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Abstract There has been a surge of interest in stochastic assignment mechanisms that
have proven to be theoretically compelling thanks to their prominent welfare proper-
ties. Contrary to stochastic mechanisms, however, lottery mechanisms are commonly
used in real life for indivisible goods allocation. To help facilitate the design of practi-
cal lottery mechanisms, we provide new tools for obtaining stochastic improvements
in lotteries. As applications, we propose lottery mechanisms that improve upon the
widely used random serial dictatorship mechanism and a lottery representation of its
competitor, the probabilistic serial mechanism. The tools we provide here can be use-
ful in developing welfare-enhanced new lottery mechanisms for practical applications
such as school choice.
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1 Introduction

A lottery is a common tool to establish fairness in real-life indivisible goods alloca-
tion problems such as object/task assignment, on-campus housing, kidney exchange,
course allocation, and school choice. The simplest of these problems is the so-called
assignment problem, where a set of distinct objects is allocated to a set of agents. A
widely used real-life mechanism for such problems is the random serial dictatorship
(RSD): arandom ordering of agents is drawn from a uniform lottery, and the first agent
picks her favorite object; the second agent picks her favorite object among the remain-
ing ones; and so on. RSD satisfies many desirable properties. Ex post efficiency is an
important one: after the resolution of the lottery, the resulting deterministic assignment
is Pareto efficient. In a number of school districts, where schools are equipped with
possibly distinct and coarse priority orders over students, popular assignment mecha-
nisms such as Boston and Deferred Acceptance (Gale and Shapley 1962) are applied
upon randomly breaking the ties in schools’ priority orders. All of these mechanisms,
which we henceforth refer to as lottery mechanisms, induce a probability distribution
over deterministic assignments, i.e., a lottery over mappings of agents to objects.

Notwithstanding the prominence and popular usage of lottery mechanisms in prac-
tice,! there has been much recent interest in stochastic mechanisms that prescribe
the marginal probabilities with which each agent is assigned each object. In other
words, a stochastic mechanism, unlike a lottery mechanism, does not immediately
output a deterministic assignment but rather outputs a (sub)stochastic assignment
matrix indicating agents’ marginal assignment probabilities. To implement a stochas-
tic mechanism one often resorts to a Birkhoff-von Neumann type of decomposition
that transforms the outcome of the stochastic mechanism into an equivalent lottery
over deterministic assignments. An important advantage and a chief motivation of the
stochastic approach is that it makes it possible to achieve superior efficiency prop-
erties relative to lottery mechanisms. A well-known example of this approach is the
probabilistic serial (PS) mechanism by Bogomolnaia and Moulin (2001) (hereafter
BM),? which has become the cornerstone of a rapidly growing body of literature con-
cerning stochastic mechanisms (cf. Che and Kojima 2010; Kojima and Manea 2010;
Hashimoto et al. 2014).

BM have pointed out that the RSD outcome may suffer from unambiguous effi-
ciency losses regardless of the von Neumann-Morgenstern utilities compatible with
agents’ ordinal preferences. Manea (2009) shows that these losses are prevalent even
in large assignment problems. BM introduce a stronger notion of efficiency, which we
call “sd-efficiency”: a stochastic assignment is sd-efficient if it is not dominated by
another stochastic assignment. Surprisingly, RSD may not always induce sd-efficient
outcomes. BM have proposed PS as a serious contender to RSD, which selects the
central point within the sd-efficient set. The attractive sd-efficiency (as well as the sd-

! Indeed we are not aware of any stochastic mechanisms in use for any practical assignment problem.

2 PS treats each object as a continuum of probability shares and allows agents to simultaneously “eat away”
from their favorite objects at the same speed until each agent has eaten a total of 1 probability share. The
share of an object an agent has eaten during the process represents the probability with which she assigned
the object by PS. See Sect. 5 for a more precise description.
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envy-freeness) property has triggered much interest to further extend and generalize PS
to richer and more structured assignment problems (cf. Kojima 2009; Athanassoglou
and Sethuraman 2011; Budish et al. 2013).

An obvious advantage of lottery mechanisms is that they largely facilitate ex post
analysis, which may focus on considerations such as incentives, fairness, stability,
individual rationality, and efficiency. Nevertheless, the lottery approach has not been
as successful as the stochastic approach as far as achieving stronger welfare properties
than ex post efficiency.’ Nevertheless, because a stochastic assignment needs to be
decomposed into a feasible lottery before actual implementation (Birkhoff 1946; von
Neumann 1953; Kojima and Manea 2010), ex post considerations are comparably
more difficult, if not impossible, to handle in the domain of stochastic assignments.4
Therefore, we believe that bridging the gap between the two approaches and developing
tools that would allow one to work directly with lotteries without sacrificing efficiency
is an important task. In this paper, our goal is to show that ex ante efficiency analysis
in addition to ex post analysis can be performed directly using lotteries.

We set off on our quest by uncovering the link between ex post efficiency and sd-
efficiency. In a related paper, Abdulkadiroglu and S6nmez (2003a) study whether the
sd-inefficiency of a stochastic assignment could be attributed to the Pareto inefficiency
of a deterministic assignment it may induce and give a negative answer to this ques-
tion.> We provide a complementary result to this observation. In particular, we show
that for any given stochastic assignment P of any given assignment problem >, there
exists a corresponding deterministic assignment (P, >) that is Pareto efficient if and
only if P is sd-efficient at > (Theorem 1). The deterministic assignment @ (P, >) is
obtained by transforming the n—agent stochastic assignment problem into an at most
n®—agent deterministic assignment problem that introduces multiple replicas of each
agent. An immediate corollary is Abdulkadiroglu and Sénmez’s characterization of
sd-efficiency via notions of domination across sets of assignments.

An important contribution of our study, in line with the commonly used method-
ology and trends in indivisible goods allocation literature,® is to develop methods
for the construction of a lottery that improves upon a given inefficient lottery while
maintaining the feasibility of the final outcome (Theorem 2).7 We observe, however,
that the former part of such an objective may turn out to be quite subtle, as an ex
ante welfare improvement over an ex-post lottery can actually give rise to an ex-post
inefficient lottery (Example 1). For the latter part of the objective, we propose an

3 For example, as far as we are aware, a nontrivial lottery mechanism satisfying sd-efficiency (or the stronger
ex-ante efficiency) is yet to be reported or studied. Additionally imposing strategy-proofness readily leads
to impossibilities (Zhou 1990; Bogomolnaia and Moulin 2001).

4 Budish etal. (2013) develop tools for handling complex constraints while working directly with stochastic
mechanisms.

5 See Example 3 of Abdulkadiroglu and S6nmez (2003a).

6 Improving upon a “status quo™ allocation (or a partial allocation) while respecting other considerations
has been a common goal in various applications of indivisible goods allocation. Examples of applications
include housing markets, on-campus housing, kidney exchange, and school choice. All these applications,
however, have focused on achieving ex post properties.

7 In a related paper, Manea (2008) shows the existence of lotteries that improve upon the RSD outcome.
Differently than here, his approach is based on working directly with stochastic assignments.
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algorithm that generates a feasible lottery from an infeasible lottery provided that it
has a feasible equivalent. As an application of our tools and ideas, we propose new
lottery mechanisms that stochastically improve upon RSD. Our proposals combine
the above-mentioned methods with the celebrated object assignment method called
the rop trading cycles (TTC) method, attributed to David Gale. One of these proposals,
which we call the TTC-based RSD (TRSD) mechanism, is sd-efficient, stochastically
dominates RSD, and satisfies equal treatment of equals (Theorem 3).

Finally, we offer a lottery representation of PS for any given problem. The idea is
based on the identification of a set of priority orders such that the equal-weight lottery
over the serial dictatorship outcomes induced by the collection of these priority orders
results in exactly the same stochastic assignment as the PS outcome. Recall that RSD
is an equal-weight lottery over all possible priority orders of agents regardless of
agents’ preferences. Unlike the RSD lottery, however, the set of priority orders in the
support of the lottery representation of PS, is constructed based on agents’ preferences.
This implies that to implement PS as a lottery mechanism, we need to elicit agents’
preferences a priori and determine the set of priority orders to be used in the lottery
draw. Once the support of the lottery is constructed, the rest of the assignment process
proceeds in exactly the same way as with RSD: the first agent picks her favorite
object; the second agent picks her favorite object among the remaining agents; and
so on. We generalize this approach by proposing a lottery representation algorithm
that, for any given stochastic assignment, generates an equivalent equal-weight lottery
(Theorem 4).

