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Abstract. We use the Whittaker vectors and the Drinfeld Casimir element to show that
eigenfunctions of the difference Toda Hamiltonian can be expressed via fermionic formu-
las. Motivated by the combinatorics of the fermionic formulas we use the representation
theory of the quantum groups to prove a number of identities for the coefficients of the
eigenfunctions.
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1. Introduction

The goal of this paper is to derive fermionic formulas for eigenfunctions of the finite
difference Toda Hamiltonian HToda and to study these fermionic formulas. Eigen-
functions of HToda have been studied recently in connection with quantum coho-
mology of flag manifolds [3,12], Whittaker vectors [2,7,19], Macdonald polynomials
and affine Demazure characters [11]. In particular, an important connection with the
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representation theory of quantum groups was established. In our paper we show how
fermionic formulas naturally appear in the representation-theoretical terms. These
formulas provide explicit expressions for eigenfunctions of HToda, which can be stud-
ied from purely combinatorial point of view (note that existing expressions are based
on the geometry of certain moduli spaces [2,3,12]). In the paper we combine these
two approaches. We give some details below.

1.1. CENTRAL ELEMENTS AND WHITTAKER VECTORS

As we have already mentioned, the representation theory of quantum groups plays a
very important role in the study of finite difference Toda Hamiltonian. In particular,
one can construct eigenfunctions of HToda using Whittaker vectors in Verma modules
[2,7,19]. In this paper we use pairing of Whittaker vectors with the dual ones.

Let g be a complex simple Lie algebra of rank l and let Uv(g) and Uv−1(g) be
two quantum groups with parameters v and v−1. Let P , Q (resp. P+, Q+) be the
weight and root lattices of g (resp. their positive parts) and let Vλ =∑

β∈Q+(Vλ)β

and V
λ =∑

β∈Q+(V
λ
)β be Verma modules of Uv(g) and Uv−1(g), respectively. In

order to define a Whittaker vector θλ in the completion
∏

β∈Q+(Vλ)β of the Verma
module Vλ one fixes elements νi ∈ P and scalars ci (1≤ i ≤ l). Then the Whittaker
vector, associated with these data, is defined by the condition

Ei Kνi θλ = ci

1−v2
θλ (1.1)

(for simplicity, in Introduction, we assume that g is simply-laced). Here Ei ∈Uv(g)

are the Chevalley generators (which act as annihilating operators) and Kνi are cer-
tain elements from the Cartan subalgebra, associated with νi . Similarly, one defines
the dual Whittaker vector θ̄ λ in the completion of V

λ
by the formula

Ēi K̄νi θ̄ λ = c−1
i

1−v−2
θ̄ λ (1.2)

The central object of our paper is the following function

Jλ
β =v−(β,β)/2+(λ,β) (θλ

β , θ̄λ
β ),

where θλ
β ∈ (Vλ)β is the weight λ−β component of the Whittaker vector and ( , )

is the natural non-degenerate pairing between Vλ and V
λ
. It can be shown that Jλ

β

is independent of possible choices of νi and ci .
Consider the generating function

F(q, z1, . . . , zl , y1, . . . , yl)=
∑

β

Jλ
β

l∏

i=1

y(β,ωi )
i ,

where zi =q−(λ,αi ), q = v2 and ωi (resp. αi ) are fundamental weights (resp. simple
roots). Then F is known to be an eigenfunction of the quantum difference Toda
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operator [7,19]. In order to prove this statement one uses central elements of the
quantum group. Roughly, the procedure works as follows. If u is a central element,
then the scalar product

(uθλ
β , θ̄λ

β ) (1.3)

can be written in two ways. On the one hand, one can compute the action of u
on Vλ (the corresponding scalar). On the other hand, if a precise formula for u is
known then one can compute (1.3) using the relation

(Fiw, w̄)= (w, Ēi w̄)

and formulas (1.1), (1.2).
The Toda Hamiltonian appears when one uses the central element written as the

trace of products of R matrices in finite-dimensional Uv(g) modules (see (3.24) and
the end of Section 3 for the explicit form of HToda). Our key observation is that if
the Drinfeld Casimir element is used instead then one obtains a recursion relation
for F which leads to the fermionic formulas. In the next subsection we describe
those formulas in more details.

1.2. FERMIONIC FORMULAS

Fermionic formulas appear in different problems of representation theory and
mathematical physics (see for example [4,10,13,21]). Let us describe the class of
formulas we treat in our paper.

Let [r, s]={t ∈Z | r ≤ t ≤ s} be a subset of Z, where r, s are integers or ±∞. Let
V be a vector space with a basis ei,t labeled by pairs 1 ≤ i ≤ l, t ∈ [r, s]. Let �+ =
{∑(i,t) mi,t ei,t |mi,t ∈Z≥0} be the positive part of the lattice generated by {ei,t }. We
fix a quadratic form 〈·, ··〉 on V and a vector µ∈ V . Further, define maps w and d
from V to the l-dimensional vector space with a basis p1, . . . , pl via the formulas

w

⎛

⎝
∑

(i,t)

mi,t ei,t

⎞

⎠=
l∑

i=1

pi

∑

t∈[r,s]
mi,t , d

⎛

⎝
∑

(i,t)

mi,t ei,t

⎞

⎠=
l∑

i=1

pi

∑

t∈[r,s]
tmi,t .

Define functions Im depending on q, z = (z1, . . . , zl) and m = (m1, . . . ,ml) as fol-
lows

Im(q, z)=
∑

w(γ )=m

zd(γ ) q〈γ,γ 〉+〈µ,γ 〉

(q)γ
, (1.4)

where the summands are labeled by γ =∑
(i,t) mi,t ei,t ∈�+ and (q)γ =∏

(i,t)(q)mi,t ,

zd(γ ) =∏l
i=1 zd(γ )i

i . We call the right hand side of (1.4) a fermionic formula. The
generating function F(q, z, y)= F(q, z1, . . . , zl , y1, . . . , yl) is given by the formula

F(q, z, y)=
∑

m

ym Im(q, z), ym = ym1
1 . . . yml

l . (1.5)
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Let the matrix of the quadratic form 〈·, ··〉 be a tensor product D =C ⊗ G(r, s),
where C is the Cartan matrix of g (we assume here that C is symmetric) and G =
(Gt,t ′)i, j∈[r,s], Gt,t ′ =min(t, t ′). Such matrices appear in [5,20] in the fermionic for-
mulas for the Kostka polynomials. Let [r, s]= [0,∞). Then functions Im(q, z) sat-
isfy the following recursion relation:

Im(q, z)=
∑

0≤a≤m

zaqW (a)

(q)m−a
Ia(q, z), (1.6)

where W (a)= 1
2 (Ca · a − diagC · a), · denotes the standard scalar product and 0 ≤

a ≤ m abbreviates the set of inequalities 0 ≤ ai ≤ mi . The relation (1.6) shows that
Im(q, z) are determined by I0(q, z).

Recall the functions Jλ
β . Using the Drinfeld Casimir element and the procedure

described in the end of subsection 1.1, we show that Jλ
β satisfy the relation

Jλ
β =

∑

β ′

1
(q)β−β ′

q(β ′,β ′)/2−(λ+ρ,β ′) Jλ
β ′ .

This leads to the following identification

Jλ
β = Im(q, z), β =

∑

i

miαi , z =q−(λ,αi ).

In particular, this gives a fermionic formula for eigenfunctions of HToda.
Fermionic sums can be considered as a sort of statistical sum for some “mod-

els”. The models depend on parameters r and s and enjoy many “physical” com-
binatorial properties. For example, we look into what happens with the fermionic
sums when the parameters, e.g., r and s, go to infinity. We sort the terms by the
dependence on the parameters which go to infinity and call the result the quasi-
classical decomposition. Then we expect that the quasi-classical decompositions are
exact, which means that the coefficients in a decomposition are summed up to
rational functions and the result gives correct formulas for finite values of param-
eters. That expectation predicts recursion relations for the fermionic sums Im .

We then prove the recursion relations using the Whittaker vectors and the repre-
sentation theory of the quantum group Uv(g), (see Theorems 4.11–4.13). In some
cases the relations become finite. From the point of view of fermionic sums it
means the vanishing property: some fermionic expressions must be zero. The quan-
tum group approach explains the vanishing property as well. Namely, some terms
in the recursions are zero because the corresponding weight space is zero in the
irreducible representation of the quantum group.

It is well known [7] that the eigenfunctions of the difference Toda Hamiltonian
can be obtained as a certain limit of the Macdonald polynomials. In the case of
sln , one of the recursions we prove [see (4.20)] is the corresponding limit of the
Pierri rule for the Macdonald polynomials. It is interesting to study the other
identities in relation with the Macdonald polynomials. We hope to address this
problem in future publications.
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1.3. AFFINE LIE ALGEBRAS: MOTIVATIONS AND FURTHER DIRECTIONS

In this subsection we discuss various connections between eigenfunctions of HToda

and representation theory of affine Kac–Moody algebras. The fermionic formulas
provide a very useful tool for computation of various “affine” characters. Though
we do not treat this subject in the main body of the paper, it was our original
motivation for studying the “fermionic part” of the quantum difference Toda story.
We are not providing any proofs here. We hope to return to this subject in more
details elsewhere.

1.3.1. Refined characters Let a be a Lie algebra and W its representation. The
character of W is an expression

χ(z1, . . . , zn)= trW
(
za1

1 · · · zan
n

)
,

where ai are some commuting elements of a. Usually, a is semi-simple and
(a1, . . . ,an) is a basis of its Cartan subalgebra. There is a simple way to “refine”
the character. To do it, suppose that W is a cyclic representation with a cyclic
vector v, and choose a subspace S ⊂ U (a) such that 1 ∈ S. We define subspaces
Fj ↪→ W , j =0,1, . . .: F0 =C ·v and Fj+1 = S · Fj . Assuming that Fj converge to W
we obtain a filtration in W . Suppose also that the space S is invariant with respect
to the adjoint action of ai for all i :

[ai , S]⊂ S.

In this case, if F0 is {ai } invariant, i.e., ai F0 ⊂ F0, then all spaces Fj in the filtra-
tion are {ai }-invariant. Consider now the associated graded space

W = F0 ⊕
⎛

⎝
⊕

j>0

Fj/Fj−1

⎞

⎠ .

On W we have an action of {ai } and also the action of an additional operator b,
which acts as the constant j on Fj/Fj−1. Now, we define the refined character

χ(z1, . . . , zn; y)= trW

(
za1

1 · · · zan
n yb

)
,

χ(z1, . . . , zn;1)=χ(z1, . . . , zn).

