

В.М. Андрюхина, В.Н. Афанасьев

МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ¹

Рассмотрена методологическая проблема применения современных математических и информационных методов для управления восстановлением иммунной системой человека в целях увеличения продолжительности и улучшения качества жизни. Дифференциальные уравнения, описывающие динамику болезни, преобразованы в систему с параметрами, зависящими от состояния. Отмечено, что основная проблема получения оптимального управления заключается в нахождении решения уравнения Риккати с параметрами, зависящими от состояния. Для получения реализуемого решения задачи синтеза управления предложен метод, основанный на применении дифференциальных игр и модели, содержащей «наименее благоприятные параметры». Приведены результаты компьютерного моделирования динамики иммунной системы при использовании разработанной стратегии применения лекарственных средств.

Ключевые слова: нелинейные непрерывные динамические системы, дифференциальные игры, гарантированное управление, математические модели ВИЧ-инфекции.

ВВЕДЕНИЕ

Вирус иммунодефицита человека (ВИЧ), вызывающий синдром приобретенного иммунодефицита человека (СПИД), при попадании в организм человека остается в крови и имеет шанс столкнуться с CD4 Т-клетками, которые являются важными компонентами иммунной системы человека. Инфицированные CD4 Т-клетки не выполняют свои функции и становятся вирусной фабрикой, делая несколько копий ВИЧ [1, 2].

Борьба с ВИЧ/СПИДом — одна из целей, сформулированных в Декларации тысячелетия Организации Объединенных Наций, принятой ООН 8 сентября 2000 г. Государства-члены ООН обязались к 2015 г. остановить распространение ВИЧ/СПИДа и положить начало тенденции к сокращению масштабов эпидемии.

Настоящая работа относится к направлению, развивающему методы моделирования иммунной системы человека, библиография которого насчитывает сотни работ. В последнее время в моделировании иммунной системы человека достигнуты значительные успехи, причем разработанные модели описывают столь сложную динамику иммунной системы и внедряющихся в нее вирусов, что прогнозировать развитие болезни можно только с помощью моделирования. Тем более невозможно без продуманного вычислительного эксперимента предсказать окончательные результаты влияния лекарственных препаратов на течение заболевания.

Основная цель медицины заключается в продлении жизни больного. При постановке математической задачи требуется найти количественные характеристики состояния здоровья, позволяющие сформулировать эту цель в количественном выражении. В случае ВИЧ-инфекции таким количественным показателем служит концентрация Т-клеток в крови [2]. Выделяются три категории тяжести заболевания, определяемые уровнем концентрации Т-клеток.

 $^{^{1}}$ Работа выполнена при финансовой поддержке РФФИ (Проект № 10-08-00677).

ток в крови: первая — более 600 ед./мм³, вторая — 200...600 ед./мм³, третья — менее 200 ед./мм³.

У больных третьей категории развивается так называемый синдром приобретенного иммунодефицита (СПИД), приводящий к летальному исходу. Это нижнее значение концентрации Т-клеток является естественной границей исследуемых процессов в иммунной системе. Задача продления жизни больного, т. е. достижения состояния долгосрочного непрогрессора, состоит в том, чтобы иммунная система достигала этой границы как можно позже. Долгосрочный непрогрессор — это статус пациента, у которого определен ВИЧ, но также имеется и достаточное количество CD4 Т-клеток, поэтому иммунная система может продолжать бороться с инфекцией. Результаты моделирования предельных режимов [3—5] (без применения и с применением лечения) указывают на предельно высокую сопротивляемость вируса воздействию лекарственных средств. Таким образом, без медицинского вмешательства ВИЧ-инфицированные пациенты окажутся в области привлекательности СПИДа. Поэтому важна не только разработка соответствующих лекарственных средств, но и разработка методологии их применения к пациентам с различными поражениями иммунной системы в целях приведения пациента к состоянию долгосрочного непрогрессора, где применение лекарственных средств может быть прекращено [2].