The lottery representation algorithm enables one to transform a given stochastic
mechanism into an equivalent lottery mechanism. Therefore it may be useful to sup-
plement a stochastic mechanism with this algorithm in practical applications. Our
approach in finding lottery representations to stochastic mechanisms, however, hints
at a trade-off between the stochastic and the lottery approaches. Whereas the lottery
construction is more transparent under the former approach (recall that the lottery
approach relies on the construction of priority orders), the implementation of the final
assignments is more transparent under the latter approach.

The rest of the paper is organized as follows. Section 2 introduces the model.
Section 3 establishes a link between ex post and ex ante efficiency and describes our
algorithm for generating a feasible lottery. Section 4 introduces the TTC-based RSD
mechanisms and Sect. 5 the lottery representation of PS. Section 6 concludes.

2 The model

A discrete resource allocation problem is a list (N, A, ¢, =) where N = {1, ..., n}is
a finite set of agents; A is a finite set of objects; and g := (g4)qc4 1 a positive integer
vector where ¢, denotes the quota of object @ € A. We assume that [N| < >, qa;
>= (>;)ien 1s a preference profile where >; is the strict preference relation of agent
i € N on A. Let >; denote the weak relation associated with >;. The null object, if
assumed to exist, is an object in A denoted by ag, which is assigned a quota of n so
that all agents can simultaneously consume it. Agents who are assigned the null object
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are viewed as taking their outside options. We fix N, A, and g throughout the paper,
and denote a problem by a preference profile >.

A (deterministic) assignment is a function u : N — A. Moreover, it is feasible
if foreach a € A, |u~!(a)| < g,. Let D be the set of all assignments, and let D/ be
the set of all feasible assignments. A feasible assignment p is Pareto efficient at >
if there is no u/ € DY such that for alli € N, /(i) =; u(i), and for some i € N,
W' (@) =i w(i). A deterministic mechanism associates a feasible assignment with
each problem.

A stochastic allotment is a probability distribution P; := (p; 4)aca Over A where
Pi.a denotes the probability that agent i receives object a, and thus foreacha € A,0 <
Pi.a < land ZbeA pi.b = 1. A stochastic assignment P = [Pi]icy = [pi.alieN.acA
is a substochastic matrix such that for eachi € N andeacha € A, >, pip = 1
and le- en Pja < ga. Let S be the set of all stochastic assignments. A stochastic
mechanism associates a stochastic assignment with each problem.

Definition 1 Alottery L = > _ wj i, is a probability distribution over assignments
such that

(L1) set S, called an index set, is nonempty and finite;

(L2) D jesws =15

(L3) foreachs € §,0 < wy; < 1 and wy is a rational number; and
(L4) foreachs € S, us € D,

where wy is called the weight of /iy, and j1s = (jt)scg € DS is the support of L.
Moreover, it has equal weights if for each s € S, wy = 1/|S] and it is feasible, if
instead of (L4), it satisfies (L4’): for each s € S, us € D7

Note that the support is a product set, contrary to the standard terms.® Also note
that the index set is finite and the weights are rational numbers.” A (feasible) lottery
mechanism associates a (feasible) lottery with each problem.

For each assignment u € D, let w(u) be a [N| x |A| matrix that represents L.
Note that a given feasible lottery L = > wyu, induces the stochastic assignment
P = > wsm(us). Therefore, every feasible lottery mechanism can be uniquely
represented as a stochastic mechanism. Given any stochastic assignment, the well-
known Birkhoff-von Neumann theorem states that there is at least one feasible lottery
that induces it. However, a stochastic mechanism may not be uniquely represented as
a feasible lottery mechanism.

We say that two lotteries are equivalent if they induce the same stochastic assign-
ment. The following is a useful lemma.

Lemma 1 For each lottery, there is an equivalent equal-weight lottery.

This result follows from duplicating assignments and expanding the original index
set. See the Appendix for the proof.

8 The reason for this will be clear when relating the sd-efficiency of a lottery with the Pareto efficiency of
an assignment in a replica economy in the next section.

9 This tractability assumption holds generally in practice and is satisfied by lotteries induced by all well-
known mechanisms.
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2.1 The random serial dictatorship mechanism (RSD)

We introduce a popular lottery mechanism, called the random serial dictatorship, which
will be our focus in this paper. To this end we use a priority of agents in N that is a
bijection from {1, 2, ..., |[N|} to N. For example, given a priority f, f(1) is the agent
with the highest priority, f(2) is the one with the second-highest priority, and so on.
Let F be the set of all priorities.

Next is the serial dictatorship (deterministic) mechanism induced by a priority
f € F. We denote it by SD. Fix a problem >. The assignment SD ¢(>) is found
iteratively as follows.
Step 1: The highest priority agent f (1) is assigned her top-choice object under > (1.

Step k: The kth highest priority agent f (k) is assigned her top-choice object under
> f(k) among the remaining objects.

Now we are ready to define the random serial dictatorship mechanism (RSD),
denoted by RS D: Fix a problem >. First, a priority f is chosen with probability 1/n!.
Second, agents are assigned objects according to SD 7 (>). Formally,

1
RSD(-) = — > SDs(-).
" feF

Note that RSD is a lottery mechanism and its index set is the set F' of all priorities.

2.2 The probabilistic serial mechanism (PS)

For each problem >, the stochastic assignment of the probabilistic serial mechanism
(PS) is computed via the following simultaneous eating algorithm:!° Given a problem
>, think of each object a as an infinitely divisible good with supply ¢, that agents eat
in the time interval [0, 1].

Step 1: Each agent eats away from her top-choice object at the same unit speed. Proceed
to the next step when some object is completely exhausted.

Step k: Each agent eats away from her top-choice object from her remaining ones at the
same unit speed. Proceed to the next step when some object is completely exhausted.

The algorithm terminates after some step when each agent has eaten exactly 1 total
unit of objects (i.e., at time 1). The stochastic allotment of an agent i by PS is then
given by the amount of each object she has eaten until the algorithm terminates. Let
P S(>) be the stochastic assignment of PS for problem >.

10 gee Hugh-Jones et al. (2014) for an experimental evaluation of PS.
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2.3 Axioms

A feasible lottery is ex-post efficient if it can be represented as a probability distri-
bution over Pareto-efficient feasible assignments. BM propose an appealing ex ante
notion of sd-efficiency that also implies ex post efficiency, which we introduce next.
Fix a problem >. Given i € N and P, R € S, P; stochastically dominates R; at
=i if foreach a € A, X ppsia Pib = 2peabs;a Tib- In addition, P weakly sto-
chastically dominates R at > if for each i € N, P; stochastically dominates R; at
>i. P stochastically dominates R at > if P weakly stochastically dominates R at
> and P # R. A stochastic assignment is sd-efficient at > if it is not stochastically
dominated by another stochastic assignment at >. Next is a much weaker efficiency
property. A stochastic assignment P € S is non-wasteful at > if for eachi € N,
eacha € A with p; , > 0, and each b € A with b >; a, we have ZjeN Pib = qb-
Sd-efficiency implies ex post efficiency and non-wastefulness, but not vice versa.

We define our fairness axiom. A stochastic assignment P € S satisfies the equal
treatment of equals at > if forall i, j € N, >;=>; implies P; = P;.

Axioms of a lottery mechanism except ex post efficiency are defined for its induced
stochastic assignment for each preference profile. A stochastic (lottery) mechanism
is said to satisfy a property if for each preference profile, its (induced) stochastic
assignment satisfies that property.

A stochastic mechanism g is sd-strategy-proof if for each problem >, eachi € N,
and each preference >;, ¢; (>) stochastically dominates <pi(>;, >_;) at >;. A lottery
mechanism is sd-strategy-proof if its induced stochastic mechanism is sd-strategy-
proof.

A stochastic mechanism ¢ weakly stochastically dominates a stochastic mecha-
nism ¢ if for each problem >, ¢ (>) weakly stochastically dominates ¥ (>). Moreover,
a stochastic mechanism ¢ stochastically dominates a stochastic mechanism 1 if
¢ weakly stochastically dominates 1 and for some problem >, ¢(>) stochastically
dominates v (>) at >. Similarly, we can define the stochastic dominance of a lottery
mechanism by looking at its induced stochastic mechanism.

Remark 1 RSD is known to be sd-strategy-proof, ex-post efficient, and to satisfy the
equal treatment of equals. However, it is wasteful (Erdil 2014) and thus is not sd-
efficient (Bogomolnaia and Moulin 2001). Moreover, PS is known to be sd-efficient
and to satisfy the equal treatment of equals but not be sd-strategy-proof (Bogomolnaia
and Moulin 2001).