We consider the case a=h⊕ n̂. Here n̂=n⊗C[t, t−1], n is a maximal nilpotent
subalgebra of a finite-dimensional semi-simple Lie algebra g, h̃�h⊗1⊕Cd is the
Cartan subalgebra of g⊗C[t, t−1]⊕Cd and d = xd/dx is the grading operator. Let
e1, e2, . . . , el be the generators of n and ei [ j]= ei ⊗ t j be the corresponding gener-
ators of n̂. We define currents ei (x)=∑

j≤0 ei [ j]x− j . Fix a basis {d, h1, . . . , hl} in
h̃. As a representation W we take the induced module generated by the vacuum
vector v satisfying ei [ j]v =0 for j >0. We have the character

χ(q, z1, . . . , zl)= trW

(
q−d zh1

1 · · · zhl
l

)
.
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1.3.2. The A1 case We consider g = sl2. In this case n is one-dimensional and is
spanned by an element e. We fix W to be an induced a module with a cyclic vec-
tor v satisfying h · v = 0 and e[ j]v = 0, j > 0. Let S be the subspace spanned by
coefficients of the expansion of e(x)s , s ≥0 as series in x . Then we obtain

χ(q, z)= 1
(z)∞

,

χ(q, z; y)=
∑

m≥0

ym zmqm2

(q)m(z)m
,

where (z)m =∏m
n=1(1−qn−1z). We prove in Appendix A [see (A.5)] that χ(q, z; y)

differs from the generating function of Jλ
β (or, equivalently, of Im) by a simple fac-

tor. We now give fermionic expression for the quantity χ(q, z; y).
Introduce an algebra generated by Fourier coefficients c j [s] of the currents

c j (x)=∑
s≤0 c j [s]x−s , j = 0,1,2, . . . The defining relations are [c j1[s1], c j2 [s2]]= 0

for all j1, j2, s1, s2, and c j (x)2 = 0. Note that c j (x) can be constructed as vertex
operators with momentum p j such that 〈p j , p j 〉=2 and 〈pi , p j 〉=0 for i 
= j . Let

e(ε, x)=
∑

j

ε j c j (x),

where ε is a formal variable. Let A be an algebra over C[[ε]], the ring of formal
power series in ε, which is generated by e(ε, x). In A there exists a subspace S
spanned by the elements {e(ε, x)n;n ≥ 0}, and a filtration F j such that F0 = C · 1
and F j =F j−1 + S ·F j−1. The associated graded space A naturally has a structure
of commutative algebra. It is generated by the space F1/F0. Actually, A is a qua-
dratic algebra. It is a free module over C[[ε]]. Let us consider the specialization
A0 at ε = 0. The algebra A0 is generated by the currents d1(x) = c0(x), d2(x) =
c0(x)c1(x), d3(x)= c0(x)c1(x)c2(x), etc. The defining relations in A0 are quadratic
and takes the form involving derivatives of the currents:

di (x) ·d j (x)(l) =0, 0≤ l ≤2 min(i, j). (1.7)

The representation W for the algebra A = {e(ε, x)} is also defined on the free
module over the ring C[[ε]], and after substituting ε = 0 we get a representation
over A0. It is quadratic with simple relations, and this construction gives us a fer-
mionic formula for the refined character χ :

χ(q, z; y)=
∑

{m j }

q2
∑

min(i, j)mi m j z
∑

jm j y
∑

m j

∏
(q)m j

.

1.3.3. General g and multi-filtration In order to treat the general case we need to
replace the filtration Fi by a “multi-filtration”. Let Si , i =1, . . . , l, be the subspac-
es of U ( n̂ ) spanned by coefficients of the expansion of ei (x)s , s ≥0, as series in x ,
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and let Ri =⊕k≤i Sk , where R0 = S0 =C · 1. Note that R1 ⊂ R2 ⊂· · ·⊂ Rl . Then, we
define

Fj1 = R1 · Fj1−1, F0 =C ·v,

Fj1, j2 = R2 · Fj1, j2−1, Fj1,0 = Fj1 ,

· · ·
We define

W =⊕ j1,..., jl W j1,..., jl ,

W j1,..., jl = Fj1,..., jl /
∑

i

Fj1,..., ji −1,..., jl

and denote by bi the operator which gives the constant ji on W j1,..., jl .
In this way, we get the subspaces Fj1,..., jl and the associated graded spaces

W j1,..., jl ; the latter have the actions of the grading operators b1, . . . ,bl . Since the
operators d, h1, . . . , hl act on W in an evident way, we can write

χ(q, z1, . . . , zl; y1, . . . , yl)= trW

(
q−d zh1

1 · · · zhl
l yb1

1 · · · ybl
l

)
.

We conjecture that this refined character gives an eigenfunction of the conjugated
quantum Toda Hamiltonian (see [3,12], Appendix A). We now explain how to
obtain a fermionic formula in the general case.

1.3.4. General fermionic formula Let L1 be the vacuum representation of ĝ of level
1 with highest weight vector v, and let V be the principal subspace in L1, i.e., V =
U ( n̂ ) ·v. The space V , as a representation of U ( n̂ ) can be described by using the
space W as

V = W/
∑

i

ei (x)2W.

Consider the tensor product of infinitely many copies of V labeled by j =0,1,2 . . .,
and denote by a( j)

i the operator ei acting on the jth copy:

a( j)
i =1⊗· · ·⊗ ei︸︷︷︸

jth

⊗· · ·

Now, set

ei (ε, x)=
∑

α≥0

εαa(α)
i (x).

After substituting ε = 0 we get an algebra generated by c(β)
i (x)= a(0)

i (x)a(1)
i (x) · · ·

a(β−1)
i (x). The currents c(β)

i (x) generate an algebra with the quadratic relations

c(β)
i (x)c(γ )

j (x)(l) =0 if l ≤min(α,β) ·Ci, j (1.8)
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where (Ci, j ) is the Cartan matrix of g. As a result we have a fermionic formula
for the refined character of W :

χ(q, z1, . . . , zl; y1, . . . , yl)=
∑

{n(t)
i }

q B

∏
t≥0

∏l
i=1(qi ;qi )n(t)

i

l∏

i=1

z
∑

t≥0 tn(t)
i

i

l∏

i=1

y
∑

t≥0 n(t)
i

i ,

(1.9)

B =
∑

t≥0

t

⎛

⎝
l∑

i, j=1

1
2

bi, j n
(t)
i n(t)

j −
l∑

i=1

di n
(t)
i

⎞

⎠+
∑

t<t ′
t

l∑

i, j=1

bi, j n
(t)
i n(t ′)

j ,

where bi, j = (αi , α j ), di = bi,i/2 and qi =qdi . We note that if g is simply laced the
formula (1.9) corresponds to (1.4) and (1.5).

1.4. PLAN OF THE PAPER

Now let us outline the content of our paper.
In Section 2 we introduce the fermionic sums. We study quasi-classical limits of

such formulas and various recursion relations.
In Section 3 we prove the fermionic formulas for the scalar products of the

Whittaker vectors with dual ones. We also discuss the general procedure (based on
the center of the quantum group), which produces equations satisfied by Jλ

β .
In Section 4 we study the quasi-classical decompositions using the representation

theory of Uv(g). We prove the recursion relations and vanishing properties from
Section 2.

In Al case there is an alternative simple way to prove that the fermionic formula
satisfies the Toda equation. We give this proof in Appendix A.

In Appendix B, we prove a proposition on the singular vectors in the tensor
product of two Verma modules. We need this lemma to prove the vanishing prop-
erty.

2. Fermionic Sums

2.1. FERMIONIC SUMS ON A FINITE INTERVAL

Let l ∈ Z≥1 be a positive integer, and let [r, s] = {t ∈ Z | r ≤ t ≤ s} be a finite inter-
val in Z. Here r, s are integers, but in later subsections we also consider the case
r =−∞ and/or s =∞.

Let C = (Ci,i ′)1≤i,i ′≤l be a symmetric matrix, and let µ = (µi,t )1≤i≤l,t∈[r,s] be a
vector. Let m = (m1, . . . ,ml) be a set of non-negative integers. We will define a fer-
mionic sum IC,µ,m(q, z|r, s) on the interval [r, s] corresponding to the data C,µ

and m. Each fermionic sum is a rational function in q and z = (z1, . . . , zl). It is
defined as a sum of rational functions parameterized by a configuration of parti-
cles m, which we will explain below.
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We call a tuple of non-negative integers

m ={mi,t : 1≤ i ≤ l, r ≤ t ≤ s}
a configuration of particles. An integer i ∈[1, l] is called color and t ∈[r, s] is called
weight of the particle. The non-negative integer mi,t represents the number of par-
ticles with color i and weight t . For a configuration of particles m, we associate a
vector m = (mi )1≤i≤l by

mi =
∑

t∈[r,s]
mi,t . (2.1)

The number mi is the number of particles with color i .
We set (w)n =∏n

i=1(1−qi−1w) and define

(q)m =
∏

(i,t)∈[1,l]×[r,s]
(q)mi,t

for any tuple m = (mi,t ). We also use the standard scalar product (m,n) =
∑

(i,t)∈[1,l]×[r,s] mi,t ni,t .

DEFINITION 2.1 Let m = (mi )∈ Zl
≥0 and µ= (µi,t )∈Z

l(s−r+1) be two vectors. A
fermionic sum IC,µ,m(q, z|r, s) is a function in q and z = (z1, . . . , zl) defined by

IC,µ,m(q, z|r, s)=
∑

m=m

l∏

i=1

z
∑s

t=r tmi,t
i

q QC (m)+(µ,m)

(q)m
, (2.2)

where

QC (m)= 1
2

{
((C ⊗ G)m,m)− (diag(C ⊗ G),m)

}
, (2.3)

the matrix G is defined by

G = (Gt,t ′)t,t ′∈[r,s], Gt,t ′ =min(t, t ′),

and for a matrix X = (Xi, j ), diag(X) signifies the vector consisting of diagonal
entries Xi,i .

The quantity IC,µ,m(q, z|r, s) is a Laurent polynomial in z = (z1, . . . , zl) with
coefficients which are Laurent polynomials in qCi,i ′ ,qµi,t and rational functions
in q.

We define the following formal power series in y = (y1, . . . , yl).

FC,µ(q, z, y|r, s)=
∑

m∈Z
l
≥0

ym IC,µ,m(q, z|r, s). (2.4)

Here we use the notation ym = ∏l
i=1 ymi

i for l-component vectors y and m.
We use the convention FC,µ(q, z, y|r, s) = 1 if r = s + 1. We denote the func-
tions FC,µ(q, z, y|r, s), IC,µ,m(q, z|r, s) in the case of µ = 0 by FC (q, z, y|r, s),
IC,m(q, z|r, s), dropping the parameter µ.
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In what follows we also need another parametrization of configurations of
particles. Namely, with each m = (mi,t ), 1≤ i ≤ l, t ∈[r, s], we associate the vector

p= (pi, j ), 1≤ i ≤ l,1≤ j ≤mi

defined by two conditions:

• pi,1 ≤ pi,2 ≤· · ·≤ pi,mi , 1≤ i ≤ l,
• mi,t =#{ j : pi, j = t}.
It is easy to see that the correspondence m ↔ p is one-to-one. In the following
lemma we rewrite powers of z and q in (2.2) in terms of p. To avoid confusion
we denote the function QC (m) written in p coordinates by QC (p).

