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Abstract 

This paper is devoted to modern approaches to the estimation of external conflict in the theory of evidence based on axi-
oms. The conflict measure is defined on the set of beliefs obtained from several sources of information. It is shown that the 
conflict measure should be a monotone set function with respect to sets of beliefs. Some robust procedures for evaluation of 
conflict measure that are stable to small changes in evidences are introduced and discussed. The analysis of conflict among 
forecasts about the value of shares of Russian companies of investment banks is presented. In this analysis the conflict 
measure estimates inconsistency of recommendations of investment banks, while the Shapley values of this measure on the 
set of evidences characterize the contribution of each investment bank to the overall conflict. The relationship between con-
flict and precision of forecasts is also investigated. 
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1. Introduction 

The quality of combining beliefs which is estimated in the framework of belief functions [1-2] depends on 
aggregation rules [3] as well as on prior and posterior characteristics that may include reliability, inconsistency 
and conflict of given information. The analysis of conflict in information given by experts helps us to evaluate 
inconsistence of information received from different sources and the level of belief to such information. In this 
case the conflict measure can be used as an indicator of information reliability [4]. Historically, the conflict 
measure is associated with the Dempster rule [1] where the conflict measure was firstly introduced. Sometimes 
this measure is called the Dempster conflict [5], but we will call it the canonical conflict measure. This measure 
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is equal to the mass function at empty set after applying the non-normalized Dempster rule [1]. There are sev-
eral approaches to evaluating conflict among beliefs. The metric approach is used in many popular methods [6-
7] but there are other ones. At the same time the conflict measure as a functional defined on a pair of belief 
functions has to satisfy certain properties or axioms [8-9]. Axiomatics and the main existing approaches to the 
estimation of conflict among evidences are analyzed in Section 3. A new approach to the evaluation of conflict 
is developed in Section 4. This approach was proposed in [10] and it generalizes the canonical conflict meas-
ure. The conflict measure can be considered on the subsets of expert evidences and in this way it defines a 
monotone set function. It allows us in Section 5 to apply the theory of monotone measures [11] for analyzing 
conflict. Some conflict measures (for example, the canonical conflict measure) can easily be generalized to 
arbitrary tuples of evidences. The generalization of others conflict measures (in particular based on the metric 
approach) requires using specific aggregation functions [12]. These issues are also discussed in Section 5. An-
other important question concerns the conflict measure robustness, i.e. its stability with respect to small chang-
es in evidences. The robust conflict estimation, based on specialization and generalization transformations of 
belief functions [13], is discussed in Section 6. Finally, the application of conflict measure to estimating con-
sistence of investment banks forecasts about the value of shares of Russian companies is discussed in Section 7. 

2. The belief functions theory and conflict measures 

Let X  be a finite set and 2 X  be a powerset of X . The mass function is the fundamental notion in the theo-
ry of evidence. This function : 2 [0,1]Xm →  should satisfy the following conditions 

( ) 0m ∅ = , ( ) 1
A X

m A
⊆

= .   (1) 

The value ( )m A  represents the relative part of evidence that a true alternative from X  belongs to the set 
2 XA∈ . A subset 2 XA∈  is called a focal element if ( ) 0m A > . Let { }A=�  be a set of all focal elements. The 

pair ( , )F m=  is called a body of evidence. Let ( )X  be a set of all possible bodies of evidence on X . 
Evidence ( ,1)AF A= , 2 XA∈  is called categorical. In particular, the evidence ( ,1)XF X=  is called vacuous 
because it is totally uninformative.  

If we know the body of evidence ( , )F m= , then we can estimate the degree of belief that a true alterna-
tive from X  belongs to set B  using the belief function [2] : 2 [0,1]XBel → , :( ) ( )A A BBel B m A∈ ⊆= � . Similar-
ly, we can estimate the degree of plausibility that a true alternative from X  belongs to B  using the dual to 
Bel  the plausibility function : 2 [0,1]XPl → , ( ) 1 ( )Pl B Bel B= − =  : ( )A B A m A∈ ∩ ≠∅ .  