3 Sd-efficiency and Pareto efficiency
3.1 Characterization of sd-efficiency

Abdulkadiroglu and S6nmez (2003a) investigate a possible link between sd-efficiency
and Pareto efficiency. In particular, they ask whether the lack of sd-efficiency of a sto-
chastic assignment (or equivalently, the sd-inefficiency of all lotteries it induces) can
be associated with the lack of Pareto efficiency of a feasible assignment induced by
it. They show that such a link between the two efficiency notions fails to exist: even
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if every feasible assignment in the support of every feasible lottery that induces a
stochastic assignment is Pareto efficient, this may not be sufficient to guarantee the
sd-efficiency of this feasible lottery. Our first objective is to recover the link between
the two efficiency notions—albeit in a different sense—through an intuitive charac-
terization result. We show that the sd-efficiency of a given feasible lottery is in fact
implied by (and does imply) the Pareto efficiency of a “special” allocation constructed
from the support of this feasible lottery. Before stating this result more precisely, we
need the following definition.

Definition 2 Let > be a problem and S be an index set. We rename N as the set of
types. In the |S|-fold replica problem, for each type i € N, there are |S| agents; for
each object a € A, the quota is g,|S|; for each type i € N, all |S| agents of that type
share the common preferences >; on A. Let is be the agent of type i indexed by s € S,
Ny = {1, ...,is,...,ns} be the set of all agents indexed by s, and Ng := Uges Ny
be the set of all agents. We say that >y := (>; )i en, is the s-replica problem, and
>gs:= (>n,)ses denotes the |S|-fold replica problem.

An |S|-fold replica assignment is a function vg : Ny — A such that for each
a € A, |vS_1(a)| < q4|S|. Let Dg be the set of all |S|—fold replica assignments.
Given vg € Dg and s € S, an s-replica assignment is a function vy : Ny — A such
that for each iy € Ny, vy(iy) = vs(iy). Thus we denote vs = (vg)scs. Note that the
s-replica assignment vg from an |S|-fold replica assignment vg can be thought of as
an assignment for the original problem >, but need not be feasible in the original.
Thus we introduce the following. An |S|—fold replica assignment vs = (Vs)ses 1S
feasible if for each s € S, s—replica assignment vy is feasible, i.e., for each a € A,
vy ' @) < ga.

Now we relate an | S|—fold replica assignment with the support of a lottery. Given
a support us = (Us)ses of a lottery, the |S|-fold replica assignment induced by
the support 15 is the |S|—fold replica assignment where for all s € S, each agent
is € Nj is assigned object u(is). Conversely, given an |S|—fold replica assignment
vs, the support (of a lottery) induced by the |S|-fold replica assignment vg is the
support in which ateach s € S, each agenti € N is assigned object v, (is). Note that a
lottery with induced support does not always induce a stochastic assignment. It does,
however, if its weights are equal.

Lemma 2 The equal-weight lottery with the support induced by an |S| —fold replica
assignment produces a stochastic assignment.

The proof is omitted as it is straightforward. By Lemma 2, from now on, unless con-
fusion arises, the support of an equal-weight lottery is an | S| —fold replica assignment,
and vice versa.

An |S|—fold replica assignment 5 Pareto dominates an |S|—fold replica assign-
ment u'y at >g if for all iy € Ng, us(is) >; wy(iy) and for some iy € N,
ws(is) =i /,Lg(is). Also, an |S|—fold replica assignment is Pareto efficient at >
if it is not Pareto dominated by any other |S|—fold replica assignment. The following
result relates the Pareto dominance of |.S|—fold replica assignments with the stochastic
dominance of the equal-weight lottery with induced support.
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Lemma 3 Let S be anindex set, and s, i be | S|—fold replica assignments. Suppose
that ps Pareto dominates |’ at . Then, the equal-weight lottery with support jig
stochastically dominates the equal-weight lottery with support V‘/S at >.

We omit the straightforward proof. The following result links the sd-efficiency of a
(feasible or infeasible) lottery and the Pareto efficiency of its support in the |S|—fold
replica problem.

Theorem 1 Let > be a problem and L a lottery with an index set S. Then, lottery L
is sd-efficient at > if and only if the support of L is Pareto efficient at >g.

The characterization of sd-efficiency given by Theorem 1 is quite intuitive. Theo-
rem 1 also forms the basis of a practical test of sd-efficiency as it uses the standard
notion of Pareto efficiency for the support of a lottery in its replica problem. Whereas
determining whether a stochastic assignment is stochastically dominated or not may
be difficult, checking for the Pareto efficiency of the support of a lottery is fairly
straightforward by drawing on the top trading cycles (TTC) method, which we later
describe.!!

3.2 An alternative proof of an sd-efficiency characterization

Based on Theorem 1, we next provide an alternative proof of Abdulkadiroglu and
Sonmez’s (2003a) characterization of sd-efficiency. To this end, we introduce some
notion: an |S|—fold replica assignment ug is frequency equivalent to an |S|—fold
replica assignment vg if for eacha € A, | MEI (a)| = |vS_1 (a)|. Their characterization
is based on the following notion of domination. For exposition without additional
notation, we adapt their notion in our replica problem.

Definition 3 Given an index set S, a feasible | S|-fold replica assignment /L’S AS dom-
inates an |S|-fold replica assignment pg if

1. there is an | S|-fold replica assignment jis that is fequency equivalent to s, and
2. there is a one-to-one function f : § — § such that

(a) foreachs € S, iy Pareto dominates or is equal to g at > and

(b) there is s € S such that jiy Pareto dominates p  at >.

Corollary 1 (Abdulkadiroglu and Sonmez 2003a) Given a problem >, let feasible
lottery L := Y ¢ Wy g be an arbitrary decomposition of a stochastic assignment P.
P is sd-efficient at > if and only if foreach T C S, ur = (s)ret is AS undominated.

The proof of Corollary 1 is immediate from the following lemma and Theorem 1.
Our alternative proof has the advantage of being more transparent and shorter than the
original proof of Abdulkadiroglu and S6nmez (2003a) as our argument involves only
elementary application of standard notions of Pareto efficiency to replica problems.

n Simply apply the TTC to the problem where the support of the lottery is interpreted as an extended
housing market with endowments. Then the following is easy to show. The support of the lottery is Pareto
efficient if and only if the TTC algorithm generates only self-cycles.
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Lemma 4 Let > be a problem and S be an index set. Then s is Pareto undominated
if and only if for each T C S, ur is AS undominated.

Proof We prove the contrapositive of each direction. (<=): If vg Pareto dominates g,
then it is straightforward to see that vg AS dominates 5. (=): Suppose that for some
T C S, some u% AS dominates ;7. Then there is an |T'|-fold replica assignment iy
that is frequency equivalent to ju.; and there is a one-to-one function f : T — T
such that (a) for each s € T, iy Pareto dominates or is equal to pg at > and (b) there
is s € T such that i, Pareto dominates yts at >=. Then 7 Pareto dominates /7 in the
| T |-fold replica problem. Define vg as for each s € S, vy = [u; otherwise vy = us.
Then vg Pareto dominates s in the |S|-fold replica problem. O

3.3 Welfare improvement from an ex-post efficient lottery

In later sections, we aim to show that ex ante efficiency analysis as well as ex post
analysis can be performed directly using lotteries. But before doing so, we make a
useful observation about a possible ex post welfare consequence of stochastically
improving upon a given feasible lottery. The next example shows that an ex ante
welfare improvement over an ex-post efficient feasible lottery may actually entail an
ex-post inefficient lottery.

Example 1 (Ex ante welfare improvement over an ex-post efficient lottery results in
an ex-post inefficient lottery) Let N = {1,2,3,4}, A = {a,b,c,d},and g, = qp =
qc = qq = 1. Preferences are as follows.

1 la b ¢ d
s> |la b c¢ d
=3 | b a d c
=4 | b a d c

Consider the following ex-post efficient lottery.

12 0 12 0
11234\ 1(1234 o 12 0 1
L—E(abdc)+§(cdba)’ and mLY=1"0 12 0 12

12 0 12 0

Next consider the following feasible lottery.

12 0 12 0
1(1234) 1(1234 0 12 12 0
/__ _ N
L_z(acbd)+2(cbda)’ and 7Y=L "0 12 0 12
12 0 0 12

23! K2

Clearly, lottery L’ stochastically dominates lottery L. However, the support of L’
contains the Pareto inefficient assignment wy. Thus L’ is not ex-post efficient. We
can show that there is no other feasible lottery that induces the stochastic assignment
(L.
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Given that sd-efficiency implies ex post efficiency, the observation in Example 1
is counterintuitive. It implies that ex post efficiency is not preserved under welfare
improvements in stochastic assignments. One of our objectives in this paper is to
develop a method for constructing a new feasible lottery that stochastically improves
upon a given sd-inefficient feasible lottery L while also ensuring ex post efficiency. To
this end, we first take an equal-weight lottery with support ;g equivalent to L (Lemma
1), and then by correspondence of the support and |S|—fold replica assignment, we
consider a Pareto improvement from w5 in the |S|—fold replica problem. However,
there is a complication in the approach of obtaining a stochastically improving lottery:
even if the initial lottery is feasible, the resulting lottery induced by a Pareto improve-
ment may not be feasible. Thus, in Sect. 3.4, we propose a method that transforms
a given infeasible lottery into an equivalent feasible one, and then in Sect. 4.2, we
introduce a method of Pareto improvement in the replica problem with endowments.