LEMMA 2.2. We have

z
∑s

t=r tmi,t
i = z

∑mi
j=1 pi, j

i , (2.5)

QC (m)= QC (p)= 1
2

⎛

⎝
∑

(i, j),(i ′, j ′)
Ci,i ′ min(pi, j , pi ′, j ′)−

∑

(i, j)

Ci,i pi, j

⎞

⎠ . (2.6)

If we shift the parameters µi,t to µi,t + tνi +κi , the sum IC,µ,m(q, z|r, s) responds
by a simple prefactor and q-shifts of zi :

IC,µ+tν+κ,m(q, z|r, s)=qκ·m IC,µ,m(q,qνz|r, s). (2.7)

Here, ν = (νi )i∈[1,l] and (µ+ tν +κ)i,t =µi,t + tνi +κi . We use the abbreviated nota-
tion κ ·m =∑l

i=1 κi mi and qνz = (qνi zi )i∈[1,l].
If µ=0 and we shift the interval, we get a simple factor:

IC,m(q, z|r + k, s + k)=
(

zmqWC,m
)k

IC,m(q, z|r, s),

where

WC,m = 1
2
(Cm ·m −diag C ·m).

2.2. FERMIONIC SUMS ON A SEMI-INFINITE INTERVAL

We replace the interval [r, s] in the construction in Section 2.1 by an infinite inter-
val. Let us consider the case [r, s]= [0,∞). We use the abbreviation

IC,µ,m(q, z)= IC,µ,m(q, z|0,∞), IC,m(q, z)= IC,0,m(q, z|0,∞). (2.8)

In this case, the sum in the right hand side of (2.2) becomes an infinite sum.
We are interested in the case where the parameters µ = (µi,t )(i,t)∈[1,l]×[0,∞) are
specialized so that the infinite sum is well-defined as a rational function in
q, zi ,qCi,i ′ ,qµi,t .
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LEMMA 2.3. Suppose that there exists t0 ≥0 and νi , κi (1≤ i ≤ l) such that

µi,t = tνi +κi if t ≥ t0. (2.9)

Then, the sum (2.2) is a polynomial in qµi,t ((i, t)∈[1, l]×[0, t0 −1]) and qκi (1≤ i ≤ l)
with coefficients which are rational functions in q, zi ,qCi,i ′ ,qνi (1≤ i, i ′ ≤ l).

The proof is easy, and we omit it.
There are simple relations between the fermionic sums over semi-infinite inter-

vals with µ=0. Namely, we can reduce all cases to [0,∞). We have

IC,m(q, z|k,∞)= (zmqWC,m )k IC,m(q, z), (2.10)

IC,m(q, z|−∞, k)= (zmqWC,m )k IC,m(q, z−1q−Cm+diag C ). (2.11)

Here we used the abbreviation z−1qm = (z−1
1 qm1 , . . . , z−1

l qml ).
The following proposition determines the fermionic sums recursively.

PROPOSITION 2.4. The rational functions IC,m(q, z) satisfy the recursion

IC,m(q, z)=
∑

0≤a≤m

zaqWC,a

(q)m−a
IC,a(q, z). (2.12)

The solution of this recursion is unique if we fix IC,0(q, z)=1.

Proof. We subdivide the fermionic sum in the left hand side into parts labeled by
a = (a1, . . . ,al)∈Z

l
≥0, with ai being the number of color i particles whose weights

are larger than or equal to 1. Then this corresponds to the sum in the right
hand side because of (2.10). The uniqueness is clear because the equation can be
written as

(1− zmqWC,m )IC,m(q, z)=
∑

0≤a<m

zaqWC,a

(q)m−a
IC,a(q, z).

We call (2.12) the fermionic recursion.
In what follows we study functions IC,µ,m(q, z) for some special values of µ of

the type (2.9). We describe µ in terms of corners and angles.
We say µ has a corner at t ∈ [1,∞) if the vector µ[t] given by µi [t]=µi,t+1 +

µi,t−1 −2µi,t is not zero. We call µ[t] the angle of µ at t . We define µi [0]=µi,1 −
µi,0, and call µ[0] the angle of µ at 0. We say µ has a corner at 0 if µ[0] 
=0. Let
us discuss simple cases.

First, consider the case where µi,t = tνi +κi for all t ≥0. It reduces to the basic
case IC,m(q, z) by (2.7).
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Second, we define the case with one corner. Namely, we consider

µi,t =
{

0 if t ≤ k;
(t − k)νi if t ≥ k.

(2.13)

We denote the fermionic sum corresponding to this µ by J (k,ν)
C,m (q, z).

LEMMA 2.5. There exist mutual relations between IC,m(q, z), J (k,ν)
C,m (q, z), IC,m

(q, z|0, k). We have

J (0,ν)
C,m (q, z)= IC,m(q,qνz), (2.14)

J (k,ν)
C,m (q, z)=

∑

0≤a≤m

(
zaqWC,a

)k
IC,m−a(q,qCaz|0, k −1)IC,a(q,qνz), (2.15)

=
∑

0≤a≤m

qa·ν (zaqWC,a
)k+1

IC,m−a(q,qCaz|0, k)IC,a(q,qνz). (2.16)

Proof. The relation (2.14) is trivial. In order to prove the other two relations
we cut the interval of weights [0,∞) into two parts. For (2.15) these parts are
[0, k −1] and [k,∞) and for (2.16) they are [0, k] and [k + 1,∞). The rest is
straightforward.

If we set k =0 in (2.15) we obtain (2.14).
Let us denote the limit qν → 0 symbolically by ν →∞ (see Lemma 2.3). From

(2.16) follows that

lim
ν→∞ J (k,ν)

C,m (q, z)= IC,m(q, z|0, k).

2.3. QUASI-CLASSICAL DECOMPOSITION OF FERMIONIC SUMS

In this subsection, we discuss the decomposition of fermionic sums with respect to
the dependence on some large parameters. We call it the quasi-classical decompo-
sition. We first explain the idea in simple examples, and then discuss more general
cases.

EXAMPLE 1. Consider the simplest case l =1, [r, s]=[0, k],µ=0,m =1. Then one
gets

IC,1(q, z|0, k)= 1+ z +· · ·+ zk

1−q
= 1

(1−q)(1− z)
− zk+1

(1−q)(1− z)
.

The result consists of two terms. It is a linear combination of 1 and zk with ratio-
nal function coefficients independent of k. This decomposition can be explained
by examining the large k behavior. There is one particle in the interval [0, k]. The
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weight p of the particle is restricted to this interval, 0 ≤ p ≤ k. If k is large, the
sum over p for 0 ≤ p << k and that for 0 ≤ k − p << k does not overlap. Consid-
ering the sum over p for 0 ≤ p and that for p ≤ k we obtain IC,1(q, z|0,∞) and
IC,1(q, z|−∞, k). In fact, the above decomposition is the same as

IC,1(q, z|0, k)= IC,1(q, z|0,∞)+ IC,1(q, z|−∞, k).

The sums in the right hand side contains more terms than the sum over 0≤ p ≤k.
However, since

∑
p∈Z

z p =0 as rational function, we have the equality.

EXAMPLE 2. Let l = 1, [r, s] = [0, k],µ = 0 as before but m = 2. Since l = 1 the
matrix C is simply a scalar. We denote it by c. One can check the following equal-
ity.

IC,2(q, z|0, k)=IC,2(q, z|0,∞)+ IC,1(q,qz|0,∞)IC,1(q, z|−∞, k)+
+IC,2(q, z|−∞, k).

Each of the terms in the right hand side has the distinction that the dependence
on k enters only through 1, zk, (z2qc)k , respectively. These sums are over p1, p2 in
the regions

{0≤ p1 ≤ p2}, {0≤ p1,0≤ k − p2}, {0≤ k − p2 ≤ k − p1}.

They are obtained by extending the following regions in the original sum:

{0≤ p1 ≤ p2 << k}, {0≤ p1 << k,0≤ k − p2 << k}, {0≤ k − p2 ≤ k − p1 << k}.
In general, we call such a decomposition quasi-classical. We conjecture that the

quasi-classical decompositions are exact for the fermionic sums. In later sections,
we prove the conjecture in some cases.

Here is the quasi-classical decomposition for the general case when the interval
is finite.

CONJECTURE 2.6. We have

IC,m(q, z|r, s)=
=
(

zmqWC,m
)r ∑

0≤a≤m

(
zaqWC,a

)s−r
IC,m−a(q,qCaz)IC,a(q, z−1q−Ca+diagC ).

(2.17)

Let us explain how one can obtain the right hand side. Recall (2.6) and (2.5).
Consider the fermionic sum on the interval [r, s] where r →−∞ and s →∞. Let
0 ≤ ai ≤ mi for 1 ≤ i ≤ l, and consider the sum over p in the region r ≤ pi,1 ≤· · ·≤
pi,mi −ai << s and r << pi,mi −ai +1 ≤· · ·≤ pi,mi ≤ s. We denote the vector of pi, j from
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the first region by pm−a and from the second region by pa . Two groups of vari-
ables are separated: if pi, j is in the first group and pi ′, j ′ is in the second group,
then we have

min(pi, j , pi ′, j ′)= pi, j .

Therefore, we have

QC (p)= QC (pm−a)+ QC (pa)+
l∑

i ′=1

Ci,i ′ai ′
mi −ai∑

j=1

pi, j .

Extending the regions for summation by removing the bounds of the form · · ·<< s
or r << · · · , we obtain

IC,m(q, z|r, s)=
∑

0≤a≤m

IC,m−a(q,qCaz|r,∞)IC,a(q, z|−∞, s). (2.18)

We rewrite this to (2.17) by using (2.10) and (2.11).
In the special cases r = s and r = s +1 Conjecture 2.6 reads as follows.

∑

0≤a≤m

IC,m−a(q,qCaz)IC,a(q, z−1q−Ca+diagC )= 1
(q)m

, (2.19)

∑

0≤a≤m

(
zaqWC,a

)−1
IC,m−a(q,qCaz)IC,a(q, z−1q−Ca+diagC )=0. (2.20)

The same quasi-classical decomposition procedure can be applied to J (k,ν)
C,m (q, z),

where k → ∞. For this purpose we need fermionic sums on Z = (−∞,∞). We
define

X (k,ν)
C,m (q, z)= IC,µ,m(q, z|−∞,∞), (2.21)

where µ, which depends on (k, ν), is given by (2.13).

LEMMA 2.7. X (k,ν)
C,m (q, z) is a rational function in q, z. It satisfies the relations:

X (k,ν)
C,m (q, z)=

(
zmqWC,m

)k
X (0,ν)

C,m (q, z)

and

X (0,ν)
C,m (q, z)= X (0,ν)

C,m (q, z−1q−ν−Cm+diag C ). (2.22)

Proof. The proof is straightforward. We only note that in order to prove (2.22)
one needs to write the fermionic sum in p variables and change the summation
variable pi, j to −pi,mi +1− j for all i, j .

The following proposition is an analogue of Lemma 2.5.
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PROPOSITION 2.8.