Let we have two bodies of evidence 1 1 1( , )F m=  and 2 2 2( , )F m=  received from two information sources. 
It is of interest how to measure their conflictness. Historically, the conflict measure associated with the 
Dempster rule [1-2] was the first among conflict measures: 

1 2

0 0 1 2 1 2
,

,

( , ) ( ) ( )
B C
B C

K K F F m B m C
∩ =∅
∈ ∈

= = .   (2) 

The value 0 1 2( , )K F F  characterizes the amount of conflict between two sources of information described by 
the bodies of evidence 1F  and 2F . The functional (2) is a one possible way for measuring conflict. We will 
describe other measures of conflict below. 
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3.  Axiomatics of conflict measures and the main approaches to the estimation of conflict 

There are different types of conflict depending on its nature (see, e.g. [14]). For example, there exists the in-
ternal conflict in evidence when we can find two focal elements with empty intersection {evidence: value of the 
shares of the company tomorrow will be in the interval [0,10] or in the interval [30,35]}. But we will consider 
below only the external conflict, i.e. the conflict between different evidences. 

The conflict between evidences depends on the relative position of the focal elements of two evidences and 
the values of the mass functions. In general, a measure of conflict 1 2( , )K F F  should satisfy the following condi-
tions (axioms) [8-9]: 

A1: 1 20 ( , ) 1K F F≤ ≤  for all 1 2, ( )F F X∈  (non-negativity and normalization); 
A2: 1 2 2 1( , ) ( , )K F F K F F=  for all 1 2, ( )F F X∈  (symmetry); 
A3: ( , ) 0K F F =  for all ( )F X∈  (nilpotency); 
A4: ( , ) ( , )K F F K F F≥′ ′′ , if ( , )F m=′ ′ , ( , )F m=′′ ′′ , where { }iA=′ ′� , { }iA=′′ ′′�   i iA A⊆′ ′′  for all i  and 

( )F X∈  (antimonotonicity with respect to imprecision of evidence); 
A5: ( , ) 0XK F F =  for all ( )F X∈  (ignorance is bliss [9]); 
A6: ( , ) 1A BK F F =  if A B∩ = ∅ . 
The other axioms for conflict measures are also considered (see, e.g., [9]). Note that the canonical conflict 

measure 0K  does not satisfy the axiom A3.  
There are several approaches to the conflict estimation. The metric approach for estimation of conflict is 

presented in [6-7] and other works. For example, the metric between the evidences was introduced in [6]: 

1
1 2 1 2 1 22( , ) ( ) ( )T

Jd F F D= − −m m m m ,  (3) 

where im  is a 2 X -dimensional column vector whose coordinates are the values of mass function ( )im A , 
2 XA∈ , 1, 2i = ; , , 2( ) XA B A BD d ∈= , ,A Bd A B A B= ∩ ∪ , if ,A B ≠ ∅  and , 0d∅ ∅ = . The value ,A Bd  is called 

Jaccard index (similarity coefficient) [15] and it is a measure of similarity between two sets. This metric is con-
sidered as a conflict measure. The conflict measure (3) does not satisfy the conditions A4 and A5. Other indices 
are used in a number of papers instead of Jaccard index in (3). 

The measuring of distance between the two reference measures, corresponding bodies of evidence, is anoth-
er example of a metric approach to the estimation of conflict. For example, the pignistic probability is consid-
ered as such a reference measure. The pignistic probability is defined as [16] ( ) ( )A B

F B BP A m B∩= . For exam-
ple, the conflict measure 

1 21 2( , ) max{ ( ) ( ) : }P F FK F F P A P A A X= − ⊆  was introduced in [7]. This measure does 
not satisfy only the conditions 4 and 5. In addition, the pair of measures ( )0 1 2 1 2( , ), ( , )PK F F K F F  was pro-
posed for characterizing conflict in [7]. The large values of these two measures guarantee large conflict be-
tween evidences. 

The metric 1 2 2 1 21( , ) 1 ( )TK F F = − ⋅Pl Pl Pl Pl  is considered in [17] as a conflict measure, where iPl  is the 
2 X -dimensional column vector whose coordinates are the values of plausibility function ( )iPl A , 2 XA∈ , 

1, 2i = , ⋅  is the Euclidean norm. This measure does not satisfy the conditions 4, 5, 6. The extensive sur-
vey of metrics on the set ( ) ( )X X×  of pairs of evidence can be found in [17]. 