3.4 Feasible-assignment-generating (FAG) algorithm

Given an equal-weight but infeasible lottery with support s = (its)ses, we introduce
an algorithm that generates an equivalent and feasible lottery. Note that as we defined
in Sect. 3.1, an |S|—fold replica assignment vy is feasible if for each s € § and each
aeA vy @] < g

Feasible assignment generating (FAG) algorithm

Initialization Given is an |S|—fold replica assignment us = (us)ses. Without loss
of generality, assume S = {1, 2, ..., |S|}. We focus on swapping objects in the set

A= {a €A |,u§1(a)| > 0]—those that are assigned under pug for some s € S.

For giveni € N and s € S, us(i) is sometimes denoted by /,Ls_(S, i). We use
both notations whenever convenient. Let wg(S,i) = {ug(s, iyeA|seS } and
pus(1, 1) ={us(l,i) € A|i e l}.Given O C A, let

B(O) = Ujen: ua1,eo {s(S, i)},
0] ift=1,

B'(0) = 1 .
B(B'7'(0)) ift=>2.

Phase 1 (Swap path identification) Let a € ug(1, |S|) such that | ,ul_l(a)| > qa,
i.e., object a is assigned more agents than its quota at w1 (if no such object exists,
w1 is feasible and we are done.). Let X = {c €Al |/L1_1(C)| <qc— 1}, i.e., the

set of objects that are only partially assigned to agents at @1 under pg. Check if
Bl({a}) N X # @; if not, check if B>({a}) N X # @; ...; and so on. Let t € N be the
smallest number such that B’ ({a}) N X # . This procedure is well defined by the
following claim (see the Appendix for the proof).

Claim 1 (1) B°({a}) € B'(fa}) € B*({a})) € .. ;
(2) Foreacht € {0} UN, if B'({a}) N X = @, then B'({a}) C B'T'({a});

@ Springer



O. Kesten et al.

(3) There is t € {0} U N such that B’ ({a}) N X # @. Thus, {a} € B'({a}) C --- C
B'({a}).

Phase 2 (Execution of swaps) Phase 1 implies that there are (r + 1), + > 1, distinct
objects by := a, by, ..., b, := x such that by € B({bo}), bo € B({b1}), ..., by =
x € B({b;—1}) N X. This implies that there are ¢ distinct agents, i1, iz, ..., ir, and
corresponding indices, k;, , ki, , . .., k;, suchthat ug(1,i1) = bo = aand us(k;,i1) =
bi; us(1,i2) = by and ps(kiy, i2) = ba; ...; us(1,i;) = b—1 and ps(k;,, i;) = by =
x. Next update the support ps by setting s (1, i1) := by and pg(k;,, i1) := by = a;
ms(1,i2) := by and us(k;, i2) := by, ..., us(l,iy) := by and ug(k;,, i) := b; 1.

Iteration Given the support 15, repeating Phases 1 and 2 at most n — 1 times yields
a new support ,ufg whose first index assignment, u}, is feasible. Thus, we have final-
ized the first index assignment. Next we obtain a new support u%, whose first index
assignment coincides with that of ug, by iteratively applying Phases 1 and 2 to the
subsupport obtained from y,}q by restricting to the assignments from 2 to |S|. Thus
we have finalized the second index assignment. Continuing similarly the algorithm
terminates once we have cleared indices 1 through |S| — 1. The final support leSSH
consists of | S| feasible assignments. Therefore, we obtain the following.

Proposition 1 Given an |S|—fold replica assignment s, the FAG algorithm produces
a feasible |S|—fold replica assignment that is frequency equivalent to L.

The following is a corollary of Lemma 1 and Proposition 1.

Corollary 2 Given any infeasible lottery, there is an equivalent feasible lottery with
equal weights.

We call a stochastic assignment rational if all of its entries are rational numbers. Then
we can straightforwardly represent a rational stochastic assignment by an equal-weight
infeasible lottery. Thus, as a corollary of Proposition 1, we have

Corollary 3 Any rational stochastic assignment can be expressed as a feasible equal-
weight lottery that induces it.

Remark 2 Note that Corollary 3 gives a version of Birkhoff (1946), von Neumann
(1953) when the stochastic assignment is restricted to be rational. An advantage of
FAG, which we believe merits further investigation, could be that in order to generate
a feasible assignment it allows the designer to swap individual assignments of agents.
This could provide more flexibility in choosing which final deterministic assignments
should emerge and in so doing may help meet other ex post constraints the designer
may have in mind (e.g., diversity and complementarities). This direction is left for
future work.

Example 2 (Finding feasible assignment) Let N = {1,2,3,4,5,6} and A =
{a,b,c,d, e, f} such that all of the objects have the quota of 1. Consider the fol-
lowing support us = (i1, 2, 43).

(123456 (123456 d (123456
Mi=\aabcde) "7 accd fe)’ a H3 = bbde f f)°
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Initialization. We first tabulate these assignments into a table:

a [al b [c] d [e]
us=\1a [c] ¢ d f e
b b d [e] f [f]

Phase 1 (Swap path identification) Observe that object a is assigned to multiple
agents at [t although g, = 1; and object f is not assigned to any agent at 1, i.e.,
X = {f}. We start with B({a}) = {a, b, c}. Since B({a}) N X = @, we proceed with
B%({a}) = B({a,b,c}) = {a,b,c,d,e}. Since BX({a}) N X = @, we proceed with
B3({a}) = B({a, b, c,d, e}) = A\ {ap}. Since B3({a}) N X = {f}, we conclude that
t=3.

Phase 2 (Execution of swaps) From Phase 1 we easily obtain a set of four objects
{bo = a,by = b,b = d,b3 = f}suchthat b € B({a}), d € B({b}), and f €
B({d}). In particular, we obtain a corresponding set of three agents {1, 3, 5} such that
u(l,1) =aand u(3,1) = b; u(1,3) = b and u(3,3) = d; and u(1,5) = d and
w(2,5) = f. The agents and their assignments identified in this fashion are indicated
in boldface in the above table. (Note that such agent and object sets may not be uniquely
obtained. An alternative path from object a to f is indicated in brackets in the above
table.) Next we execute the vertical swaps to update the table as follows:

d
c
b

S0 oW
X QuUe

b
pus=|a
a

- =
~ Q0 o

Iteration Observe that the first row of the updated table above induces a feasible
assignment, which is indicated in boldface. So we next reapply Phases 1 and 2 to
the remaining two rows. Then it is not very difficult to see that the remaining table
contains two trivial vertical swaps involving agent 5 and either of agents 2 and 3 for
swapping object ¢ with b, and object d with f. The following is one possible final
table whose three rows induce the feasible assignments t1, (2, and 3 respectively.

s =

Q Q&
o S

LS

d
c
b

X QU

e
e
f

4 Lottery mechanisms dominating the random serial dictatorship
mechanism

The most widely used lottery mechanism in real-life markets is the random serial
dictatorship mechanism (RSD). However, as BM pointed out, RSD is not sd-efficient
but only ex-post efficient. In this section, we propose a method of improving upon
RSD.
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4.1 Efficient lottery construction (ELC) procedure

We shall propose a method, the efficient lottery construction (ELC) procedure, to
directly construct an sd-efficient lottery that stochastically dominates a given equal-
weight sd-inefficient lottery L = ﬁ > ses Ms. For a given problem >, our procedure
is as follows.

Stage I (Improvement). We consider the | S|-fold replica problem > g with endowments
s = (us)ses where each agent iy € Ng owns an object i (is). Note that because
L is sd-inefficient, by Theorem 1, its support g is Pareto inefficient in the replica
problem. Then we apply a Pareto improvement algorithm (to be introduced in the next
subsection), which selects a Pareto efficient assignment vyg.

Stage 2 (FAG algorithm). We apply the FAG algorithm (Sect. 3.4) to obtain a feasible

|S|—fold replica assignment vy .

Stage 3 (New lottery). Take the equal-weight lottery L' := IITI D es v

Theorem 2 For each problem > and each feasible sd-inefficient lottery L, the ELC
algorithm induces an sd-efficient lottery that stochastically dominates L.