X (0,ν)
C,m (q, z)=

∑

0≤a≤m

(
zaqWC,a+Ca·(m−a)

)−1
IC,a(q, z−1q−Cm+diagC )IC,m−a(q,qνz),

(2.23)

=
∑

0≤a≤m

zaqWC.a+ν·a IC,m−a(q, z−1q−Cm+diagC )IC,a(q,qνz). (2.24)

Proof. We use two cuttings of the infinite interval of weights (−∞,∞) into semi-
infinite intervals: (−∞,∞) = (−∞,−1] � [0,∞) or (−∞,∞) = (−∞,0] � [1,∞).
This leads to (2.23) and (2.24).

Applying the procedure of the quasi-classical decomposition, we obtain

CONJECTURE 2.9.

J (k,ν)
C,m (q, z)=

∑

0≤a≤m

IC,m−a(q,qCaz)X (k,ν)
C,a (q, z).

In the right hand side the summation variable ai where a = (a1, . . . ,al), repre-
sents the number of color i particles whose weights are “close to k”. The weights
of the remaining particles are “small” compared to k. We conjecture that this is
exact for finite k. In particular, setting k =0 and k =−1 and using (2.14), we obtain

IC,m(q,qνz)=
∑

0≤a≤m

IC,m−a(q,qCaz)X (0,ν)
C,a (q, z), (2.25)

qν·m IC,m(q,qνz)=
∑

0≤a≤m

IC,m−a(q,qCaz)
(

zaqWC,a
)−1

X (0,ν)
C,a (q, z). (2.26)

In Section 4 we prove these equalities in the case where C is a simply-laced Cartan
matrix. We also give a generalization of these equalities in the case where C is the
symmetrization of a non simply-laced Cartan matrix.

Finally, we give the quasi-classical decomposition for the fermionic sum on
(−∞,∞) with two corners at 0 and k, with angle ν1 and ν2, respectively.

We denote this quantity by X (0,ν1;k,ν2)
C,m (q, z). We conjecture that

X (0,ν1;k,ν2)
C,m (q, z)=

∑

0≤a≤m

(
zaqWC,a

)k
X (0,ν1)

C,m−a(q,qCaz)X (0,ν2)
C,a (q, z).

Restricting to k =0 we have

X (0,ν1+ν2)
C,m (q, z)=

∑

0≤a≤m

X (0,ν1)
C,m−a(q,qCaz)X (0,ν2)

C,a (q, z) (2.27)
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2.4. THE CASE OF sl2

In this subsection, we restrict to the sl2 case, i.e., l =1 and C =2, and write some
of the fermionic sums and their relations explicitly. Moreover, we discuss vanish-
ing theorems which arise in connection with integrality of angle variables. In the
following we drop C in the notation because it is fixed to C =2. We also use the
q binomial coefficients defined by

[γ

n

]
= (qγ−n+1)n

(q)n
.

Here n is a non-negative integer, but γ is arbitrary, possibly a formal variable.
First, we recall a known result and its proof [9].

PROPOSITION 2.10. We have

Im(q, z)= 1
(q)m(z)m

. (2.28)

Proof. The recursion (2.12) in this case reads as

Im(q, z)=
∑

0≤a≤m

zaqa(a−1)

(q)m−a
Ia(q, z).

The fermionic sum is uniquely determined by this recursion with the initial con-
dition I0(q, z)=1. Therefore, it is enough to prove this recursion for (2.28). After
substitution, we want to prove

1
(z)m

=
∑

0≤a≤m

[m

a

] zaqa(a−1)

(z)a
.

Using
[m

a

]=qa
[

m−1
a

]
+
[

m−1
a−1

]
, we obtain

(RHS)=
m−1∑

a=0

[
m−1

a

]
(

zaqa2

(z)a
+ za+1qa(a+1)

(z)a+1

)

=

= 1
1− z

m−1∑

a=0

[
m−1

a

]
(qz)aqa(a−1)

(qz)a
= (LHS).

The following proposition holds for an arbitrary value of ν.

PROPOSITION 2.11.

X (0,ν)
m (q, z)=

[
ν
m

]

(z−1q2(1−m))m(qνz)m
.
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Proof. We use the decomposition (2.24). Substituting the expressions for
IC,a(q, z|−∞, k) and IC,m−a(q,qνz) given by (2.11) and (2.28), we obtain

X (0,ν)
m (q, z)= 1

(q)m

∑

0≤a≤m

[m
a

]
(qνz)aqa(a−1)

(z−1q2−2m)m−a(qνz)a
.

The rest of the proof goes similarly as in Proposition 2.10.

If n is a non-negative integer, the range for m where X (0,n)
m (q, z) is non-zero is

restricted.

COROLLARY 2.12. If n ∈Z≥0 and m >n, then we have X (0,n)
m (q, z)=0.

We identify n with the highest weight of the irreducible representation Vn of sl2.
The above statement says the fermionic sum is non-zero only if n −2m is a weight
of Vn . In Proposition 4.8 we establish vanishing theorems of the form X (0,ν)

C,m =0 for
the case where C is a simply-laced Cartan matrix, the parameter ν corresponds to
a dominant integral weight, and ν −∑

i miαi is not a weight of Vν . Our tool is the
representation theory of Uv(g) with v2 =q, where g is a simple Lie algebra associ-
ated with C . We expect vanishing theorems of this kind are valid in a much wider
class of C , though it is beyond the scope of this paper.

Two recursions (2.25) and (2.26) reads as follows.

PROPOSITION 2.13. For an arbitrary value of ν, we have

Im(q,qνz)=
∑

0≤a≤m

[
ν
a

]

(z−1q2(1−a))a(qνz)a
Im−a(q,q2az), (2.29)

qνm Im(q,qνz)=
∑

0≤a≤m

z−aq−a(a−1)
[

ν
a

]

(z−1q2(1−a))a(qνz)a
Im−a(q,q2az). (2.30)

The quasi-classical decomposition generates many more identities than we dis-
cussed above. Here we give an example. Let 0≤ k1 ≤· · ·≤ kn be non-negative inte-
gers. Set

µt =
n∑

i=1

(t − ki )+ where (t)+ =
{

t if t ≥0;
0 otherwise.

Namely, the linear coefficient µ has corners at ki with angle
∑n

r=1 δki ,kr . Suppose
that the quasi-classical decomposition is exact. Then for n ≥m we have

Iµ,m(q, z)=
∑

0≤a≤m

Ia(q,q2(m−a)z)Xµ,m−a(q, z), (2.31)
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Xµ,m(q, z)=
∑

ε1,...,εn=0,1
ε1+···+εn=m

Xk1,...,kn
ε1,...,εn

, (2.32)

Xk1,...,kn
ε1,...,εn

=
∏

i : εi =1

q−∑i−1
r=1 kr (qε(i)z)ki

g(qε(i)z)
. (2.33)

Here g(z)= (1− z−1)(1−qz), ε(i)=2
∑n

r=i+1 εr + i −1. Note that X (0,1)

1,0 =1/g(z).
For example, setting n =3, k1 = k2 = k3 =0,m =2, we obtain

[
3
2

]

(q3z)2(q−2z−1)2
= 1

g(zq2)

(
1

g(zq)
+ 1

g(zq2)
+ 1

g(zq3)

)

.

3. Fermionic and Toda Recursions

In this section, we develop the representation theoretic approach to fermionic
formulas. In certain cases we show that they coincide with scalar products of
Whittaker vectors, which are eigenfunctions of the quantum Toda Hamiltonian.

Quantum deformation of Whittaker vectors has been introduced and studied by
Sevostyanov [19]. An independent construction was given by Etingof [7] from a
slightly different point of view. A geometric interpretation of the eigenvectors of
the quantum Toda Hamiltonian as Shapovalov scalar product of Whittaker vectors
has been given by Braverman and Finkelberg [3], reproducing the main results of
Givental and Lee [12]. In this section we give a review of this subject, following
closely the algebraic framework of [19] with minor modifications. We shall show
that fermionic formulas naturally arise from Drinfeld’s Casimir element.

3.1. QUANTUM GROUPS

We fix the notation as follows. Let g be a complex simple Lie algebra, h the
Cartan subalgebra, α1, . . . , αl the simple roots and ω1, . . . , ωl the fundamental
weights. Set P = ⊕l

i=1Zωi , Q = ⊕l
i=1Zαi , P+ = ⊕l

i=1Z≥0ωi , Q+ = ⊕l
i=1Z≥0αi . Let

further �+ denote the set of positive roots. We fix a non-degenerate invariant
bilinear form ( , ) :h×h→C such that (P, Q)⊂Z, and identify h∗ with h via ( , ).
We set

di = 1
2
(αi , αi ), α∨

i =d−1
i αi , ρ =

l∑

r=1

ωr .

We choose ( , ) so that d1, . . . ,dl are relatively prime positive integers.
Let N be a positive integer satisfying (P, P)⊂ (1/N)Z. The quantum group Uv(g)

is a unital associative algebra over K = C(v1/N), with generators Ei , Fi (1 ≤ i ≤ l),
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Kµ (µ∈ P) and the standard defining relations

KµKµ′ = Kµ+µ′ , K0 =1,

KµEi K −1
µ =v(µ,αi )Ei , KµFi K −1

µ =v−(µ,αi )Fi ,

[Ei , Fj ]= δi j
Ki − K −1

i

vi −v−1
i

,

r∑

s=0

(−1)s E (r−s)
i E j E (s)

i =0 (r =1− (α∨
i , α j ), i 
= j),

r∑

s=0

(−1)s F (r−s)
i Fj F (s)

i =0 (r =1− (α∨
i , α j ), i 
= j).

Here Ki = Kαi , vi = vdi , X (s)
i = Xs

i /[s]vi ! (X = E, F) and [s]v! =∏s
p=1(v

p − v−p)/

(v −v−1). We choose the coproduct

�Ei = Ei ⊗1+ Ki ⊗ Ei ,

�Fi = Fi ⊗ K −1
i +1⊗ Fi ,

�Kµ = Kµ ⊗ Kµ,

antipode

S(Ei )=−K −1
i Ei , S(Fi )=−Fi Ki , S(Kµ)= K −1

µ

and counit

ε(Ei )= ε(Fi )=0, ε(Kµ)=1.

We shall also consider the quantum group Uv−1(g) with parameter v−1. Denote
the generators by Ēi , F̄i , K̄µ. We choose the opposite coproduct,

�Ēi = Ēi ⊗ K̄i +1⊗ Ēi ,

�F̄i = F̄i ⊗1+ K̄ −1
i ⊗ F̄i ,

�K̄µ = K̄µ ⊗ K̄µ,

antipode

S(Ēi )=−Ēi K̄ −1
i , S(F̄i )=−K̄i F̄i , S(K̄µ)= K̄ −1

µ ,

and counit

ε(Ēi )= ε(F̄i )=0, ε(K̄µ)=1.

There is a K-linear anti-isomorphism of algebras given by

σ :Uv(g)→Uv−1(g), Ei �→ F̄i , Fi �→ Ēi , Kµ �→ K̄ −1
µ . (3.1)

We have

�◦σ =σ ⊗σ ◦�. (3.2)
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3.2. VERMA MODULES

For λ∈ P , let Vλ be the Verma module over Uv(g) generated by the highest weight
vector 1λ with defining relations

Ei 1λ =0 (1≤ i ≤ l), Kµ1λ =v(µ,λ)1λ (µ∈ P).

