent to the condition ∇clH = 0.

1. APPENDIX A: SPLITTING OF FREE ADIABATIC CONNECTION

Let us introduce two operators & and # in the following way:

Q
& def

=
1

2π

∫ 2π

0

eitS0 ·Q · e−itS0 dt,

Q
# def

=
1

2π

∫ 2π

0

eitS0 ·Q · e−itS0(t− π) dt.

(A.1)

Lemma A.1. Formulas (A.1) generate the solution of the homological equations

i[S0,Q
#] = Q−Q

&, [S0,Q
&] = 0 (A.2)

with the property
(Q#)& = 0. (A.3)

Lemma A.2. The periodicity condition (2.2) implies

(DS0)
& = 0. (A.4)

Corollary A.1. The homological equation (6.0), i.e.,

iDS0 = [A0,S0] (A.5)

can be resolved as follows:
A0 = A

&
0 + Ã0, (A.6)

where
Ã0 = (DS0)

# (A.7)

and A
&
0 commutes with S0, i.e.,

[S0,A
&
0 ] = 0. (A.8)
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A splitting (A.6) corresponds to the decomposition of the fast operator algebra into the commu-
tant of S0 and its orthogonal complement (with respect to the trace scalar product). The operation
& is the projection onto the commutant which coincides with the symmetry algebra of the operator-
valued symbol H.

Note that, since A
&
0 belongs to the commutant, it can be represented as a function in S0 and its

symmetries L0 (7.1), i.e.,
A

&
0 (x) = a0(S0(x),L0(x)). (A.9)

Now let C̃0 denote the curvature tensor corresponding to the second summand in (A.6):

C̃0jl
def
= DlÃ0j −DjÃ0l − i[Ã0j , Ã0l] = ∇̃lÃ0j − ∇̃jÃ0l + i[Ã0j , Ã0l], (A.10)

where

∇̃l
def
= Dl + i[Ã0l, ·], Dl ≡ ∂/∂xl. (A.11)

From (A.5), by taking the derivatives with respect to x, it is easy to see that [C̃0jl,S0] = 0 and,

therefore, C̃0jl = (C̃0jl)
&. Note that the operations & and # (A.1) commute with the covariant

derivatives (A.11). Thus, by applying the averaging operation & to (A.10), we obtain

C̃0jl = i[Ã0j , Ã0l]
&. (A.12)

And since there operators commute with S0, they can be written in a form similar to (A.9):

C̃0jl(x) = c̃0jl(S0(x),L0(x), x) (A.13)

for some scalar smooth functions c0jl = c0jl(s, l, x).

Now we choose the family A
&
0 in (A.6) in such a way that the whole sum A0 is the connection

determined by the unitary family U0 from (2.4), i.e.,

iDU0 = A0U0, U0|x=x = I. (A.14)

In this notation, relation (2.4) is just equivalent to (A.5) plus the zero curvature condition for the
connection A0.

The generators Lγ
0 of the commutant of S0 are chosen to be parallel with respect to the connec-

tion (A.6), i.e.,
iDL

γ
0 = [A0,L

γ
0 ] or ∇L

γ
0 = 0, (A.5a)

where ∇ corresponds to A0 similarly to (A.11). Note that ∇ and ∇̃ are related to each other as

∇̃ = ∇− i[A&
0 , ·].