Proof Because vg is Pareto efficient at the replica problem, by Theorem 1, the induced
lottery is sd-efficient. Moreover, vg Pareto dominates 1t g, by Lemma 3, and lottery L
dominates lottery L. O

4.2 Top trading cycles (TTC) algorithm

We introduce a Pareto-improving algorithm that we alluded to in the ELC procedure.
This is based on the well-known idea of Gale’s top trading cycles (Shapley and Scarf
1974). The top trading cycles (TTC) algorithm was originally introduced for a housing
market where each object is owned by only one agent.!? In contrast, we deal with
replica problems with endowments where an object is owned by multiple agents. For
this reason, we introduce a priority g € F as if an object were owned by only the
highest-priority owner.

For a given priority g € F and a given replica problem > g with endowments g,
the TTC algorithm induces an | S|—fold replica assignment as follows:
Step 0 For each object a € A, assign a counter that keeps track of how many copies
of the object are available. Initially set the counter equal to g,|S|.
Step 1 Each agent iy € Ng points to her favorite object according to >;. Each object
points to the highest-priority type among those who own the object according to
priority g. If there are several agents of the same type, pick one of them arbitrar-

12 Because of its appealing efficiency and incentive features, a number of mechanisms based on the TTC
method have been proposed and characterized for a variety of applications such as on-campus housing,
school choice, and kidney exchange. Although for deterministic settings, all proposed TTC based mecha-
nisms are Pareto efficient, little is known about the applicability of this procedure to the stochastic assignment
context or its relation to sd-efficiency, for that matter. An exception is Kesten (2009) who shows that if a
simple version of the TTC method is applied to a market in which each agent is initially endowed with an
equal probability share of each object, then the resulting outcome is sd-efficient and coincides with that of
PS.
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ily. There is at least one cycle where a cycle is a finite list of objects and agents
(al,it, a2, i2, ..., a™,i™) suchthateachagentizpointstoobjectaz €ell,...,m}),
and agent /™ points to object a'. Each agent in a cycle is assigned a copy of the object
that she is pointing to and is removed. The counter of each object in the cycle is reduced
by one, and if it reduces to zero, the object is also removed. Counters of all the other
objects stay the same.

Step k Each remaining agent i points to her favorite object among the remaining ones
according to >;. Each remaining object points to the highest-priority remaining type
according to priority g. If there are several agents of the same type, pick one of them
arbitrarily. There is at least one cycle. Each agent in a cycle is assigned a copy of the
object that she is pointing to and is removed. The counter of each object in the cycle
is reduced by one, and if it reduces to zero, the object is also removed. Counters of all
the other objects stay the same.

The above algorithm terminates in a finite step when all agents are assigned objects.
Last step Note that the assignment vg induced by the above algorithm is not always
feasible in the sense that some s-replica assignment vy is not feasible in the orig-
inal problem >. For this reason, we apply the FAG algorithm to obtain a feasible
assignment, which we denote by TT Cs(>s, L5, g)-

Note that the TTC algorithm implements Stages 1 and 2 in the ELC procedure. Now
we are ready to state Proposition 2 (the proof is omitted, as the idea is very similar to
the one for the Shapley and Scarf’s (1974) for the housing market):

Proposition 2 For each |S|—fold replica problem > with endowments g, the TTC
algorithm induces a Pareto efficient assignment at > g that Pareto dominates s and
is equal to s when s is Pareto efficient at >g.

4.3 TTC-based random serial dictatorshipX mechanism (TRSDX)

Using the ELC procedure and the TTC algorithm discussed in Sects. 4.1 and 4.2, we
propose an ex-post efficient lottery mechanism that dominates RSD and satisfies the
equal treatment of equals—what we call the TTC-based random serial dictatorshipX
mechanism (TRSDX) given a natural number K € {1, ..., n!}.

Let us consider how to improve upon RSD. With our tools developed so far—in
particular—Lemma 3, we need to convert the problem into a replica problem with
endowments. Ideally it is best to take the set of priorities, F', as the index set for the
replica problem. However, as the number of agents, n, becomes large, the size of F,
n!, becomes huge and computationally difficult to work on. To avoid this problem,
we pick only |K| distinct priorities, fi, ..., fk, and then consider the improvement
over the induced random serial dictatorship % > le SD y, (>) by using the improving
method of the TTC discussed in the previous subsection. This is the key idea of our
TRSDX mechanism, which we introduce next.

Let a problem > and K € {1, ..., n!} be given.

Step 1 We choose K distinct priorities fi, ..., fx out of all n! priorities with equal
probability 1/ (,I?) where the set F of all priorities have n! priorities, and ('I’{') is the
number of K —combinations from n! elements. Let F(K) := {f1, ..., fx}.

@ Springer



O. Kesten et al.

Step 2 We consider an improvement of the lottery % Z,le SDy, () that is a lot-
tery of choosing SD assignments SD y, () with priority f; being selected with equal
priority 1/K. Moreover, we choose a priority g € {f1, ..., fk} with equal proba-
bility 1/K. Then we apply the TTC algorithm for the priority g to the problem >g
with endowments (SD, (>)) ,f 1» and then we obtain the |K'|-fold replica assignment
TTCF(K) (>F)» SDFk)(>); g). Then we consider the induced equal-weight lottery
K ZfeF(K) TTCt(~Fk) SDF)(>); &)
We denote the resulting lottery by T RS DX (), and can express it as

TRSDX ()
1 1 1
= FE 2 F Xk 2 TTCrru.SPrao(-)ig). (1)

F(K)eF(K) — geF(K) = feF(K)

where F(K) = {f1,..., fx} | fi,..., fx € F are distinct} and |F(K)| = (';(')
Note that TRSD! coincides with RSD.

Example 3 We show how to implement 7 RS DX where K > 2. Consider K = 2 and
an example where N = {1,2,3,4}, A = {a,b,c,d}, g0 = gp = qc = g4 = 1. Let
preferences be given by:

>1 >2 >3 >4
a a b b
b b a a
c c c c
d d d d
Suppose that f; = (1,2,3,4) and fo = (3,4,1,2) are chosen and g = fi.

Then SDy () = (clz Z i 2) and SDy,(>) = (i 621 Z 2) Then we apply the TTC

algorithm as follows:

lf: 2f: 3f: 4‘ 2
l{I/Z c d (lz Tb d b c d
A N W B AN

Step 1 Step 2 Step 3

o

)

=%
B~

—
—_
Y

Here, for simplicity, we draw only the pointing arrows from agents who are also

pointed at by objects, and we skip the remaining steps. We obtain (clz 2 i 3) and

(i 521 I?; 2) Then, applying the FAG algorithm, we obtain 77T C s, (> k), SDF(k)
1234

1234
=) fi) = (a de b) and TTCy, (> fr), SDry(>); f1) = (C ab d)' One of

these two assignments is selected with 1/2 as a result of T RSD?.
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Theorem 3 Let K € {2,...,n!}. TRSDX is ex-post efficient, weakly stochastically
dominates RS D, and satisfies the equal treatment of equals. Moreover, we have the
following."3

1. Suppose the unit quotas of all objects, i.e., for eacha € A, g, = 1. If IN| < 3
then TRSDX = RSD. IfIN| > 4, then T RS DX stochastically dominates RS D.

2. If RSD is not sd-efficient for some N, A, and q, then there is K < |A| such that
for each K > K, TRSDX stochastically dominates RS D.

3. For some N, A, g, and K, T RSDX is not sd-efficient.

Clearly, TRSDX is more tractable and practical when K is small. Note that K can
be as large as | F'| = n!. Part (2) asserts that in the standard model (Bogomolnaia and
Moulin 2001), we can improve upon RSD by taking only K = 2. Moreover, Part (3)
asserts that in general K can be a small number relative to n! in order to improve upon
RSD.

Proof We first show the ex post efficiency. By Proposition 2, TT Crk)(>F(k),
SDFrk)(>); g) is Pareto efficient in the K -fold replica problem. Thus 7T C ¢ (> f k),
SDrk)(>); g) is Pareto efficient at the original problem >. Hence T RS DX is ex-post
efficient.