Similarly let V
λ

be the Verma module over Uv−1(g) generated by the highest weight
vector 1̄λ with defining relations

Ēi 1̄λ =0 (1≤ i ≤ l), K̄µ1̄λ =v−(µ,λ)1̄λ (µ∈ P).

We have obvious gradings Vλ =⊕β∈Q+(Vλ)β , V
λ =⊕β∈Q+(V

λ
)β , where

(Vλ)β ={w ∈Vλ | Kµw =v(µ,λ−β)w (µ∈ P)}, (3.3)

(V
λ
)β ={w ∈V

λ | K̄µw =v−(µ,λ−β)w (µ∈ P)}. (3.4)

There exists a unique non-degenerate K-bilinear pairing ( , ) :Vλ ×V
λ → K, such

that (1λ, 1̄λ)=1 and

(xw,w′)= (w,σ (x)w′) (3.5)

for all x ∈Uv(g) and w∈Vλ, w′ ∈V
λ
. The weight components (3.3), (3.4) are mutu-

ally orthogonal with respect to ( , ). We extend the scalar product on tensor prod-
ucts of Verma modules as

(u1 ⊗u2, v1 ⊗v2)= (u1, v1)(u2, v2) (ui ∈Vλi , vi ∈ V̄λi ) .

3.3. WHITTAKER VECTORS

Whittaker vectors are defined by giving the following data: an orientation of the
Dynkin graph, a set of elements νi ∈ P , and non-zero scalars ci ∈ K. An orienta-
tion is represented by a skew-symmetric matrix ε = (εi, j ), where εi, j =1 if there is
an arrow pointing from node i to node j , and εi, j =0 if i and j are disconnected.
Given ε, choose νi ∈ P such that

(νi , α j )− (ν j , αi )= εi, j (αi , α j ). (3.6)

For instance one can take νi =∑i−1
k=1 ωkεi,k(αi , α

∨
k ).

A Whittaker vector associated with the data ε, ν = (νi ) and c= (ci ) is an element

θλ = θλ(ε, ν, c)=
∑

β∈Q+
θλ
β , θλ

β ∈ (Vλ)β,

which belongs to a completion V̂λ = ∏
β∈Q+(Vλ)β of the Verma module. It is

defined by the conditions θλ
0 =1λ and

Ei Kνi θλ = ci

1−v2
i

θλ. (3.7)
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It is known that the Whittaker vector exists and is unique [19]. Fixing ε and
changing ν, c results in a simple scalar multiple of the weight components of
θλ(ε, ν, c). Explicitly we have the transformation law

θλ
β (ε, ν +γ, c′)=v(1/2)

∑l
i=1(β,ω∨

i )(β−2λ,γi )θλ
β (ε, ν, c), (3.8)

θλ
β (ε, ν, c′′)=v−(κ,β)θλ

β (ε, ν, c), (3.9)

where γi ∈ P is such that (γi , α j ) = (γ j , αi ) holds, and c′
i = v−(γi ,αi )/2ci , c′′

i =
v−(κ,αi )ci .

Similarly one defines the dual Whittaker vector

θ̄ λ = θ̄ λ(ε, ν, c)∈̂̄Vλ
,

̂̄V
λ =

∏

β∈Q+
(V

λ
)β,

imposing θ̄ λ
0 = 1̄λ and

Ēi K̄νi θ̄ λ = c−1
i

1−v−2
i

θ̄ λ (3.10)

in place of (3.7).
The main object of our interest is the scalar product

Jλ
β =v−(β,β)/2+(λ,β) (θλ

β (ε, ν, c), θ̄λ
β (ε, ν, c)). (3.11)

We set Jλ
β =0 unless β ∈ Q+.

From (3.8) and (3.9), we see that (3.11) is independent of the choice of ν, c. As
it will turn out, it is actually independent of the orientation ε as well (see Theo-
rem 3.1 below). Anticipating this fact, we suppress the dependence on ε, ν, c from
the notation.

3.4. FERMIONIC RECURSION

Now we state the main result of this section. Set q =v2, qi =qdi , and

(q)β =
l∏

i=1

(qi ;qi )mi for β =
l∑

i=1

miαi .

The following is a counterpart of the fermionic recursion given in
Proposition 2.4.

THEOREM 3.1. The quantities Jλ
β are uniquely characterized by Jλ

0 = 1 and the
recursion relation

Jλ
β =

∑

γ

1
(q)β−γ

q(γ,γ )/2−(λ+ρ,γ ) Jλ
γ . (3.12)

In particular, Jλ
β is independent of the choice of orientation which enters the defini-

tion.
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The Jλ
β are determined as rational functions in the variables q and zi =q−(λ,αi ).

In accordance with the previous section, let us introduce the following sum for
a (possibly infinite) interval [r, s].

Jλ
β [r, s]=

∑

∑s
t=r γ (t)=β

q B(γ )

∏s
t=r (q)γ (t)

, (3.13)

where

B(γ )= 1
2

∑

r≤t,t ′≤s

min(t, t ′)(γ (t), γ (t ′))−
(

λ+ρ,

s∑

t=r

tγ (t)

)

.

We have

Jλ
β [0,0]= 1

(q)β
, (3.14)

Jλ
β [r +1, s +1]=q(β,β)/2−(λ+ρ,β) Jλ

β [r, s], (3.15)

Jλ
β [r, s]=

∑

α+γ=β

Jλ−γ
α [r,u]Jλ

γ [u +1, s] (r ≤u < s). (3.16)

THEOREM 3.2. In the notation above, we have

Jλ
β = Jλ

β [0,∞).

Proof. This is a restatement of Theorem 3.1.

Suppose C is a simply laced Cartan matrix, and let β =∑l
i=1 miαi , zi =q−(λ,αi ).

Since (Cm,m)= (β,β) and (diagC,m)= (2ρ,β), we have

Jλ
β [0,∞)= IC,m(q, z)

where the right hand side is defined in (2.8). We shall discuss the interpretation of
Jλ
β [r, s] for finite interval [r, s] in the next section (see Theorem 4.13). When C is

non-simply laced, (3.13) gives a generalization of the fermionic sum considered in
the previous section due to the denominator (qi ;qi )n .

COROLLARY 3.3. (i) The rational function Jλ
β is regular at z1 =· · ·= zl =0 and

Jλ
β

∣
∣
∣
∣
∣z1=···=zl=0 =

l∏

r=1

1
(qi ;qi )mi

. (3.17)

(ii) We have the symmetry property

Jλ
β

∣
∣
∣q→q−1 =q(β,β)/2−(λ,β) Jλ

β . (3.18)

(iii) The set {Jλ
β }β∈Q+ is linearly independent over C(q).
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Proof. Assertion (i) is a direct consequence of (3.13) since Jλ
β = Jλ

β [0,∞). In the
definition of Jλ

β , θλ and θ̄ λ enter in a symmetric way. Therefore assertion (ii) fol-
lows from the definition (3.11). (Note that the change of variable q → q−1 in the
left hand side of (ii) implies zi → z−1

i ).

To see (iii), it suffices to show that Jλ
β

∣
∣
∣q→q−1 constitute a linearly independent

set. Property (ii) implies that each of them has distinct leading power zm1
1 · · · zml

l in
z1, . . . , zl . Hence the independence is evident.

3.5. DERIVATION OF THE FERMIONIC RECURSION

In this subsection we give a derivation of Theorem 3.1.
First we recall the Cartan–Weyl basis and the product formula for the universal

R matrix due to Khoroshkin and Tolstoy [15]. By definition, a total order < on
�+ is said to be normal if α,β,α +β ∈�+ and α <β imply α <α +β <β. Nor-
mal orders are in one-to-one correspondence with reduced decompositions of the
longest element of the Weyl group. Moreover an arbitrary total order on the set
of simple roots can be extended to a normal order on �+ [22,23]. To a normal
order <, one associates root vectors

E<
β , F<

β (β ∈�+) (3.19)

by induction on h(β), where h(
∑l

i=1 niαi )=∑l
i=1 ni . When h(β)=1, define E<

αi
=

Ei , F<
αi

= Fi . Let γ be an element with h(γ ) = n, and suppose that (3.19) are
already defined for h(β) < n. Choose a decomposition γ = α + β in such a way
that there are no other roots α′, β ′ ∈�+ satisfying γ =α′ +β ′, α≤α′ <β ′ ≤β. Then
define

E<
γ = E<

α E<
β −v(α,β)E<

β E<
α , (3.20)

F<
γ = cγ (F<

β F<
α −v−(α,β)F<

α F<
β ). (3.21)

The scalar cγ ∈K can be so chosen that [E<
γ , F<

γ ]= (Kγ − K −1
γ )/(vγ − v−1

γ ). Here
and after we set vγ =v(γ,γ )/2.

The product formula is written in terms of the q-exponential function

expq(x)=
∞∑

n=0

((1−q)x)n

(q;q)n
,

which satisfies expq(x) expq−1(−x)=1.

PROPOSITION 3.4. [15] Fix a normal order <, and consider the element

�=
�∏

β∈�+
expv2

β

(
−(vβ −v−1

β )F<
β ⊗ E<

β

)
, (3.22)
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where the product is so ordered that β appears to the right of β ′ if β <β ′. Then �

does not depend on the choice of the normal order <.

The universal R matrix is given by R = �21v
−T , where �21 = τ(�), τ(a ⊗ b) =

b ⊗a, and T ∈h⊗h stands for the canonical element.
The following construction is well known.

PROPOSITION 3.5. [6] Set u = m(S ⊗ id)�, where m(a ⊗ b) = ab stands for the
multiplication. Then u is a well defined operator on Vλ. It acts on each (Vλ)β as a
scalar,

u
∣
∣
∣(Vλ)β

=v−(β,β)+2(λ+ρ,β) × id(Vλ)β
.

The formal element v
∑l

i=1 α∨
i ωi +2ρu is sometimes referred to as the Drinfeld

(quantum) Casimir element. It acts on Vλ as a scalar: v
∑l

i=1 α∨
i ωi +2ρu

∣
∣
Vλ =

v(λ+2ρ,λ) × idVλ .
A normal order < is said to be compatible with an orientation ε of the Dynkin

graph if ε j,i =1 implies αi <α j .

PROPOSITION 3.6. [19] Let (3.19) be the root vectors with respect to a normal
order <, and let θλ(ε, ν, c) be the Whittaker vector. If the order < is compatible with
the orientation ε, then we have

E<
β θλ(ε, ν, c)=0 for all non-simple roots β ∈�+. (3.23)

Proof. Since the root vectors are defined by multiple v-commutators (3.20),
(3.21), it is sufficient to show (3.23) when γ = αi + α j . This can be verified by a
direct calculation using (3.6) and (3.7).

Proof of Theorem 3.1. By Proposition 3.5, we have

(u θλ
β , θ̄λ

β )=v−(β,β)+2(λ+ρ,β)(θλ
β , θ̄λ

β ).