Рассматривается следующая математическая модель динамики иммунной системы ВИЧ-инфицированного человека[3—5]

$$\frac{d}{dt}x(t) = \lambda - dx(t) - \beta \eta(t)x(t)y(t), \qquad (1)$$

$$\frac{d}{dt}y(t) = \beta \eta(t)x(t)y(t) - ay(t) - - [\rho_1 z_1(t) + \rho_2 z_2(t)]y(t),$$
 (2)

$$\frac{d}{dt}z_1(t) = [c_1y(t) - b_1]z_1(t), \tag{3}$$

$$\frac{d}{dt}w(t) = [c_2x(t)y(t) - c_2qy(t) - b_2]w(t), \qquad (4)$$

$$\frac{d}{dt}z_2(t) = c_2qy(t)w(t) - hz_2(t),$$
 (5)

где x — концентрация неинфицированных CD4 Т-клеток (Т-хелперов), y — концентрация инфицированных CD4 Т-клеток (Т-хелперов), z_1 — популяция хелпер-независимых Т-клеток (Т-киллеров), w — популяция клеток-предшественников (потомков), z_2 — популяция хелпер-зависимых Т-клеток (Т-киллеров).

В уравнении (1) d — естественная скорость смерти неинфицированных CD4 Т-клеток, продолжительность жизни которых λ. При попадании вируса в кровь человека CD4 T-клетки заражаются со скоростью β. Ответы иммунной системы человека, как реакция организма на внедрение тех или иных вирусов, делятся на первичный и вторичный [1—4]. Первичный ответ, не зависящий от помощи Т-хелперов, стимулирует рост и развитие Т-киллеров (z_1) , которые способны распознавать и убивать инфицированные вирусом клетки. Хелпер-независимые Т-клетки не могут контролировать инфекцию в долгосрочной перспективе и не эффективны в борьбе, так как не могут образовывать клеток-памяти. Они поддерживаются только благодаря антигенным стимуляциям. Хелпер-зависимые Т-клетки (z_2) , напротив, могут управлять инфекцией и дифференцироваться в клетки-памяти, которые могут быть неоднократно реактивированы при повторном воздействии антигена. Именно поэтому их популяции очень важны для исследования. Популяция хелпер-зависимых Т-клеток стимулируется CD4 Т-клетками при вторичном иммунном ответе организма. Популяция клетокпредшественников (w) при контакте с антигеном стремительно увеличивается (со скоростью c_2) и дифференцируется в T-киллеры (со скоростью q). В отсутствии антигенной активности клетки-предшественники умирают со скоростью b_2 .

Инфицированные клетки (z_1 в уравнении (2)) естественным образом умирают со скоростью α , а клетки-киллеры убивают их со скоростями ρ_1 и ρ_2 , соответственно для хелпер-независимых и зависимых Т-клеток. Наличие хелпер-зависимых Т-клеток приводит к исчезновению хелпер-независимых, так как они способны уменьшать вирусную нагрузку до низкого уровня, однако обратное неверно.

Хелпер-независимые Т-клетки (z_1) — см. уравнение (3) — размножаются в ответ на антигенную стимуляцию со скоростью c_1 и умирают в ее отсутствии со скоростью b_1 , а хелпер-зависимые Т-клетки — со скоростью h.

Значения параметров в уравнениях (1)—(5)

Параметры	Значение, мин ⁻¹	Параметры	Значение, мин ⁻¹
λ <i>d</i> β α	1 0,1 1 0,2	$egin{array}{c} c_1 \\ c_2 \\ q \\ b_1 \end{array}$	0,03 0,06 0,5 0,1
$\begin{matrix} \rho_1 \\ \rho_2 \end{matrix}$	1	$egin{array}{c} b_2 \\ h \end{array}$	0,01 0,1

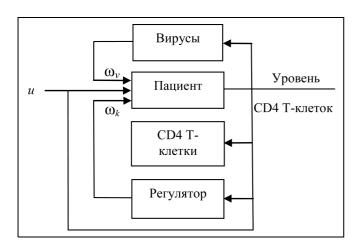


Рис. 1. Схема взаимодействия в задаче гарантирующего управления (ω_{ν}) — вирусы, ω_{k} — клетки-киллеры)

Функция лечения η описывает воздействие на систему лекарственных препаратов $\eta(t) = 1 - \eta^* u(t)$, где η^* — максимальное действие препарата, а переменная u(t) — доза вводимого препарата. Цель управления состоит в продлении жизни пациента посредством подачи в его организм оптимального количества препарата для подавления вирусов.

В таблице [1, 2] представлены значения всех величин, используемых в данной работе.