We next show that T RSDX weakly stochastically dominates RSD. RSD can be
expressed as

RSD(>):%ZSDf(>):(n—1!) > % > % > SDp-). (2

" feF K) F(K)eF(K) — geF(K) = feF(K)

for each problem >. We compare (1) with (2): for each F(K) € F(K) and each g €
F(K),by Proposition 2, TT Cr k) (> F(k), SDF(k); &) Pareto dominates or coincides
with SD k) (>). Thus, by Lemma 3, TRSDX weakly stochastically dominates RSD.
In the Appendix we prove the equal treatment of equals and the stochastic dom-
inance in Parts (1) and (2). It remains to show Part (3) — the sd-inefficiency. Let
N =1{1,2,3,4}, A = {a, b, ap}, g« = q» = 1, and > such that for each i € {I, 2},
a >; b >; ap; and for each i € {3,4}, b >; a >; ap. Here ag is the null object. The

computational simulation gives us the following stochastic assignments.
Then we can see the following assignment P stochastically dominates 7 R S D* and
TRSD?3:foreachi € {1,2}, P, = (0.5,0,0.5); foreachi € {3,4}, P = (0,0.5,0.5).
O

13 1t is quite challenging to check whether or not the TRSDX s sd-strategy-proof, for the following
reasons. First, BM’s and Nesterov’s (2014) impossibility theorems show the incompatibility of sd-strategy-
proofness, sd-efficiency, and equal treatment of equals for problems with unit quotas. Thus their results are
not applicable since TRSDX is not necessarily sd-efficient in general, and nor does our setting assume unit
quotas. Second, we need at least four agents for the outcomes of RSD and TRSDX to differ, which makes
it cumbersome to calculate the stochastic assignments of TRSDK.
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RSD TRSD? TRSD3

Agent1 04167 0.0833 0.5000 0.4312 0.0688 0.5000 0.4417 0.0583  0.5000
Agent2 04167 0.0833  0.5000 0.4312 0.0688  0.5000 0.4417  0.0583  0.5000
Agent3  0.0833 04167 0.5000 0.0688 0.4312 05000 0.0583  0.4417  0.5000
Agent4  0.0833 04167 0.5000 0.0688 0.4312  0.5000 0.0583  0.4417  0.5000

5 Lottery representation of the probabilistic serial mechanism

Motivated by the sd-inefficiency of RSD, BM introduced a central stochastic mecha-
nism that achieves sd-efficiency—the probabilistic serial mechanism (PS). However,
since PS is not a lottery mechanism, it might be less tempting to implement in practice,
as discussed in the Introduction. In this section, we offer an algorithm of representing
a PS stochastic assignment by an equal-weight lottery. Specifically, for each problem
>, we construct a collection of priorities F* := (f}) le, such that

1 J
Pa>)=171§:SDﬁ(>y
j=1

Note that

1
RSD(>) = m E SDf(>),
feF

where F is the set of all priorities. The differences between the set F' and the collection
F* are threefold: (i) F* depends on preference profiles, (ii) F* might contain fewer
different priorities than F does, and (iii) F* will usually contain several copies of
some of the priorities.'* Before we proceed to the algorithm, consider the following
motivating example.

Example 4 Let N = {1,2,3,4}, A = {a,b,c,d},and q, = qp = qc = q4 = 1.
Consider the following problem and its PS assignment

>1|la b ¢ d %%}LO
=>|a b d ¢ 5304
=3 |a ¢ d b PSC-) = 30%0
=ala d ¢ b ?_‘004_3‘

where in the eating algorithm of PS, object a is first exhausted at time 1/4, then object
b at time 3/4, and then objects c, d last at the same time of 1.

If we try to construct the lottery and the corresponding collection F* for PS(>),
we first see that in any possible priority the first-priority agent always receives object

14 In fact, we can show a more general result in which any sd-efficient stochastic assignment (and not only
PS) can be represented as an equal-weight lottery using the same algorithm.
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a under SD. Thus there are at least four different priorities in F*, and each of them
begins with one of the four agents. It is logical to assume that the objects exhausted
earlier in the algorithm should also be assigned earlier in the lottery representation.
Let us assume that in each priority the objects are assigned in the following order:
a,b,c,d.

Consider a priority f; such that agent 1 has the first priority. Since object b is split
between agents 1 and 2, only agent 2 can have the second priority. Similarly, agents
3 and 4 follow and thus f1 = (1, 2, 3, 4). The same logic applies if we begin another
priority f> with agent 2. Then the only feasible sequence is f2 = (2, 1, 3, 4).

However, if we begin the ordering with agent 3, it is not clear whether agent 1 or
agent 2 should receive the second priority, since they both have positive probability
for object b. But if agent 1 follows and gets object b, then in the next step there
is no agent left to be assigned object c, since neither agent 2 nor agent 4 receive it
in expectation. Therefore, the only feasible ordering starting with agent 3 is f3 =
(3,2, 1,4). Similarly, fs = (4, 1, 3, 2).

In total, we have only four feasible priorities. Moreover, since object a is split
equally between all agents, the weights of these priorities are equal to ;11. Therefore
F* = (f)j_;

We now use the intuition from Example 4 to construct a general algorithm in the
following steps: First order the objects. Then determine the set of feasible priorities (in
the example there were only four). Next find the corresponding maximum weights of
these priorities in the resulting lottery.'> Finally calculate the individual contribution
of each specific priority in the equal-weight lottery.

We begin by ordering the objects. Consider a problem > and a stochastic assign-
ment P = PS(>). Let us relabel the objects as ay, az, ..., ax, in the exhausting
order (denoted as /) in the eating algorithm of PS. When two or more objects
are simultaneously exhausted we order them arbitrarily. The objects that have only
been partially exhausted are put in the end of the ordering in some arbitrary order:
ak+1, - - - » )| For each object a;, let E(a;) be the set of agents who have eaten a;:
E(aj) = {i € N|pi.a; > 0}.1°

Next, given P and [, for each priority f € F, we determine the maximum weight
m(f, P,ly) = minj<|N|pf(j),aj—the minimum of the assignment probabilities in
P that correspond to agents in f and objects in /., (Where f(j) denotes the agent that
has j* priority in f). We refer to this weight as the maximum, since the final weight
of this priority f in the lottery will be no higher than m(f, P, l.,). If, for instance,
the first agent in f does not belong to E(a;) and thus p r(1) 4, = 0O, then the overall
maximum weight of f is zero and f does not enter the final lottery.

15 This step is missing in the example since all priorities have the same weight.

16 For a general case of an arbitrary sd-efficient assignment, objects can also be relabeled according to
the exhausting order, although the underlying eating algorithm proceeds not using constant eating speed
functions but some other profile of eating speed functions (Bogomolnaia and Moulin 2001). Alternatively,
we can order the objects using the following hierarchical procedure: at each step agents point to their most
preferred object among the remaining objects and we choose the most popular object (choose one of them
arbitrarily if there are several) to be the next in our order of objects. Intuitively, this ordering of objects is
similar to the exhausting order in the eating algorithm: at each step j the agents in E(a;) prefer object a;
over the remaining objects. This is the key feature of the ordering /., in our lottery decomposition.
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Importantly, for each f such that m(f, P, l.,) > O the order in which the objects
are picked in a serial dictatorship SD s coincides with /.. This property follows from
two facts. First, if m(f, P, lex) > 0, then each agent /() has a positive probability
share p(j).a; > 0 of object a;. For example, first-ordered agent f(1) has a positive
probability share p r(1).4; > 0 of object aj, second-ordered agent f(2) has a positive
probability share pr(2).4, > 0 of object a2, and so on. Second, ordering /., gives the
following hierarchy for objects: in the PS eating algorithm a higher object is exhausted
(weakly) earlier. Thus, each agent with a positive share of a; top-ranks a; (otherwise
a cannot be exhausted first); each agent with a positive share of a, either top-ranks
ay or, alternatively, top-ranks a; and ranks a, as second, and so on. Therefore, in a
serial dictatorship agent f(j) picks a;, and the order in which the objects are picked
coincides with /,, (the same argument holds for different definitions of [, discussed
in footnote 16).

Among all priorities f € F we (arbitrarily) pick one of the priorities with the
lowest positive maximum weight and denote it as fi: fi € argmin{m(f, P, l.y) |
m(f, P,l.x) > 0}. This priority f] enters the resulting lottery with weight m; =
m(f, P,ley).

Having determined f; and m, we subtract the corresponding assignment from the
old assignment matrix (denoted as P; = P). This way we get the updated matrix
Py := Py — m1SDy (>). We then repeat the previous two stages for this updated
matrix P, and continue doing so until all the relevant priorities together with the
corresponding weights are determined. Then, similar to Lemma 1, we turn the lottery
into the equal-weight lottery. Meanwhile, the set of relevant priorities that we picked
at each stage becomes the collection of priorities F* that defines the equal-weight
lottery.

We now formally define the algorithm for the special case when the number of
agents is the same as the total amount of objects (|N| = >, 4 ¢a), Which implies
that the objects have the unit quotas (for eacha € A, g, = 1), and P is a bistochastic
matrix.

Definition 4 (Lottery representation algorithm) Given |[N| = > 4 q, and (>,
P, l,,), the lottery representation algorithm constructs the collection of priorities F*
as follows.