The use of the inclusion index of sets ( , ) 1Inc A B =  for A B⊆  and ( , ) 0Inc A B =  for A B , , 2 XA B ∈ , is 
an example of another approach to the evaluation of conflict between evidences. For example, the degree of 
inclusion of one set of focal elements to another is introduced in [8]: 

1 2 1 2 2 1( , ) max{ ( , ), ( , )}d dδ = , 
1 1 2 2

1 2 1 2
1 2

1( , ) ( , )
A A

d Inc A A
∈ ∈

= . 
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Then the conflict measure in [8] is defined as ( )1 2 1 2 1 2( , ) 1 ( , ) ( , )JK F F d F Fδ= − , where Jd  is the distance 
defined by (3). This measure does not satisfy only the condition 4. 

4.  The bilinear conflict measure 

The value of the canonical conflict measure is larger when there are many disjoint pairs of focal elements in 
two evidences with large masses. However, the conflict of two sources of information would be also greater, if 
there are common elements of two evidences, but the cardinality of their intersection is small with respect to 
cardinality of comparable focal elements. The conflict measure, which reflects the above observation, was axi-
omatically introduced in [10]. In general, such a measure depends on degree of intersection of two sets formal-
ly defined as follows.  

The mapping : 2 2 [0,1]X Xr × →  is called a coefficient of sets intersection if it satisfies the following condi-
tions: 

1) ( , ) ( , )r A B r B A= ;  
2) ( , ) 0r A B = , if A B∩ = ∅ ;  
3) ( , ) 1r A A = , A ≠ ∅ . 
The Jaccard index [15] is an example of the coefficient of sets intersection. 
Definition [10]. A functional : ( ) ( ) [0,1]rK X X× →  is called the measure of conflict with respect to in-

tersection coefficient r  if:  
a) 1 2 2 1( , ) ( , )r rK F F K F F=  for all 1 2, ( )F F X∈ ; 
b) ( , ) ( , )r rK F F K F F≥′ ′′  if ( , )F F A m= ∪′ ′ , ( , )F F A m= ∪′′ ′′  and ( , ) ( , )r A B r A B≤′ ′′  for all B ∈ ;  
c) 1 2( , ) 1rK F F =  if A B∩ = ∅  for all 1A∈ , 2B ∈ .  
The above conflict measure does not satisfy in general the conditions 3, 4, 5. But the condition A4 is 

also valid if the intersection coefficient ( , )r A B  is monotone with respect to inclusion ( ( , ) ( , )r A B r A B≤′ ′′  if 
A A⊆′ ′′ ). 

The algebraically simplest, bilinear conflict measure is defined in the next definition. 
A measure of conflict rK  on ( ) ( )X X×  is called bilinear if 

1 2( , )rK F F Fα β+ = 1 2( , ) ( , )r rK F F K F Fα β+  for all , [0,1]α β ∈ , 1α β+ = , 1 2, , ( )F F F X∈ . 
Proposition 1 [10]. A functional : ( ) ( ) [0,1]rK X X× →  is a bilinear measure of conflict 
( ) ( )X X×  iff 

1 2

1 2 1 2
,

( , ) ( , ) ( ) ( )r
A B

K F F A B m A m Bγ
∈ ∈

= = 0 1 2 1 2( , ) ( , ) ( ) ( )
A B

K F F A B m A m Bγ
∩ ≠∅

+ , (4) 

where coefficients ( , ) [0,1]A Bγ ∈  satisfy the following conditions: 
i) ( , ) ( , )A B B Aγ γ= ;  
ii) ( , ) ( , )A B A Bγ γ≥′ ′′ , if ( , ) ( , )r A B r A B≤′ ′′ ;  
iii) ( , ) 1A Bγ = , if A B∩ = ∅ . 
The canonical conflict measure 0 1 2( , )K F F  is the smallest among all bilinear conflict measures as follows 

from formula (4): 1 2 0 1 2( , ) ( , )rK F F K F F≥ . 
For example, the coefficients ( )( , ) , ( ( , ))r A BA B K F F r A Bγ ψ= = , ,A B ≠ ∅ , satisfy the conditions i) - iii) of 

Proposition 1 if ψ  is a non-increasing function with (1) 0ψ = , (0) 1ψ =  and { }( , ) min ,r A B A B A B= ∩ . In 
this case 1 2 0 1 2( , ) ( , )rK F F K F F=  if 

{1, ,
( , )

0,
A B

r A B
A B

∩ ≠ ∅
=

∩ = ∅
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is a primitive measure of intersection. 
Let us notice that the measure (4) also satisfies the condition 5 if 
iv) ( , ) 0A Xγ =  for all A ≠ ∅ . 