Suppose that γ1 < · · · < γl are the simple roots appearing in the chosen normal
order. Expanding the formula (3.22), we obtain

u θλ
β =

∑

n1,...,nl

l∏

i=1

(
v

−ni
i (1−v2

i )2ni

(v2
i ;v2

i )ni

)

× S(Fγ1)
n1 · · · S(Fγl )

nl Enl
γl

· · · En1
γ1

θλ
β .



FERMIONIC FORMULAS AND DIFFERENCE TODA HAMILTONIAN 63

In view of Proposition 3.6, we have retained only those terms consisting of simple
roots. Setting γ =∑l

i=1 niγi and using (3.5), we obtain

(u θλ
β , θ̄λ

β )=
∑

n1,...,nl

l∏

i=1

(
(−vi )

−ni (1−v2
i )2ni

(v2
i ;v2

i )ni

)

v(γ,γ )/2+(γ,λ−β−ρ) ×

×(Enl
γl

· · · En1
γ1

θλ
β , Ēnl

γl
· · · Ēn1

γ1
θ̄ λ
β ).

Now apply the relations following from (3.7), (3.10),

v(νi ,λ−β)Eiθ
λ
β = ci

1−v2
i

θλ
β−αi

, v−(νi ,λ−β) Ēi θ̄
λ
β = c−1

i

1−v−2
i

θ̄ λ
β−αi

.

Since the generators Eγi , Ēγi are arranged in the same order, the powers of v can-
cel out. Substituting the definition (3.11) of Jλ

β and simplifying the formula, we
obtain the desired result. �

3.6. TODA RECURSION

As shown in [7,19], the generating function

F(q, z, y)=
∑

β

Jλ
β

l∏

i=1

y(β,ωi )/di
i

is an eigenfunction of the quantum difference Toda Hamiltonian: HToda F = εF .
For example, when g= sll+1, the Hamiltonian and the eigenvalue are given by

HToda =
l∑

i=0

Di+1 D−1
i (1− yi )

l∏

j=i+1

(
q−1z j

)
, ε =

l∑

i=0

l∏

j=i+1

(
q−1z j

)
, (3.24)

where Di denotes the shift operator (Di f )(y1, . . . , yl)= f (y1, . . . ,qyi , . . . , yl), with
D0 = Dl+1 = 1, y0 = yl+1 = 0. In this subsection we give an account on this point
for completeness. The argument is similar to the one for Theorem 3.1. In place
of the Drinfeld Casimir element, we use other central elements including the qua-
dratic Casimir element.

The following construction is standard.

PROPOSITION 3.7. [8] Let πV :Uv(g)→End(V ) be a finite dimensional representa-
tion, and set �V = (id⊗πV )(�), �′

V = (id⊗πV )(�21) and vρV = id⊗πV (vρ). Denote
further by ϕV the operator on Vλ ⊗ V which acts as id ⊗πV (vλ−β) on each (Vλ)β ⊗
V . Then, for any k ∈Z, the operator on Vλ given by

C
(k)
V = trV

(
v2ρV (�′

V ◦ϕ−1
V ◦�V ◦ϕ−1

V )k
)

(3.25)

acts as a scalar.
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In the following we take k =−1 and πV to be the vector representation for the
series Al , Bl ,Cl , Dl . In terms of orthonormal vectors εi , the simple roots are given
by

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αl = εl − εl+1 for Al ,

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αl−1 = εl−1 − εl , αl = εl for Bl ,

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αl−1 = εl−1 − εl , αl =2εl for Cl ,

α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αl−1 = εl−1 − εl , αl = εl−1 + εl for Dl.

Unlike the fermionic recursion, the Toda recursion depends on the choice of the
orientation. Here we give the formulas for the standard orientation compatible
with the order α1 < · · ·<αl .

PROPOSITION 3.8. For algebras of type Al , Bl , Cl with the above orientation, we
have

(
trV qλ+ρ−β − trV qλ+ρ

)
Jλ
β =

l∑

i=1

v−di trV
(
qλ+ρ−βvαi Ei Fi

)
Jλ
β−αi

.

For algebra of type Dl , the same recursion holds where the right hand side has an
additional term

−v−2trV
(
qλ+ρ−βvαl−1+αl El−1 El Fl−1 Fl

)
Jλ
β−αl−1−αl

.

Proof. The scalar C
(−1)
V can be evaluated on the highest weight vector 1λ, giving

(C
(−1)
V θλ

β , θ̄λ
β )= trV (v2(λ+ρ)) (θλ

β , θ̄λ
β ).

On the other hand, inserting (3.22) into C
(−1)
V , we obtain a sum of terms compris-

ing scalar products

((F<
γ1

)m1 · · · (F<
γt

)mt (E<
γ1

)n1 · · · (E<
γt

)nt θλ
β , θ̄λ

β ),

where γ1 < · · ·<γt are the positive roots. From the rules (3.20), (3.21) we observe
that σ(F<

γ ) is proportional to Ē<
γ , and hence kills θ̄ λ if γ is non-simple. There-

fore, for both θλ
β and θ̄ λ

β we need to retain only root vectors corresponding to the
simple roots. Then we must have mi =ni , so we obtain

(C
(−1)
V θλ

β , θ̄λ
β )=

∑

n1,...,ni ≥0

l∏

i=1

v
−2n2

i +4ni

i (1−v2
i )4ni

(v2
i ;v2

i )2
ni

v−(γ,λ−β+γ ) ×

×trV

(
v2(λ+ρ−β)+γ En1

1 · · · Enl
l Fn1

1 · · · Fnl
l

)
×

×(En1
1 · · · Enl

l θλ
β , Ēnl

l · · · Ēn1
1 θ̄ λ

β ).

Here we have set γ =∑l
i=1 niαi .
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When πV is the vector representation, En
i = Fn

i = 0 for n > 1. A simple check
shows that in the standard ordering the trace is non-zero only when

∑l
i=1 ni ≤ 1,

except for Dl where nl−1 =nl =1 also contributes.

Here are the more explicit expressions.

l+1∑

i=1

q(λ,εi )−i (q−(β,εi ) −1) Jλ
β =

l∑

i=1

q(λ−β,εi )−i Jλ
β−αi

for Al,

l∑

i=1

(
q(λ,εi )+l−i+1/2(q−(β,εi ) −1)+q−(λ,εi )−l+i−1/2(q(β,εi ) −1)

)
Jλ
β =

=
l−1∑

i=1

(
q(λ−β,εi )+l−i+1/2 +q−(λ−β,εi+1)−l+i+1/2

)
Jλ
β−αi

+

+(q1/2 +1)(q(λ−β,εl )+1/2 +q−1/2)Jλ
β−αl

for Bl,

l∑

i=1

(
q(λ,εi )+l−i+1(q−(β,εi ) −1)+q−(λ,εi )−l+i−1(q(β,εi ) −1)

)
Jλ
β =

=
l−1∑

i=1

(
q(λ−β,εi )+l−i+1 +q−(λ−β,εi+1)−l+i

)
Jλ
β−αi

+q(λ−β,εl )+1 Jλ
β−αl

for Cl ,

l∑

i=1

(
q(λ,εi )+l−i (q−(β,εi ) −1)+q−(λ,εi )−l+i (q(β,εi ) −1)

)
Jλ
β =

=
l−1∑

i=1

(
q(λ−β,εi )+l−i +q−(λ−β,εi+1)−l+i+1

)
Jλ
β−αi

+

+
(

q(λ−β,εl−1)+1 +q(λ−β,εl )
)

Jλ
β−αl

−q(λ−β,εl−1)+1 Jλ
β−αl−1−αl

for Dl.

4. Functions X
µ,λ
α , X̄

λ,µ
α , Xλ1,λ2

β and Recurrence Relations

In this section we give an interpretation of the fermionic sum (2.21) in the context
of Whittaker vectors, and derive various relations among them and Jλ

β .

4.1. FUNCTIONS X
µ,λ
α , X̄

λ,µ
α

Let λ,µ∈ P . We are going to define rational functions in the variables zi =q−(λ,αi ).
The definition is given under the assumption λ+µ+2ρ ∈−P+. This restriction is
dropped afterwards.

If λ + µ + 2ρ ∈ −P+, we have the decomposition into isotypic components (see
Corollary B.2)
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Vµ ⊗Vλ =⊕α∈Q+Wµ+λ−α, (4.1)

V̄µ ⊗ V̄λ =⊕α∈Q+W̄µ+λ−α , (4.2)

with each summand Wµ+λ−α (resp. W̄µ+λ−α) being isomorphic to a direct sum of
Verma modules Vµ+λ−α (resp. V̄µ+λ−α).

Choosing ν = (νi ) as in (3.6), let us consider the decomposition of the vector

1µ ⊗ θλ(ε, ν, c)=
∑

α∈Q+
ηµ+λ−α(ε, ν, c) ∈Vµ ⊗ V̂λ (4.3)

corresponding to (4.1). Consider similarly

1̄µ ⊗ θ̄ λ(ε, ν, c)=
∑

α∈Q+
η̄µ+λ−α(ε, ν, c) ∈ V̄µ ⊗̂̄V

λ
.

We define

Xµ,λ
α =v−(α,α)/2+(α,λ)

(
(ηµ+λ−α(ε, ν, c))0, (η̄

µ+λ−α(ε, ν, c))0
)

. (4.4)

Here (·)0 stands for the highest component.
In a similar manner, let us introduce

θλ(ε, ν, c)⊗1µ =
∑

α∈Q+
ξλ+µ−α(ε, ν, c) ∈ V̂λ ⊗Vµ,

θ̄λ(ε, ν, c)⊗ 1̄µ =
∑

α∈Q+
ξ̄ λ+µ−α(ε, ν, c) ∈̂̄Vλ ⊗ V̄µ.

We define

X̄λ,µ
α =v(α,α)/2−(α,λ+2ρ)

(
(ξλ+µ−α(ε, ν, c))0, (ξ̄

λ+µ−α(ε, ν, c))0
)
. (4.5)

Later it will be shown that (4.4), (4.5) are independent of the data ε, ν, c (see Prop-
osition 4.3 and Proposition 4.10).

PROPOSITION 4.1. For any µ∈ P we have

Jλ
β =

∑

α∈Q+
Xµ,λ

α Jµ+λ−α
β−α (4.6)

=
∑

α∈Q+
X̄λ,µ

α Jλ+µ−α
β−α q−(α,α)/2+(α,λ+µ+ρ)−(µ,β). (4.7)

Proof. The vector 1µ ⊗ θλ(ε, ν, c) is a joint eigenvector of Ei Kνi with
eigenvalue c′

i = v(µ,νi +αi )ci . Therefore each isotypic component ηµ+λ−α(ε, ν, c) is
proportional to θµ+λ−α(ε, ν, c′), where the proportionality being determined by the
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highest component (ηµ+λ−α(ε, ν, c))0. Similarly, 1̄µ ⊗ η̄λ(ε, ν, c) is a joint eigenvec-
tor of Ēi K̄νi with eigenvalue c′′

i =v−(µ,νi )ci , so that η̄µ+λ−α(ε, ν, c) is proportional
to θ̄µ+λ−α(ε, ν, c′′). Formula (4.6) follows from these facts. The case of (4.7) is
similar.