Stage 1 Let Py = P. Calculate m(f, P1,l.x) = minj<w\pf(j),aj for each pri-
ority f € F. Among all the priorities, pick fi € argminsep{m(f, Pi,lex) |
m(f, P1,l.x) > 0} — one with the lowest positive maximum weight, denote the cor-
responding weight as m| = m(f1, P1, lex).

Stage j Update the probability matrix as P;j := Pj_1—m;j—1SDy, , (>).Formatrix P;,
find the priority with the lowest maximum weight, f; € argmin rep{m(f, Pj, lox) |
m(f, Pj,l.x) > 0}. Denote m; = m(f;, P}, l.x).

Final stage rr The updated matrix becomes null, i.e., P, = P,y —m,_1SDy,_, (>)
=0.
Given {f;, m; };:1 , we construct the required collection F* by finding the least com-

mon multiple for all the inverted weights mlo and including each of the corresponding

priority f; in F* precisely % times.
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The following theorem shows that the proposed iterative procedure is always feasi-
ble and results in the equal-weight lottery equivalent to the initial stochastic assignment
P.

Theorem 4 Given |N| = > .4 qa, for each problem > and a stochastic assign-
ment P containing only rational elements and which is sd-efficient at >, the lottery
representation algorithm induces an equal-weight lottery that is equivalent to P.

Proof We first show the feasibility of operations at all stages of the algorithm. We show
(a) the existence of the lowest maximum weight and the corresponding priority at any
stage of the procedure and (b) the feasibility of updating the stochastic assignment
matrix, given that we found the lowest maximum weight at the preceding stage. Then
we make sure that (c) the algorithm terminates and that the representation is correct.

(a) We first show by induction that at any stage j < r, the matrix P; is quasi-
bistochastic (its columns and rows sum up to the same positive number). The
claim is correct for P| = P. Assume it also holds for P; . Due to the Birkhoff-
von Neumann theorem, P;_; can be decomposed as a convex combination of
assignments (note that the lowest weight in this convex combination is weakly
lower than the lowest element in P;_1). Each assignment 1 corresponds to some
priority f defined as follows: the agent matched with a; receives the first priority
in f, the agent matched with a; receives the second priority in f, and so on along
lex. All such priorities f have positive maximum weights m(f, Pj_1, lex), which
we define as the minimum element in P;_; among the elements that correspond
to assignment S D ¢ (>). Among those priorities we pick f;_1 — the priority with
the lowest positive maximum weight m ;.

(b) Given f;_1 and m;_1, we update the assignment matrix as P; = Pj_1 —
mj—1SDy; ,(>). In doing so, we subtract a positive number that was smaller
than the lowest positive element in P;_; from precisely one element in each row
and in each column of P;_;; we do not subtract from zero elements (otherwise
fj—11s not feasible). Thus P; remains quasi-bistochastic.

(c) Ateach stage of the algorithm, the updated stochastic assignment contains at least
one more zero element. Therefore, the algorithm terminates in r < (|N |2 —|NJ)
stages, since at the last stage r the stochastic assignment matrix degenerates into
a weighted assignment S D y, (>). Itis straightforward from the updating formula
to check whether >, m;SDy,(>) = P.

]

Now we extend the algorithm to the case when there are fewer agents than objects:
IN| < > 4cada- We use a simple trick: for each problem > and each stochastic
assignment P, we add the total of (3", 4 g« — |N|) artificial agents. The preferences
>’ of each artificial agent i” are such that he prefers the objects that were originally left
in expectation, i.e., with the total assignment probabilities being less than one, to the
objects that were consumed fully: a; >;, aj,where j < k+1 < [. The preferences of
the normal agents remain as before in >. Since the total number of agents is now the
same as the number of objects, the assignment probabilities for the artificial agents
are such that the modified stochastic assignment matrix P’ becomes bistochastic.
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We then run the lottery representation algorithm for the triple (~', P’, I, ), where
the preferences and the stochastic assignment matrix include the artificial agents, but
the order of objects /., remains the same as for (>, P). After we receive the collection
of priorities F'*, we take out all the artificial agents from each of the priorities. The
agents that were below the artificial agents in some priority f’ now get a higher slot.

It is easy to see that the result of the new lottery is precisely P. First, in P’ the
artificial agents consumed only those probability shares that were not taken by normal
agents in P; given Theorem 4, the same holds for the lottery representation of P’.
However, when we take some artificial agent i’ out of some priority f’, given the
preferences of the artificial agents, each normal agent i that was below i’ in f’ receives
the same object that he received before agent i’ was taken out. Therefore, if we take out
all the artificial agents in f’, then the assignment of normal agents does not change,
and neither does the weight of f” in the lottery.

6 Concluding remarks

In this paper, we have introduced new tools that allow the designer to work directly
with lotteries and enhance the efficiency properties of existing lottery mechanisms.
Whereas the stochastic approach has already proved extremely useful in achieving
superior welfare features over its lottery counterparts, coupling lottery-type assign-
ment methods with the tools developed here may help close the gap between the two
approaches while also benefiting from the practical appeal of lottery mechanisms.

Our analysis of the construction of ex post and sd-efficient lotteries lends itself
to new interpretations of the workings of the prominent mechanisms RSD and PS.
Abdulkadiroglu and Sénmez (1998) show that the lottery produced by RSD is equiv-
alent to a lottery constructed in the following way: Start from the initial lottery that
assigns an equal probability (namely, %) to each feasible assignment, and apply the
TTC algorithm to each feasible assignment in the support of the initial lottery and
replace feasible assignment by the corresponding outcome of the algorithm. Since
the TTC algorithm produces Pareto efficient feasible assignments, such a lottery is
ex-post efficient but not sd-efficient (as is the one induced by RSD). Kesten (2009)
shows that the stochastic assignment produced by PS is equivalent to a stochastic
assignment constructed in the following way: Start from an initial stochastic assign-
ment that endows each agent each object with the same probability (namely, %) and
apply the TTC algorithm (that considers self and pairwise-cycles) in a way that allows
each agent to trade assignment probabilities of her most-preferred object with every
other agent who is endowed with a positive probability for this object. Our analysis
indicates that the difference between RSD and PS derives from the way they choose
the improvement cycles from among those induced by the support of the initial lot-
tery. Whereas RSD considers only those top trading cycles induced by each feasible
assignment in the support of the initial lottery individually, PS considers all the top
trading cycles induced by all feasible assignments in the support of the initial lottery
altogether.

In the United States, many school districts use centralized clearinghouses to deter-
mine student assignments to public schools (Abdulkadiroglu and S6nmez 2003b). In
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school choice, each school has multiple capacity and is assigned a priority order of
students by the school district to be used while determining student assignments. In
many school districts student priorities are typically coarse, giving rise to weak priority
orders. As a consequence, school districts rely on lottery mechanisms that use ran-
domization to generate strict priority orders by breaking the ties among equal-priority
students via lottery draws. Although an assignment problem is a special school choice
problem with each school having unit capacity and all students having equal prior-
ity for all schools, our analysis can be generalized straightforwardly and adapted to
school choice problems, and in particular, could be helpful in improving the ex ante
efficiency of school choice lotteries (see Kesten and Unver 2015).

Appendix

Proof of Lemma 1 Let L = % ¢ wsus be alottery. The lemma is obvious if S is a
singleton. Thus, suppose not. Without loss of generality, let S = {1, ..., |S]}. By (L2)
and (L3), for some n € N, for each s € §, there is mg € N such that wy = mg/n
mg
e e
and >, ¢my = n. Then, (L) = 7 (X,c5 Zopts) = mlE > cols + oo+ o).
We iteratively define a collection of sets, {M;}scs: M1 = {1,...,m}, fors > 2,
M = { i;i me 41,38 + ms}. Moreover, let M = Uges M. Also, we
define a collection of assignments, (v;,)mepm as follows: for each m € M, since there
isaunique s € S withm € My, let v,, = us. Then, the lottery % ZmeM vy, 1s of equal
weights and equivalent to L. O

Proof of Claim 1 Part (1) is obvious by construction of B ().

Part (2) Let r € {0} UN. Suppose B'({a}) N X = @, but B'({a}) = B'T'({a}). Let
{ir,...,ig} = {i el |us(li)e B’({a})},andforeachm ef{l,..., M}, leta, =
w(l,iy) € B {a}. Since B'({a)) N X =@, ay, ¢ X,ie., foreachm € {1,..., M},
|/L1_1(am)| > qq, - This inequality is strict for at least one m, as {a} € B’({a}) and
i @ > qa. Thus, 3o oy 107 @1 = 20y 107 @)l > S0 qa, =
D e {ay....a,) 9a> Which contradicts the feasibility of .