5. The conflict on the set of evidences 

A conflict measure can be introduced not only on a pair of evidences, but also on an arbitrary finite set of 
evidences. Suppose that we have a finite set of evidences { }1,..., lM F F= , ( )iF X∈ , 1,...,i l= . Let 2M  be 
the powerset of M . Let by definition ( ) 0K B =  if 1B = , 2MB ∈  and ( ) 0K ∅ = . 

The axioms A1-A6 for the conflict measure K  on 2M  can be rewritten in the form: 
B1: 0 ( ) 1K B≤ ≤  for all 2MB ∈ ; 
B2: ( ) ( )K B K Bπ=  for all 

1
{ ,..., } 2

k
M

i iB F F= ∈ , where { }1( ) ( ),...,
ki iB F Fπ π π=  and :{1,..., } {1,..., }k kπ →  is an 

arbitrary permutation; 
B3: ( { }) ( )K B F K B∪ =′  if there is a F B∈′′ , F F=′ ′′  for all 2MB ∈  (indifference to adding of duplicate 

evidence); if { }B F= ′′ , then B3 implies that ( , ) ( ) 0K F F K F= =′′ ′′ ′′ , i.e. the A3 axiom (nilpotency) is true; 
B4: ( { }) ( { })K B F K B F∪ ≥ ∪′ ′′ , if ( , )F m=′ ′ , ( , )F m=′′ ′′ , where { }iA=′ ′� , { }iA=′′ ′′�   i iA A⊆′ ′′  for all 

i  and 2MB ∈ ; 
B5: ( { }) ( )XK B F K B∪ =  for all 2MB ∈  (indifference to adding of the vacuous evidence); 
B6: 

1
({ ,..., }) 1

kA AK F F = , if i jA A∩ = ∅  for all i j≠ , sA X⊆ . 
We will require the satisfaction the additional axiom for the conflict measure K  on 2M : 
B7: ( ) ( )K B K C≤ , if B C⊆  and , 2MB C ∈ . 
This condition is obviously the monotonicity of K  on 2M , i.e. adding a new evidence to the set of evidenc-

es implies that the conflict measure is not decreased. Some of these axioms (for example, B3 or B6) can be 
strengthened or weakened. But it is a question of a separate study. 

The canonical conflict measure 0K  on 2M  has the form (but there are other ways of extension 0K  on 2M ) 

1 1 1

1

0
...

({ ,..., }) ( )... ( )
k k k

i ik

i i i i i i
A A

K F F m A m A
∩ ∩ =∅

= , ({ }, )
s s si i iF A m= , 1,...,s k= . (5) 

Obviously, it satisfies the monotonicity condition.  
Assume that  the conflict measure K  is initially given only on pairs of evidence ,F F M∈′ ′′ . For example, 

the measure K  can be computed with the help of metric (3). We denote through K  the extension of this meas-
ure on the whole set 2M . Then ( ) ( )K B K B=  for all 2MB ∈  with 2B = . In general, we can suppose that 

1 2 1
( ) ( ( , ),..., ( , ))

k ki i i iK B A K F F K F F
−

= , if 
1

{ ,..., } 2
k

M
i iB F F= ∈ , where : [0,1] [0,1]rA → , 2

kr C= , is a symmetric 
associative aggregation function with the following properties: 

1) A  is a non-decreasing function of each argument; 
2) (0,...,0) 0A = ; 
3) 1( ,..., )r iA x x x≥  for all 1,...,i k= . 
The condition 3) follows from the monotonicity property and property 1) for extension K . This implies 
4) 1( ,..., ) 1rA x x = , if exist 1ix = , 1,...,i k= ; 
5) 1( ,..., ) max{ :1 }r iA x x x i k≥ ≤ ≤ . 
A function satisfying the above conditions is a triangular conorm (t-conorm) [12] extended to [0,1]r . The 

next functions are the examples of t-conorm: 1( ,..., ) max{ :1 }r iA x x x i k= ≤ ≤  (maximum), 
1 1( ,..., ) 1 (1 )k

r iiA x x x== − −∏  (probabilistic sum), { }1 1( ,..., ) min 1, k
r iiA x x x==  (Lukasiewicz t-conorm, bounded 

sum). If we have a monotone conflict measure K  given on the all subset of evidences from M , then we can 
compute the “contribution” iv  of i -th evidence in total conflict ( )K M  with the help of Shapley value [18] 
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( ) ( )
( )

,

! 1 !
( ) ( \{ })

!
i

i i
B M F B

l B B
v K B K B F

l⊆ ∈

− −
= − . (6) 

Note that the following equality 1 ( )l
ii v K M

=
=  is true. Shapley value can be considered as a characteristic 

of reliability of information sources. 