Для достижения поставленной цели, а именно, для построения управляющих воздействий (высокоактивной антиретровирусной терапии — BAAPT) при возмущающих воздействиях (вирусах) воспользуемся теорией гарантированного управления [6, 7], основанной на методах теории дифференциальных игр. В этом случае стратегия поддержания уровня CD4 Т-клеток в крови в условиях действия возмущений рассматривается как антагонистическая игра Т-клеток и вирусов. Структурная схема их взаимодействия представлена на рис. 1.

1. СИНТЕЗ ГАРАНТИРУЮЩЕГО УПРАВЛЕНИЯ

Пусть объект управления описывается системой нелинейных дифференциальных уравнений

$$\frac{d}{dt}\mu(t) = f(\mu) + g_1(\mu)w(t) + g_2(\mu)u(t), \ \mu(t_0) = \mu_0,$$

$$\mu_p(t) = h_p(\mu) + d(\mu)u(t),$$

$$y(t) = h(\mu),$$
(6)

где $\mu \in R^n$ — вектор состояния, $y \in R^m$, $m \le n$ — измеряемый выход, $\mu_P \in R^k$, $k \le n$ — управляемый выход, $u \in R^r$ — управление, $w \in R^q$, $w(t) \in W$ — возмущения, где W — замкнутое ограниченное множество.

Рассмотрим задачу, в которой w(t) является антагонистичным по отношению к u(t) управлением. В такой постановке задача заключается в синтезе управления u(t), минимизирующего функционал

$$J(y, u, w) = \lim_{T \to \infty} \int_{0}^{T} [y^{T}(t)Qy(t) + u^{T}(t)Ru(t) - w^{T}(t)Pw(t)]dt,$$
 (7)

при действии антагонистического управления w(t). В формуле (7) матрицы $Q \ge 0$ и R > 0, P > 0. Управления u(t) и w(t) определяются соотношениями [6]

$$w(t) = P^{-1}g_1(\mu) \left\{ \frac{\partial V(\mu)}{\partial \mu} \right\}^T,$$

$$u(t) = -R^{-1}g_2(\mu) \left\{ \frac{\partial V(\mu)}{\partial \mu} \right\}^T,$$
(8)

где вектор-функция $\{\partial V(\mu)/\partial \mu\}^T$ находится решением уравнения Гамильтона-Якоби-Беллмана

$$\begin{split} \frac{\partial V(\mu)}{\partial \mu} f(\mu) \, + \, \frac{1}{2} \, \frac{\partial V(\mu)}{\partial \mu} \left[g_1(\mu) P^{-1} g_1^T(\mu) \, - \right. \\ \left. - \, g_2(\mu) R^{-1} g_2^T(\mu) \right] \left\{ \frac{\partial V(\mu)}{\partial \mu} \right\}^T \, + \, \frac{1}{2} \, H^T(\mu) Q H(\mu) \, = \, 0. \end{split}$$

Будем считать [6], что путем замены f(x) = A(x)x(t), $h(\mu) = H(\mu)\mu(t)$, $h_p(\mu) = H_p(\mu)\mu(t)$, где $A: R^n \to R^{n\times n}$, $H: R^m \to R^{m\times n}$, $H_p: R^k \to R^{k\times n}$ — факторизация, представление, исходной системы (6) возможно в виде

$$\frac{d}{dt}\mu(t) = A(\mu)\mu(t) + g_1(\mu)w(t) + g_2(\mu)u(t), \ \mu(t_0) = \mu_0,$$

$$\mu_p(t) = H_p(\mu)\mu(t) + d(\mu)u(t),$$

$$y(t) = H(\mu)\mu(t). \tag{9}$$

Система (9) с управлениями (8) принимает вид

$$\frac{d}{dt}\mu(t) = A(\mu)\mu(t) + [g_1(\mu)P^{-1}g_1^T(t) - g_2(\mu)R^{-1}g_2^T(\mu)] \left\{ \frac{\partial V(\mu)}{\partial \mu} \right\}^T, \quad \mu(t_0) = \mu_0,
\mu_p(t) = H_p(\mu)\mu(t) + d(\mu)u(t),
y(t) = H(\mu)\mu(t).$$
(10)