Part (3) If the claim is not true, we have {a} C B'({a}) C---C B'({a}) € ..., which
contradicts the finiteness of A. O

To prove Theorems 1 and Part (2) of Theorem 3, we need the following notion and
lemma.

Definition 5 Let > PV and P,R € S. A temporary list of size m is

(@', i',...,a™, i", a™*") such that for each ¢ € {1,...,m}, (1) a*"*t' =, d', (2)
Pit.at < Fit gty (3) it qret > rie qee1, and (4) @', ..., a™ are distinct. An improve-
ment cycle from R to P is a temporary list of size m, (@b it, ... am,im, oty |

such that ™! = a!.

Lemma 5 Let > PV, i € N, and P, R € S be non-wasteful at >. Suppose that P
stochastically dominates R at >. Then there is an improvement cycle from R to P.
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Proof of Claim I We first construct a temporary list of size 1, (al, il az), where a!

and a? are distinct. Since P # R, there is i' € N such that P;i # R;1. Thus, since
P;1 stochastically dominates R;1 at >;1, there are a', a®> € A such that a> >, a',
Pit g2 > 1t g2, and pii 1 < 1 1. Thus ay # ap. Then (a',i', a?) is the desired list.

Suppose we are given a temporary list of size m, (a',i',...,a™ ", " a™),
where a', ..., a™ are distinct. Then (1) @™ >;m—1 a”" "', (2) Pim=1 gm=1 < Fim—1 gm-1,
and (3) pjm-1 gm > Fim—1 4m. Then, since rim—1 gm-1 > pim-1 zm-1 > 0, by the feasibil-
ity of P and non-wastefulness of R, wehave 3 ey pj.am < qam = 2. ey Fjam- Thus,
since pim—1 gm > rym—1 gm, thereisi™ € N such that pjm gm < rim zm.Thus, since Pim
stochastically dominates R;» at >;m, there is a™*! € A such that ¢! =;m a™ and

Pim g1 > Fm gme1. Thus (@', i, ..., a™, i™, a™*") is a temporary size of m. Then,

m—+1

if a = a' for some ¢ € {1, ..., m}, then the list (ag, it amim, a’”“) is an
improvement cycle from R to P. Otherwise we continue this process. However, since
|A] is finite, we eventually obtain an improvement cycle from R to P. O

Proof of Theorem 1 Let L be a lottery with the support ps: (=) We show the contra-
positive. Suppose that the support s of L is not Pareto efficient at >g. Then there is
an |S|—fold replica assignment vg that Pareto dominates js at >g. As in Lemma 1,
there is an equal-weight lottery L¢ = (1/|M|) >_,,cp 1o, that is equivalent to L such
that for each m € M there is a unique s(m) € S with ), = tsm). Now we define an
|S|—fold replica assignment v}, : form € M, v;, = vy(y). Then, v}, Pareto dominates
wy, at >pr. By Lemma 3, the equal-weight lottery with the support v, stochastically
dominates the equal-weight lottery s, at >. Thus L is not sd-efficient at >.

(<) We show the contrapositive. Suppose that L is wasteful (and thus not sd-
efficient) at >. Let R = (L) be the stochastic assignment induced by L. Then there
isi € Nyae Awithr;, > 0,and b € A with b >; a such that ZjeN Fib < gp. As
riq > 0,thereis s € S such that us(is) = a. Then, let vg be an s—replica assignment
such that vg(iy) = b and for each j € N, vs(js) = us(js). Then, the |S|—fold replica
assignment (s, is\(s}) Pareto dominates jis at >g.

Suppose that L is non-wasteful but not sd-efficient at . Then, there is a stochastic
assignment P # R that stochastically dominates R at >. By Lemma 5, there is
an improvement cycle, denoted by (al, it am i ") from R to P. Then, we can
find indices s',...,s™ € S such that /le(il) =a',.. ., ugm(@™) = a™. Then,
define an |S|—fold replica assignment vg such that v i iH=d2 ..., Vym—1 @ =
a™, ven (i™) = a', and any other agent is assigned the same object as in . Then, vg
Pareto dominates g at >g. O

Proof of Theorem 3 We first show that TRSDX satisfies the equal treatment of equals.
Leti,j € N with i # j and > a problem with >;=>;. For each priority f
we define another priority f'</ to be the priority where only the positions of i
and j under f are switched and the other agents have the same positions as in
f. Note that the size of the support is |F(K)| x K x K. Consider the lottery
of the TRSDX after F(K) = {fi1,..., fx} € F(K) is selected. Then agents
face lottery % 2 eerk) T TCrk)(~Fk), SDFk)(>); g). Consider F'</(K) :=

]H_)], ey ]l((—)]} and the lottery % ZgEFiej(K) TTCFie_j(K)(>Fi<—>j(K),
SDpiejk)(>); g). Since the positions of agent i and j are just reversed, the resulting
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lotteries are the same except that agent i and j’s stochastic assignments are switched.
That is, we have

1 .
< Z TTCr)(>F)» SDFK)(>); (i)
geF(K)

1 .
= E z TTCFI(—)_](K)(>F!<—)[(K),SDFI(—)_](K)(>),g)(J)
geFI=i(K)

Now, there exist nonempty and disjoint sets  and H’ such that H U H' = F(K)
and for each F(K) € H, F'</(K) € H'. Then, using the above equation and letting
@(F(K), ) = £ TTCI> k), SDF(k)(-); g,

1
TRSDK(-)(i)=— > > @(F(K).9)()

n!
(K) F(K)eF(K) geF(K)

1 > > e(FIIK), @)

n:

(K) F(K)eF(K) geFi<i(K)
1
!

== > > eFTEK)L90)

K) F(K)eH geFi<i(K)

- > DL e(FTIEK), 9())

()
K) F(K)eH' geFi<i(K)

> D e(FK), ()

(rll(’) F(K)eH' geF(K)

+i, > D e(F(K). ()

n
(K) F(K)eH geF(K)

1
=— > > e(F(K), @) =TRSD*(-)k).

n!
(K) F(K)eF(K)geF(K)

1

The equality of the first term in the second and third line comes from the following:
[F(K)e Hand g € FI“/(K)] < [Fi</(K) e H' andg € FI</(K)]| < [F'(K) €
H' and h € H']. Similarly, the equality of the second term in the second and third
line comes from the following: [F(K) € H' and g € FI</(K)] < [FI</(K) e H
andg € FI“J(K)] < [F'(K) € Hand h € F'(K)]. Hence, the TRSDX satisfies the
equal treatment of equals. O

Part (1) Note that to show that TRSDX stochastically dominates RSD, we need
to show that for some problem >, TRSDX £ RSD due to the weakly stochastic
dominance just proved above. If |[N| < 3, then RS D is sd-efficient (Bogomolnaia and
Moulin 2001), and thus T RS DX = RSD. Suppose |N| > 4. Example 3 shows that for
IN| =4, TRSDX # RSD. The extension to the case of |N| > 5 is straightforward.
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Part (2) Suppose RSD is not sd-efficient for some N, A, and g. Then there is a problem
> such that RS D(>) is not sd-efficient at >. Let R := RSD(>). We first show

Claim 2 there exist K < n and F(K) := {fi,..., f%} such that SDpg)(>) is
not Pareto efficient in the |K|-fold replica problem. First consider the case where
R is wasteful at >. Then there is i € N,a € A withr;, > 0, and b € A with
b >; a such that ZjeN rjib < qp. Then there is fi, f € F such that SDy (>)
(i) = a and ZjeN ISDf,(>)(j)| < qp. Take K = 2 and F(K) := {f1, f2}. Then
SD F(R) (>) is not Pareto efficient at . Consider another case where R is non-wasteful
but not sd-efficient at . Then there is a stochastic assignment P such that P sto-
chastically dominates R at >. Then, by Lemma 5, there is an improvement cycle

(@', it,a?,i2, ..., a™,i™, a1y from R to P. Let K := m. Then, since a!, ..., a™
are distinct, we have K < |A|. Moreover, since it gt > 0 foreach ¢ € {1,...,m},
there is F(K) := {fi1,..., f %}, where F (K) allows for duplicate elements, such that
foreach ¢ € {1,...,m}, Ska(>)(iK) = a'. Then an assignment v where for each

ief{l,...,m}, v(ie) = a"t!, Pareto dominates SDF(IE)(>)~ Hence SDF(I?) is not
Pareto efficient at >. Thus the proof of Claim 2 is completed.

Let K > K. Then there is F(K) C F such that F(K) € F(K). Then, by Claim
2, SDFk)(>) is not Pareto efficient. Thus, since TRSDrk)(>F(k), SDFrk); &)
for some g € F is Pareto efficient, we have TRSDrk)(>F(k), SDF(k); 8) #
SDFk)(>). Therefore TRSDX # SD.
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