6. The robust procedures for calculating of conflict measure 

The boundary conditions 2) and 4) are the most strong conditions on aggregation function for defining the 
conflict measure. For example, assume that have three evidences ( ,1)AF A= , ( ,1)BF B=   ( ,1)CF C=  and 
A B∩ ≠ ∅ , B C∩ ≠ ∅ , A C∩ ≠ ∅ , but A B C∩ ∩ = ∅ . Then we have the following results for the canoni-

cal conflict measure 0 0 0( , ) ( , ) ( , ) 0A B B C A CK F F K F F K F F= = = . If we will aggregate these partial conflicts by t-
conorms 1 2 3( , , )A x x x , then we get that the overall conflict is equal zero. But 0( , , ) 1A B CK F F F =  based on exten-
sion (5). Partially this problem is related to the instability of some methods of calculating of conflict measure 
(in particular, the canonical conflict measure) to the "small" changes of evidence. Moreover, these evidences 
can be generated subjectively and this depends on particularities of information sources. For example, assume 
that one expert give a “pessimistic” forecast about value of the shares of a some company in interval (30, 40), 
but another expert give an “optimistic” forecast in interval (38, 45). Then we have two evidence: ( ,1)AF A=  
and ( ,1)BF B= , where (30, 40)A =  and (38, 43)B = . The canonical conflict measure in this case is equal zero: 

0( , ) 0A BK F F = . Actually, "pessimistic" expert in the refinement of its forecast have in mind the evidence 
1 1 2 1({ , }, ( ))iF A A m A= , where 1 (30,38)A =  and 1 1( ) 0.8m A = , 2 (38, 40)A =  and 1 2( ) 0.2m A = . "Optimistic" ex-

pert have in mind the evidence 2 1 2 3 2({ , , }, ( ))iF B B B m B= , where 1 (35,38)B =  and 2 1( ) 0.2m B = , 2 (38, 42)B =  
and 2 2( ) 0.7m B = , 3 (42, 44)B =  and 2 3( ) 0.1m B = . In this case 0( , ) 0.7A BK F F = . 

The influence of “bad” evidence (or parts of evidence) can be reduced with the help of specialization-
generalization procedures [13]. The use of these procedures improves the robustness of the conflict estimation. 
The specialization procedure is produced by dividing focal elements on "small" subsets with a new distribution 
of the mass function on these subsets. Let we have an evidence 1 1({ }, )iF A m= . Then an evidence 

2 2 1({ }, ) ( )ijF B m S F= =  is the specialization of 1 1({ }, )iF A m=  (denotation: 2 1F F ), if j ij iB A∪ =  and 
2 1( ) ( )ij ij m B m A=  for all i . And vice-versa, an evidence 3 3 1({ }, ) ( )ijF C m G F= =  ( 1 3F F ) is a generalization 

of an evidence 1 1({ }, )iF A m=  ( 1 3F F ), if j ij iC A∩ =  and 3 1( ) ( )ij ij m C m A= . The canonical conflict measure 
can not be decreased after specialization of evidence and it can not be increased after generalization of evi-
dence. Therefore, the axiom 4 (or B4) can be replaced by more general axiom: 

4 : ( , ) ( , )K F F K F F≥′ ′′ , if F F′ ′′ . 
We will consider next specializations-generalizations of evidence ( , )F m=  which are close to F . The 

degree of closeness can be estimated with the help of imprecision index : ( ) [0,1]f X → , which was intro-
duced axiomatically in [19]. The generalized Hartley measure [20] 1

ln( ) ( ) lnAXf F m A A∈=  is an example 
of imprecision index. It is easy to see that 1 2F F  implies 1 2( ) ( )Pl A Pl A≤  for all 2 XA∈  [21]. Therefore the 
inequality 1 2( ) ( )f F f F≤  is true for any imprecision index f  in a view of results presented in [19]. Conse-
quently the imprecision index can not be increased after specialization of evidence and it can not be decreased 
after generalization of evidence. 