4.2. FUNCTION X
λ1,λ2
β

Fix λ1, λ2 ∈ P and β ∈ Q+. Consider the Whittaker and dual Whittaker vectors

θ(1) = θλ1(ε, ν−, c(1)) ∈ V̂λ1 ,

θ(2) = θλ2(−ε,−ν, c(2)) ∈ V̂λ2 ,

θ̄ (1) = θ̄ λ1(ε, ν, c̄(1)) ∈̂̄Vλ1
,

θ̄ (2) = θ̄ λ2(−ε,−ν+, c̄(2)) ∈̂̄Vλ2
,

where ν±
i =νi ±αi , and c(i), c̄(i) are chosen to satisfy

c̄(1)
i =v−1

i c(1)
i , c̄(2)

i =v3
i c(2)

i , (4.8)

c(1)
i /c(2)

i =−v(νi ,λ1+λ2−β−αi )+(αi ,αi ). (4.9)

Note that for all β ∈ Q+ we have

LEMMA 4.2. The following conditions are satisfied for all i .

Ei

(
θ(1) ⊗ θ(2)

)

β
=0, (4.10)

Ēi

(
θ̄ (1) ⊗ θ̄ (2)

)

β
=0. (4.11)

Proof. Noting that

�(Ei )=v(αi ,νi −αi )K−νi +αi Ei Kνi −αi ⊗1+ Ki ⊗v−(αi ,νi )Kνi Ei K−νi ,

and using the defining relation (3.7) for Whittaker vectors, we find

Ei

(
θ(1) ⊗ θ(2)

)
= 1

1−v2
i

(
v(αi ,νi −αi )c(1)

i +v−(αi ,νi )c(2)
i Kνi ⊗ Kνi

)
×

×
(

K−νi +αi θ
(1) ⊗ θ(2)

)
.

Therefore with the choice of (4.9) the condition (4.10) is satisfied. Similarly (4.11)
holds if

c̄(1)
i /c̄(2)

i =−v(νi ,λ1+λ2−β−αi )−(αi ,αi ).

Because of (4.8) and (4.9), it is also satisfied.
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We define

Xλ1,λ2
β =

(
(θ(1) ⊗ θ(2))β, (θ̄ (1) ⊗ θ̄ (2))β

)
. (4.12)

PROPOSITION 4.3. We have

Xλ1,λ2
β =

∑

α∈Q+
Jλ1
β−α Jλ2

α q(α,α)/2−(α,λ2+ρ). (4.13)

In particular, Xλ1,λ2
β is independent of the data ε, ν and c(i), c̄(i).

Proof. This follows from the definition along with the transformation laws (3.8),
(3.9).

The relation (4.13) is a counterpart of (2.23). In order to describe the identifi-
cation we introduce two vectors λ and ν̄ defined by

zi =q−(λ,αi ), ν̄ =
l∑

i=1

νiωi .

PROPOSITION 4.4. We have

Xλ1,λ2
β = X (0,ν)

C,m (q, z),

where C is a Cartan matrix of ADE type and

β =
l∑

i=1

miαi , λ1 =λ− ν̄, λ2 =β −λ−2ρ. (4.14)

Proof. Follows from (4.13) and (2.23).

COROLLARY 4.5. Let g be of ADE type. Then we have

Xλ1,λ2
β = Xλ2,λ1

β . (4.15)

Proof. The equality (4.15) is obtained from (2.22) substituting (4.14).

CONJECTURE 4.6. Relation (4.15) holds for arbitrary g.

PROPOSITION 4.7. We have

Xλ1,λ2
β

∣
∣
∣q→q−1 = Xλ2,λ1

β ·q(β,ρ). (4.16)
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Proof. The relation (4.16) follows from (4.13) and (3.18).

The following vanishing property of Xλ1,λ2
β will play a key role in the sequel. For

µ∈ P , we denote by Lµ the irreducible quotient of Vµ.

PROPOSITION 4.8. Let β ∈ Q+\{0}. Assume that −λ1 −λ2 −2ρ +β ∈ P+, and that
either λ1 −β ∈ P+ or λ2 −β ∈ P+. Then we have

Xλ1,λ2
β =0 if −λ1 −λ2 −2ρ is not a weight of L−λ1−λ2−2ρ+β . (4.17)

Proof. We apply Proposition B.3 in Appendix 4.2, choosing λ1 =λ−µ, λ2 =β −
λ−2ρ and µ=−λ1 −λ2 −2ρ +β. Under our assumption v = (θ(1) ⊗ θ(2))β can be
written as

∑l
i=1 Fivi . Since v̄ = (θ̄ (1) ⊗ θ̄ (2))β is a singular vector, we have

Xλ1,λ2
β =

l∑

i=1

(Fivi , v̄)=
l∑

i=1

(vi , Ēi v̄)=0.

LEMMA 4.9. For any µ∈ P , the following recurrence relations hold.

Xλ1,λ2
β =

∑

α∈Q+
Xµ,λ1

α Xλ1+µ−α,λ2
β−α (4.18)

=
∑

α∈Q+
X̄λ2,µ

α Xλ1,λ2+µ−α
β−α . (4.19)

Proof. This follows from substituting (4.6),(4.7) into (4.13).

We can now state the relationship between X
µ,λ
β , X̄

λ,µ
β and Xλ1,λ2

β .

PROPOSITION 4.10. We have

Xλ1,λ2
β =X

β−λ1−λ2−2ρ,λ1
β i f λ2 −β ∈ P+ =

= X̄
λ2,β−λ1−λ2−2ρ
β i f λ1 −β ∈ P+.

Proof. We first assume λ2 − β ∈ P+. In the relation (4.18), choose µ = β − λ1 −
λ2 −2ρ and apply Proposition 4.8. Then the summand is non-zero only if α −β is
a weight of L0, i.e., only if α = β. The first equality of Proposition follows from
this. Likewise the second follows from (4.19).

In summary, we obtain the following relations.



70 BORIS FEIGIN ET AL.

THEOREM 4.11. For any µ∈ P we have

Jλ
β =

∑

α∈Q+
Xλ,α−µ−2ρ

α Jµ−α
β−α (4.20)

=
∑

α∈Q+
Xα−µ−2ρ,λ

α Jµ−α
β−α q−(α,α)/2+(α,µ+ρ)−(µ−λ,β), (4.21)

Xλ1,λ2
β =

∑

α∈Q+
Xµ−α,λ2

β−α Xλ1,α−µ−2ρ
α (4.22)

=
∑

α∈Q+
Xλ1,µ−α

β−α Xα−µ−2ρ,λ2
α . (4.23)

Proof. By Proposition 4.10, Theorem is a restatement of the relations (4.6), (4.7),
(4.18), (4.19) applied with shifted µ.

Identity (4.20) corresponds to (2.25), while identity (4.22) corresponds to (2.27).
We have thus shown that these quasi-classical decompositions are exact in the case
where C is a Cartan matrix of ADE type.

As an application we prove the following

THEOREM 4.12. For any β ∈ Q+, we have
∑

α∈Q+
Jα−λ−2ρ
α Jλ−α

β−α q−(α,α)/2+(λ+ρ,α) = δβ,0. (4.24)

If g is of ADE type, we also have

∑

α∈Q+
Jα−λ−2ρ
α Jλ−α

β−α = 1
(q)β

. (4.25)

Proof. We first note that we expect (4.25) to hold for general g. The only
reason we restrict ourselves to the ADE case is that the proof of (4.25) uses
Corollary 4.15.

Substituting (4.13) to (4.20), we obtain

Jλ−µ
β =

∑

α,γ

Jλ−µ
α−γ Jβ−2ρ−λ

γ Jλ−α
β−α q(γ,γ )/2−(γ,β−ρ−λ).

This is a linear relation among {Jλ−µ
δ }δ∈Q+ viewed as functions of µ. Since this is

a linearly independent set, we can compare the coefficients of Jλ−µ

0 . In the right
hand side only the term with γ =α contributes, so that

δβ,0 =
∑

α

Jβ−2ρ−λ
α Jλ−α

β−α q(α,α)/2−(α,β−ρ−λ).

Renaming α to β −α, then changing λ to β −2ρ −λ, we arrive at (4.24).
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Similarly, after using the symmetry (4.15) and substituting (4.13) to (4.20), we
find

Jλ
β =

∑

α,γ

Jα−µ−2ρ
α−γ Jλ

γ q(γ,γ )/2−(γ,λ+ρ) Jµ−α
β−α .

Specializing q−λ to 0, the left hand side simplifies due to (3.17), while only the
term with γ =0 remains in the right hand side. This proves (4.25).

Finally we give the counterpart of the identity (2.15) in Section 2.

THEOREM 4.13. For a non-negative integer k we have
∑

α∈Q+
Jα−λ−2ρ
α Jλ−α

β−α qk((α,α)/2−(λ+ρ,α)) = Jλ
β [0, k], (4.26)

where the right hand side is defined in (3.13).

Proof. Let us denote the left hand side of (4.26) by J̄λ
β [0, k], and set

J̄λ
β [r, s]=q

r
(

(β,β)
2 −(λ+ρ,β)

)

J̄λ
β [0, s − r ].

The previous formula (4.25) states that J̄λ
β [0,0] = Jλ

β [0,0]. Using (3.16) for Jλ
β =

Jλ
β [0,∞), it is easy to verify that

J̄λ
β [0, k]=

∑

β1+β2=β

J̄λ−β2
β1

[0,0] J̄λ
β2

[1, k].

The same relation holds for Jλ
β [0, k] by (3.16). Hence by induction we obtain

J̄λ
β [0, k]= Jλ

β [0, k].

We remark that (4.26) in the limit k → ∞ reproduces the fermionic formula
for Jλ

β .

Appendix A: Direct Proof of Toda Recursion for sll+1

We give here a direct proof that the fermionic sum IC,m(q, z) for the Cartan matrix
C of type Al satisfies the Toda recursion. Since we fix C , we drop it and denote
IC,m(q, z), WC,m by Im(q, z), Wm .

PROPOSITION A.1. The rational functions Im(q, z) (m ∈Z
l
≥0) are characterized by

the Toda recursion
{∑l

i=0
(
qmi+1−mi −1

)∏l
j=i+1

(
q−1z j

)}
Im(q, z)=

=
l∑

i=1

{
qmi+1−mi

∏l
j=i+1

(
q−1z j

)}
Im1,...,mi −1,...,ml (q, z). (A.1)
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Moreover, they satisfy the symmetry relation

Iml ,...,m1(q
−1, z−1

l , . . . , z−1
1 )= Im1,...,ml (q, z1, . . . , zl)(qz)mqWm . (A.2)

Proof. Let Ĩm(q, z), m ∈ Z
l
≥0 be a set of rational functions in q, z = (z1, . . . , zl)

such that Ĩ0(q, z) = 1. It is straightforward to show by induction on m that for
Ĩm(q, z) the Toda recursion (A.1) implies the symmetry relation (A.2). Now, we
want to show that the former also implies the fermionic recursion (2.12). Since the
solution is unique for both (A.1) and (2.12), the statement of Proposition follows.