It follows from (A.6), (A.9) and Eqs. (A.5), (A.5a) that the curvature C0 of A0 is split into the
following sum:

C0(x) = C̃0(x) + δa0(S0(x),L0(x), x), x ∈ D. (A.15)

Here δ is the covariant derivative in the commutant bundle; it is determined by

(δa)jl
def
= Dlaj −Djal + i[[al, aj ]], (A.16)

where the commutator [[·, ·]] is generated by relations (7.1) between generators of the commutant.
The zero-curvature condition C0 = 0, in view of (A.15), implies the equation for a0

δa0 = −c̃0, (A.17)

where c̃0 = ((c̃0jl)) are given by (A.12), (A.13).
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The solvability of the zero-curvature equation (A.17) is guaranteed by the existence of the unitary
family U0. Of course, one would like to see a formula for a0 without referring to U0 in the general
non-Abelian case. In the case of nondegenerate eigenvalues λk (the multiplicity equals 1), the
commutant of S0 is Abelian, there are no generators L0 in (A.13), (A.15) and no commutator [[·, ·]]
in (A.16). In this case, Eq. (A.17) reads

da0 = −c̃ (A.18)

in the usual sense of differential forms on D. The closedness of c̃0, i.e., Dmc̃0lj+Dlc̃0jm+Dj c̃0ml = 0,

easily follows just from the Bianchi identities for the curvature C̃0. Therefore, in the nondegenerate
case, the connection A0 is explicitly derived via (A.6), (A.7), (A.9) using the integrator # and by
taking the primitive of the closed differential 2-form c̃ = 1

2 c̃jldx
l ∧ dxj in (A.18).

Thus, the construction of the curvature-free adiabatic connection and of its splitting (A.6) asso-
ciated with the projection & onto the symmetry algebra of H becomes an important and generally
nontrivial point of the quantum adiabatic algorithm.

Remark A.1. The transformation U0 : G → G = U0GU0 can be computed by solving the
Heisenberg type “multi-time” Cauchy problem

iDG/∂x = [A0(x),G], G|x=x = G(x). (A.19)

In order to find the inverse operator U
−1
0 or the inverse transformation U−1

0 , one just needs to
replace x by x in Eqs. (A.14), (A.19). For instance, the operator-valued family F = U−1

0 (F) can be
computed by solving the Cauchy problem

i∂F/∂xj = [A0j(x),F], F|x=x = F(x).

In particular, the hodograph coefficients A0l = U−1
0 (A0l) are obtained via the system

i∂A0l/∂x
j = [A0j(x),A0l], A0l|x=x = A0l(x),

where j, l = 1, . . . , 2n.

2. APPENDIX B: ADIABATIC GUIDING CENTER

The adiabatic invariant S is the approximate integral of motion for the given Hamiltonian,
i.e., [H ∗, S] = 0 up to O(ε∞). Besides S, in the description of the adiabatic system, a significant
role is played by the adiabatically deformed slow coordinates X

j which commute with S, that is,
[S ∗, Xj ] = 0 up to O(ε∞). These are coordinates of a “guiding center” analogous to the Landau–
Peierls coordinates of the Larmor vortex in a magnetic field.

Let us introduce the guiding center coordinates as in (6.7)

X(x) = x+ εJA(x) (B.1)

being based on the slow Darboux coordinates x (2.1).

Note that coordinates (B.1) are taken with respect to the same fixed (laboratory) basis as the
original coordinates x. Despite the “affine” structure of (B.1), this definition is consistent with
the changing of the slow coordinates. Namely, let ϕ : x → x′ be a transformation of one quantum
Darboux coordinate set (1.2) to another one, and let X or X

′ be defined by (B.1) in local charts
x or x′. Then ϕ∗ · X∗ = X

′
∗ · ϕ∗, which allows one to match one-chart expressions like (B.1) to a

global map of a quantum slow manifold.
Now let us analyze formula (B.1). The identity [S ∗, x] = iεJDS implies that the relation

[S ∗, X] = 0 is equivalent to the homological equation

[A ∗, S] = iDS. (B.2)
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This is the complete ε-analog of Eq. (6.0) or (A.5).
Pairwise commutation relations between the guiding center coordinates can be represented in

the form
i

ε
[Xj ∗, Xl] = Jjl + ε(JCJ)jl, (B.3)

where by C we denote the curvature corresponding to the connection A, namely,

Cjl
def
= DlAj −DjAl − i[Aj

∗, Al]. (B.4)

By taking the derivatives with respect to x of (B.2), it is easy to see that, for any given solution A

of (B.2), the curvature commutes with the adiabatic invariant [Cjl
∗, S] = 0.