Let ( ) { : ( ) ( ) }S F F F f F f Fε ε= − <′ ′  and ( ) { : ( ) ( ) }G F F F f F f Fε ε= − <′ ′  be sets of all specializa-
tions and generalizations of evidence F  correspondingly which are located in -neighborhood of evidence with 
respect to imprecision index f , ( ) ( ) ( )SG F S F G Fε ε ε= ∪ . Then the value 

1 2 1 2( , ) MEAN{ ( , ) : ( )}i iK F F K F F F SG Fε ε= ∈  can be used as a conflict measure, where MEAN  be a some aver-
aging operator. For example, let 1 1,( ) { }jSG F Fε = , 2 2,( ) { }kSG F Fε = , where , , ( )i s i sF F= , 1, 2i = , [0,1]N∈  is a 
vector of parameters (values of mass function). Then 1, 2, ,( , ) ( )j k j kK F F ϕ=  and 
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{ }, 1, 1 2, 2: ( ( )) ( ) , ( ( )) ( )j k j kD f F f F f F f Fε ε∈ = − < − < . The average of mean integral values can be used 
as an operator MEAN : 

1 2 ,
1, 2, ,

1( , )
{ } { } j k

j k j k

K F F I
F Fε =

⋅
, 

where 
,, , ,(1 ( )) ( )

j kj k j k j kDI V D dϕ= , V  is the Lebesgue measure. There are also other ways for generating the 

set ( )SG Fε  of evidence F  specializations-generalizations. 

Let us observe that the notion of minimal conflict min 1 0 1( ,..., ) min{ ( ,..., ) : ( )}k k i iK F F K F F F S F= ∈  is consid-
ered in [22], where ( ) { ( ) : }S F F X F F= ∈′ ′  is a set of all specialization for F . A similar approach was 
considered in [9, 23]. 

Example. Let 1 2 3{ , , }X x x x= , 1 1 2({ , },1)F x x= , 2 3({ },1)F x= . Then 0 1 2( , ) 1K F F = . We will consider the spe-
cializations-generalizations of evidence 1F  and 2F . The generalized Hartley measure will be used for estima-
tion of impreciseness. Let ln 2 ln 3c = . Then 1( )f F c= , 2( ) 0f F = . We have the following evidences as spe-
cializations 1 1,0 1,1( ) { , }S F F F= , where 1,0 1F F= , 1,1 1 2({{ },{ }},{ ,1 })F x x θ θ= − , 1,1( ) 0f F = , 2 2,0( ) { }S F F= , 

2,0 2F F= . We have the following evidences as generalizations 1 1,0 1,2( ) { , }G F F F= , where 
1,2 1 2 1 2 3({{ , },{ , , }},{ ,1 })F x x x x x θ θ= −  and 1,2( ) 1f F cθ θ= + − ; 2 2,0 2,1 2,4( ) { , ,..., }G F F F F= , where 
2,1 1 3 3({{ , },{ }},{ ,1 })F x x x θ θ= −  and 2,1( )f F cθ= , 2,2 2 3 3({{ , },{ }},{ ,1 })F x x x θ θ= −  and 2,2( )f F cθ= , 
2,3 1 3 2 3({{ , },{ , }},{ ,1 })F x x x x θ θ= −  and 2,3( )f F c= , 2,4 1 2 3 3({{ , , },{ }},{ ,1 })F x x x x θ θ= −  and 2,4( )f F θ= . Then 

1 1,0 1,1 1,2( ) { , , }SG F F F F= , 2 2,0 2,1 2,4( ) { , ,..., }SG F F F F= . 
Let 1 cε < − . Then 1 1,0 1,2( ) { , }SG F F Fε =  and 2 2,0 2,1 2,2 2,4( ) { , , , }SG F F F F Fε = . We have 0 1,0 2,0( , ) 1K F F = , 