Let C(q, z) be the field of rational functions in q, z = (z1, . . . , zl). Consider the
vector space over C(q, z) consisting of formal power series in y = (y1, . . . , yl) with
coefficients in C(q, z). We denote it by F.

We consider the C(q, z)-linear actions yi , Di (i =1, . . . , l) on F:

yi · f (y1, . . . , yl)= yi f (y1, . . . , yl),

Di · f (y1, . . . , yl)= f (y1, . . . ,qyi , . . . , yl),

and set formally D0 = Dl+1 =1, y0 = yl+1 =0.
Let Ĩm(q, z)∈C(q, z). We assume that Ĩ0(q, z)=1. Set

F(q, z, y)=
∑

m

ym Ĩm(q, z)

and

G(q, z, y)=
∑

m

ym Ĩm(q, z)zmqWm .

They belong to F. Set

H =
l∑

i=0

(
Di+1 D−1

i (1− yi )−1
) l∏

j=i+1

(
q−1z j

)
.

The Toda recursion reads as H F =0, and the symmetry relation reads as

F
(

q−1, z−1
l , . . . , z−1

1 ,q−1 yl , . . . ,q−1 y1

)
= G(q, z, y). (A.3)

Set

�=
l∏

i=1

1
(yi )∞

=
∑

m

ym

(q)m
. (A.4)

The fermionic recursion reads as

F(q, z, y)=�G(q, z, y). (A.5)

Our goal is to show that if H F =0, and therefore (A.3) is valid, then (A.5) follows.
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Suppose that H F =0. By changing q →q−1, zi → z−1
i , yi →q−1 yi , Di → D−1

i , we
obtain

l∑

i=0

(
D−1

i+1 Di (1−q−1 yi )−1
) l∏

j=i+1

(
qz−1

j

)
F
(
q−1, z−1

1 , . . . , z−1
l ,q−1 y1, . . . ,q−1 yl

)
=0.

Using

�−1 Di�= (1− yi )Di ,

we can rewrite this as
(
�−1 H�

)
F
(

q−1, z−1
l , . . . , z−1

1 ,q−1 yl , . . . ,q−1 y1

)
=0. (A.6)

Because of the uniqueness of the solution H F(q, z, y) = 0 with F(q, z,0) = 1, we
obtain

F(q, z, y)=�F
(

q−1, z−1
l , . . . , z−1

1 ,q−1 yl , . . . ,q−1 y1

)
.

From (A.3) and this equality follows the fermionic recursion (A.5).

Appendix B: Proposition on Singular Vectors

The main goal of this Appendix is to prove a statement about singular vectors
which is used in the main text. In what follows, for a Uv(g) module M , [M]ν will
denote its subspace of weight ν.

We start with the following Lemma.

LEMMA B.1. Let M be a Uv(g) module from the category O. Let p ∈ [M]−µ−2ρ ,
µ∈ P+ be a singular vector such that

p /∈
l∑

i=1

ImFi .

Then the Verma module Uv(g) · p generated by p is a direct summand in M .

Proof. We first note that since the Verma module V−µ−2ρ is irreducible, the sub-
module V =Uv(g) · p generated by p is isomorphic to it. We now show that there
exists a submodule W ⊂ M such that M = V ⊕ W.

Denoting by Cv the quantum Drinfeld Casimir element v
∑l

i=1 α∨
i ωi +2ρu (see [6]

and Proposition 3.5) we have the decomposition M =⊕z∈KMz into the generalized
eigenspaces

Mz ={m ∈ M | (Cv − z)km =0 for some k}.
Setting z0 =v(µ,µ+2ρ) we have V ⊂ Mz0 and M = Mz0 ⊕⊕

z 
=z0
Mz . So it suffices to

find a submodule M0 ↪→ Mz0 such that Mz0 = V ⊕ M0.
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Since M ∈O, there exists a sequence of submodules

L0 ↪→ L1 ↪→ L2 ↪→ . . . , L j ↪→ Mz0/V, lim
j→∞ L j = Mz0/V

such that each quotient L j/L j−1 is a highest weight module with highest weight
τ j . For all j ≥ 0, let w̄ j ∈ L j be a vector of weight τ j such that the image of w̄ j

in L j/L j−1 is highest weight vector. Note that τ j 
<−µ−2ρ. In fact, for all j we
have z0 =v(τ j ,τ j +2ρ). If we set α =−µ−2ρ − τ j , we obtain

(α,α)+2(ρ,α)+2(µ,α)=0,

which implies that τ j 
∈−µ−2ρ − (Q+\{0}). Hence, if τ j 
=−µ−2ρ, there exists the
unique vector w j ∈ Mz0 which is a lifting of w̄ j . For j , such that τ j =−µ−2ρ, we
fix arbitrary liftings w j ∈ Mz0 . Setting

M0 =
∑

j≥0

Uv(g) ·w j ,

we obtain V + M0 = Mz0 . Since V =Uv(g) · p is irreducible and p /∈∑l
i=1 ImFi , the

intersection V ∩ M0 is trivial. This proves the Lemma.

COROLLARY B.2. Let M be a Uv(g) module from the category O such that M =
⊕

µ∈P+[M]−µ−2ρ . Then M is isomorphic to a direct sum of Verma modules.

Proof. Let M0 ⊂ M be the maximal submodule such that M = M0 + W is a
decomposition into the direct sum of Uv(g) modules and M0 is a direct sum of
Verma modules. Let w ∈ W be a singular vector such that [W ]λ = 0 for λ bigger
than the weight of w. Then Lemma B.1 implies W = (Uv(g) ·w)⊕ W ′ and thus M0

is not maximal.

PROPOSITION B.3. Let Lµ be an irreducible Uv(g) module with highest weight µ∈
P+, and let λ ∈ P , β ∈ Q+ be such that either λ + 2ρ ∈ −P+ or µ + β − λ ∈ −P+.
Assume further that [Lµ]µ−β =0. Then we have

[
Vλ−µ ⊗Vβ−2ρ−λ

]sing

−µ−2ρ
⊂

l∑

i=1

ImFi

where ( )sing means the space of singular vectors.

Proof. Set M =Vλ−µ ⊗Vβ−2ρ−λ, and suppose that the statement of the Proposi-
tion is not true. Then there exists a vector p ∈ Msing

−µ−2ρ
such that p /∈∑l

i=1 ImFi .
Set V =Uv(g) · p. Because of Lemma (B.1), there exists a submodule W ⊂ M such
that

M = V ⊕ W. (B.1)
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Tensoring both sides of (B.1) by Lµ we obtain

Vλ−µ ⊗Vβ−2ρ−λ ⊗ Lµ = (V−µ−2ρ ⊗ Lµ)⊕ (W ⊗ Lµ). (B.2)

We show that the decomposition (B.2) is impossible by a homological argument.
In the following we set U =Uv(g). Let N (resp. B, H ) be the subalgebra of U

generated by {Ei }1≤i≤l (resp. {Ei , K ±1
i }1≤i≤l , {K ±1

i }1≤i≤l ). All these subalgebras are
vector spaces over the field K=C(v1/N). We shall make use of the following facts.

(i) Let X be a B module and IndU
B X =U ⊗B X be the induced U module. Then

we have an isomorphism

TorU,H• (K, IndU
B X)�TorB,H• (K,X). (B.3)

The proof is essentially given in [16], Lemma 3.1.14, which treats the classical case
of (B.3). In order to prove (B.3) we only need to replace the classical (B, H) pro-
jective resolution of X from [16], Corollary 3.1.8 by an arbitrary B-free resolution.

(ii) Denoting by n the number of positive roots of g we have

dim[TorN
n (K,Vλ)]ν = δν,λ+2ρ, (B.4)

dim[TorN
n (K,Lµ)]ν = δν,µ+2ρ. (B.5)

The proof of these equalities is based on the quantum BGG resolution [14] (see
also [17,18]), which generalizes the classical BGG resolution [1]. Let W be the
Weyl group of g. For w ∈ W and λ ∈ P we denote by l(w) the length of w and
by w ∗λ=w(λ+ρ)−ρ the shifted action of w. In order to prove (B.4) we use the
quantum BGG resolution of the trivial Uv−1(g) module

0→ Fn → Fn−1 →·· ·→ F0 →K→0, (B.6)

where Fp = ⊕
w∈W :l(w)=p V

w∗0
is a direct sum of Verma modules V

w∗0
over

Uv−1(g). Using the anti-isomorphism σ :Uv(g)→Uv−1(g) (3.1) we endow each Fp

with the structure of right Uv(g) module. Thus (B.6) is a right B-free resolution of
the trivial module K and TorN

n (K,Vλ) is equal to nth homology of the complex

0→ Fn ⊗N Vλ → Fn−1 ⊗N Vλ → ·· ·→ F0 ⊗N Vλ →0. (B.7)

We note that Fn is the free B module with one generator of H -weight −w0 ∗ 0,
where w0 is the longest element in W . Since Vλ is irreducible we obtain that the
space of nth homology of (B.7) is one-dimensional and is generated by the tensor
product of highest weight vectors of V

w0∗0
and of Vλ. Now the equality w0ρ =−ρ

implies (B.4). The proof of (B.5) is very similar and uses the (left) quantum BGG
resolution of the module Lµ.

For any λ we have Vλ = IndU
B Kλ, where Kλ denotes the one-dimensional B mod-

ule with trivial action of N and an action of Ki by v(λ,αi ). This gives (see [16],
Proposition 3.1.10)

Vλ−µ ⊗Vβ−2ρ−λ ⊗ Lµ = IndU
B (Kλ−µ ⊗Vβ−2ρ−λ ⊗ Lµ)=

= IndU
B (Kβ−2ρ−λ ⊗Vλ−µ ⊗ Lµ).
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We conclude that

TorU,H
n (K,Vλ−µ ⊗Vβ−2ρ−λ ⊗Lµ)=

[
TorN

n (K,Vβ−2ρ−λ ⊗Lµ)
]

µ−λ
(B.8)

=
[
TorN

n (K,Vλ−µ ⊗Lµ)
]

λ+2ρ−β
. (B.9)

Suppose µ+β −λ∈−P+. Then we have the decomposition (see Corollary B.2)

Vβ−2ρ−λ ⊗ Lµ =⊕νV
β−λ−2ρ+ν ⊗[Lµ]ν.

From (B.4) and the vanishing assumption, the right hand side of (B.8) is equal
to [Lµ]µ−β =0. Now suppose λ+2ρ ∈−P+. Then we have the decomposition (see
Corollary B.2)

Vλ−µ ⊗ Lµ =⊕νV
λ−µ+ν ⊗[Lµ]ν .

Again, from (B.4) and the vanishing assumption, the right hand side of (B.9) is
equal to [Lµ]µ−β =0.

Similarly, (B.5) implies

TorU,H
n (K,V−µ−2ρ ⊗Lµ)�

[
TorN

n (K,Lµ)
]

2ρ+µ
=K.

This shows that the decomposition (B.1) is impossible, and thus proves our Prop-
osition.
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