There is an internal approach to deal with (B.2), (B.3). Namely, one could choose a particular

solution Ã of (B.2) with zero average value

Ã
def
= (DS)#∗, Ã

&∗ = 0. (B.5)

Here the operations #∗ and &∗ are defined by the ∗-product and ∗-functions following the same
lines as in (A.1):

M
#∗ def

=
1

2π

∫ 2π

0

eitS∗ ∗M ∗ e−itS
∗ (t− π) dt,

M
&∗ def

=
1

2π

∫ 2π

0

eitS∗ ∗M ∗ e−itS
∗ dt.

(B.6)

Let us denote by C̃ the curvature (B.4) related to the special solution (B.5), and let X̃ = x+εJÃ.

Then C̃ can be represented as an ∗-function in symmetries of S, i.e., C̃jl = c̃∗(S,L, X̃)jk. Relations
(B.3) read

i

ε
[X̃ ∗, X̃] = J + εJc̃∗(S,L, X̃)J. (B.7)

In a sense, this internal way of description of the fast–slow system follows the Poinsot approach (see
in [31]) from the rigid body mechanics. Here we need not worry about the zero-curvature condition,
but the price is the loss of the opportunity to separate the X-coordinate from the L-coordinate and
to make the transform x → X unitary.

The external way of description (which can be associated with the Lagrange approach) is to
postulate that the transformation x → X must be canonical, i.e., produced by unitary operators.
Then (B.3) must take the form [Xj ∗, Xl] = −iεJjl. Therefore, the curvature (B.4) has to be zero.

The zero-curvature condition
C = 0 (B.8)

can be achieved if one takes not a special but general solution of (B.2)

A = Ã+ A
&∗, (B.9)

where the second summand on the right-hand side commutes with the adiabatic invariant:
[A&∗ ∗, S] = 0.

One can represent this additional summand via the symmetries of S:

A
&∗
j = a∗(S,L,X)j (B.10)

using some ∗-functions a∗j . The equation for a∗j follows from (B.8):

δa∗ = −c̃∗. (B.11)
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Here the non-Abelian differential δ is determined by (A.16), and c̃∗ is given by the averaging of C̃,
i.e.,

c̃∗(S,L,X)jl = i[Ãj
∗, Ãl]

&∗. (B.12)

These relations are obtained in the same way as in (A.10), (A.12).
Note that, by having A with zero curvature C = 0, one obtains the parallel sections L

γ with
values in the commutant of S as in (A.5a):

iDL
γ = [A ∗, Lγ ], [S ∗, Lγ ] = 0. (B.13)

Thus, the guiding center coordinates (B.1) commute with all these symmetries:

[Xj ∗, Lγ ] = 0.

Finally, the splitting of the free connection (B.9) generates the splitting of the guiding center
coordinates

X = x+ εJÃ+ εJA&∗. (B.14)

The first correction εJÃ in (B.12) has the zero average (see in (B.5)), while the second correction
εJA&∗ represents the averaged adiabatic deformation of the original slow coordinates x.

Remark B.1. All the relations written above must be understood up to O(ε∞), i.e., as formal
asymptotic series in ε.

All the objects used in this Appendix B have their ε = 0 analogs described in Appendix A. The
complete ε-version can be obtained from the ε = 0 version by the transformation U = Uε, see (4.2),
(5.15), (5.16), (7.3).

In particular, it follows from (B.10), (B.12) that a∗(S,L,X) = U
(
a0(S0(x),L0(x), x)

)
and

c̃∗(S,L,X) = U
(
c̃0(S0(x),L0(x), x)

)
. Thus, the solvability of (B.11) up to O(ε∞) is equivalent to

the solvability of (A.17).
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