0 1,0 2,1 0 1,0 2,2( , ) ( , ) 1K F F K F F θ= = −  for 0 cθ ε< < , 0 1,0 2,4( , ) 1K F F θ= −  for 0 θ ε< < , 0 1,2 2,0( , )K F F θ=  for 
0 (1 )(1 )cθ ε< − − < , 0 1,2 2,1 0 1,2 2,2 1 2( , ) ( , ) (1 )K F F K F F θ θ= = −  for 10 (1 )(1 )cθ ε< − − <  and 20 cθ ε< < , 

0 1,2 2,4 1 2( , ) (1 )K F F θ θ= −  for 10 (1 )(1 )cθ ε< − − <  and 20 θ ε< < . Then  

1
1 2 ,2 4 ,

( , ) j kj k
K F F Iε ⋅= , where 

,
,

1
, ,( ) ( )

j k
j k

j k j kV D D
I dϕ= , 

i.e. 0,0 1I = , 0,1 0,2 1 (2 )I I cε= = − , 0,4 1 2I ε= − , 2,0 1 (2(1 ))I cε= − − , 2,1 2,2I I= = ( )( )1 (2(1 )) 1 (2 )c cε ε− − − , 
( )( )2,4 1 (2(1 )) 1 2I cε ε= − − − . Thus  

1 2( , )K F Fε = (2 )1 1 2
8 4 (1 ) 4 (1 )1 ( ) c

c c c cε ε +

⋅ − −− + +  for 1 cε < − . 

7. The study of conflictness of investment banks forecasts 

We investigate the conflictness of evidences for analysts' forecasts (of investment banks) as an application 
of the conflict measure. Also, we will find the contribution of investment banks to conflictness and precision of 
their forecasts. The conflictness characterizes in this case the degree of inconsistency of forecasts for some set 
of experts. Conflictness with the precision of forecasts is an important characteristic of the quality of forecast-
ing. The high conflictness of forecasts of some banks with high precision can be associated with the presence 
of some exclusive techniques of forecasts, and the using of some insider information. The high conflictness 
with low accuracy probably indicates a low professionalism of analysts. 

The database is information on 1307 forecasts of financial analysts, representing 23 investment banks about 
the value of shares of Russian companies in 2013. Bloomberg and RBC are the sources of information for this 
study. The forecasts are presented by experts the world largest investment banks, including such famous com-
panies as Goldman Sachs, redit Suisse, UBS, Deutsche Bank, Renaissance Capital and others. 
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Each investment bank makes recommendations of three types (“to sell”, “to hold”, “to buy”) and the forecast 
target price of paper. Target prices of forecasts are recalculated into the so-called relative values of target pric-
es. The relative value of target prices is equal to quotient of price predicted by the analyst and the value of the 
security on the date of giving the forecast. 

Boundaries of relative prices between the recommendations of various types were determined by maximiz-
ing number of recommendations that fall into the "corresponding" intervals: [0,0.92), [0.92,1.2), [1.2,+ ). 
Thus, we have nine sets, each of which represents the interval and a label of recommendation type: 

( )
1 [0,0.92)tA = , ( )

2 [0.92,1.2)tA = , ( )
3 [1.2, )tA = +∞ , { , , }t s h b∈ , s  sell, h –hold, b – buy.  

The set of all intervals ( )t
kA , { , , }t s h b∈ , 1, 2,3k =  is a set of all focal elements of all evidence. Let we fixed 

the i -th investment bank, 1,...,i l=  ( l  is a number of investment banks), ( )t
ikc  is a number of belonging of rela-

tive price to interval ( )t
kA , iN  is a general number of forecasts for i -th investment bank. Then 

( ) ( )( )t t
i ik ikm A c N=  is a frequency of belonging of relative price to interval ( )t

kA . The mass function im  satisfies 
the normalization condition: ( )( ) 1t

i kt k m A =  for all 1,...,i l= . Then ( ) ( )
,( , ( ))t t

i i k tk kF A m A=  is a body of evidence 
of i -th investment bank, 1,...,i l= . We can find a conflict measure of these evidences. 

Note that the formula for calculation of canonical conflict measure 0 1( ,..., )lK F F  considerably will become 
simpler if all evidence have the same set of focal elements and all focal elements ( )t

kA  are pairwise disjoint. 
Proposition 2. If the bodies of evidence ({ }, ( ))i k i k kF A m A= , 1,...,i l=  satisfy the condition s kA A∩ = ∅  

for s k≠ , then a canonical conflict measure 0 1( ,..., )lK F F  is equal to 0 1({ ,..., }) 1 ( )l i kk iK F F m A= − ∏ . 
We will use the following measure 1 1({ ,..., }) 1 min ( )l i i kkK F F m A= −  instead of 0K  for estimation of con-

flict. Formally, the set function 1K  is obtained from 0K  by replacing of triangular norm (t-norm) "multiplica-
tion" on the other t-norm "min" [12]. The measure 1K  has a larger range of values than 0K  for large l . Further 
we can compute a "contribution" of the i-th investment bank to the total conflict 1( )K M  of set of all investment 
banks M  with the help of the Shapley value (6), which are calculated by the monotone conflict measure 1K . 

The results of calculating the estimates of Shapley values of contribution of each investment bank in the to-
tal conflict 1( )K M  of the forecasts about the cost of shares of Russian companies are shown in Fig 1. The total 
conflict on all investment banks is equal to 1( ) 0,727K M = . 

 

Fig. 1. Estimates of Shapley values, characterizing the contribution of each of the 23 investment banks in general conflict in 2013 

Remark. The numbering of investment banks: 1  Barclays, 2  Citi group, 3  Credit suisse, 4  Deutsche 
Bank, 5  HSBC, 6  Renaissance Capital, 7  Sberbank CIB, 8  VTB Capital, 9  Uralsib Capital, 10  
Goldman Sachs, 11  Discovery Bank, 12  Morgan Stanley, 13  J.P. Morgan, 14  UBS, 15  Raiffeisen, 16 

 Alfa-Bank, 17  Aton Bank, 18  BCS, 19  Veles Capital, 20  Gazprombank, 21  Rye. 
Man&GorSecurities, 22  Metropol Bank, 23  Finam. 

Fig 1 shows us that the forecasts of banks 3 (Credit suisse), 17 (Aton Bank), 2 (Citi group), 
20 (Gazprombank) are the most conflicting in 2013. Note that max min 10s sv v ≈ , i.e. the set of banks is very 
heterogeneous with respect to contribution in total conflict. 

The share spr  of successful forecasts can be considered as an estimation of precision of forecasts for s-th 
investment bank. The distribution of points ( , )s sv pr  for all investment banks are shown in Fig 2. 



1121 Andrew Bronevich et al.  /  Procedia Computer Science   55  ( 2015 )  1113 – 1122 

sv

spr

 

Fig. 2. The distribution of points ( , )s sv pr  for all investment banks (numbers of investment banks are given in the circles) 

As can be seen from Fig 2 the investment bank 17 (Aton Bank) has given precise (great precision spr ) and 
"unique" (great Shapley value for conflictness sv ) forecasts. The investment bank 2 (Citi group) has given a 
least precise and "unique” forecast. The investment banks (Credit suisse) and 20 (Gazprombank) have given a 
"unique” forecast at medium precision. The investment banks 12 (Morgan Stanley) and 13 (J.P. Morgan) have 
given a more precision forecast at low “uniqueness”. 

8. Conclusion 

The basic axioms for the conflict measure and modern approaches to the estimation of conflict in the 
framework of the belief functions are studied in this paper. The notion of conflict measure on the set of all sub-
sets of a set of evidences is considered. We postulate axiomatically that a conflict measure has to be a mono-
tone set function. In particular, the conjunctive conflict measure based on the Dempster rule of combination is a 
monotone set function. We can use the mathematical formalism of monotone measures (e.g. Shapley values) 
for analysis of the contribution in the general conflict of separate evidences and groups of evidences by mono-
tonicity of conflict measure. The procedures for extending the conflict measure defined on pairs of evidence to 
the all set of evidences are also considered. Some robust procedures for evaluation of conflict measure that are 
stable to small changes of evidence are introduced and discussed. 

The results of analysis of conflicts forecasts of investment banks about the value of shares of Russian com-
panies are given in the second part of this paper. The frequencies of events {the relative price of shares belong 
to interval} calculated on the basis of forecasts of investment banks (corresponding to the three types of rec-
ommendations: to sell - to hold - to buy) are considered as an evidence. The conflict measure evaluates incon-
sistency of recommendations of investment banks, while the Shapley values of this measure characterize the 
contribution of each investment bank to the overall conflict. It is shown that investment banks are extremely 
heterogeneous in their contribution to the overall conflict. The relationship between conflict and precision of 
forecasts is also investigated. 
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