Вид функционала (7) и структура уравнения системы (10) позволяют, назначая $\left\{ \partial V(\mu)/\partial \mu \right\}^T$ перейти от уравнения Гамильтона-Якоби-Беллмана

к уравнению типа Риккати с параметрами, зависящими от состояния [8]:

$$S(\mu)A(\mu) + A^{T}(\mu)S(\mu) + S(\mu)[g_{1}(\mu)P^{-1}g_{1}^{T}(\mu) - g_{2}(\mu)R^{-1}g_{2}^{T}(\mu)]S(\mu) + H^{T}(\mu)QH(\mu) = 0.$$
 (11)

Управления (8) при этом примут вид

$$w(t) = P^{-1}g_1(\mu)S(\mu)\mu(t),$$

$$u(t) = R^{-1}g_2(\mu)S(\mu)\mu(t).$$
 (12)

Очевидно, что реализация управлений (12) затрудняется необходимостью поиска решений уравнения Риккати (11) с параметрами, зависящими от состояния. Для поиска решений можно привлекать методы символьных вычислений или поточечное решение алгебраического уравнения с постоянными параметрами. Для практических задач и то, и другое чаще всего не подходит.

Реализуемое решение задачи управления нелинейным объектом (6) с приемлемыми переходными характеристиками может быть получено с помощью метода гарантированного управления.

Отметим, что оптимальные управления w(t) и u(t) обеспечивают устойчивость системе [6]. Так как система (10) устойчива, то $\mu \in M$, где M- замкнутое ограниченное множество, и значения параметров матриц $A(\mu)$, $g_1(\mu)$, $g_2(\mu)$, $H(\mu)$, $H_p(\mu)$ и $d(\mu)$ системы принадлежат замкнутому ограниченному множеству $a(\mu) = \{A(\mu), g_1(\mu), g_2(\mu), H(\mu), H_p(\mu), u d(\mu)\} \in D_a$.

Пусть $a^* = \{A^*, g_1^*, g_2^*, H^*, H_P^*, d^*\} \in D_a$ — матрицы системы (10), содержащие наименее благоприятные для решения задачи управления значения параметров. Введем определение «наименее благоприятных значений» матриц.

Так как параметры матрицы зависят от $\mu(t)$, т. е. $A(\mu)$, то ее собственные значения непрерывно зависят от элементов матрицы, а корни многочлена непрерывно зависят от матричных элементов, которые, в свою очередь, зависят от $\mu(t)$ [9], т. е. $\lambda_i(\mu)$, i=1,...,n, и $\lambda_1(\mu) \geqslant \lambda_2(\mu) \geqslant ... \geqslant \lambda_n(\mu)$.

Определение 1. Под «наименее благоприятным значением» матрицы $A(\mu)$ будем понимать матрицу с постоянными элементами μ^* , имеющую наибольшее собственное значение λ_1^* (правый корень характеристического уравнения), т. е. $\lambda_1^* = \lambda_1(\mu^*)$ и $A^* = A(\mu^*)$.

Для поиска μ^* , при котором собственное значение $\lambda_1(\mu^*)$ матрицы $A(\mu)$ принимает максимальное значение, воспользуемся соотношением Релея [9].

Введем вещественную симметрическую матрицу $W(\mu)n \times n$

$$W(\mu) = A(\mu) + A^{T}(\mu), \quad \mu(t) \in M.$$

Если $A(\mu)=[a_{ij}(\mu)]$, то $W(\mu)=[a_{ij}(\mu)+a_{ji}(\mu)]$, где i,j=1,...,n. Так как

$$tr[A(\mu)] = \sum_{i=1}^{n} a_{ii}(\mu) = \sum_{i=1}^{n} \lambda_{i}(\mu),$$

$$tr[W(\mu)] = 2 \sum_{i=1}^{n} a_{ii}(\mu) = \sum_{i=1}^{n} \lambda_{i}^{W}(\mu)$$

и собственные значения матриц $A(\mu)$ и $A^T(\mu)$ одинаковы, то

$$tr[W(\mu)] = 2tr[A(\mu)] = \sum_{i=1}^{n} a_{ii}(\mu) = 2\sum_{i=1}^{n} a_{ii}(\mu) =$$
$$= \sum_{i=1}^{n} \lambda_{i}^{W}(\mu) = 2\sum_{i=1}^{n} \lambda_{i}(\mu).$$

Здесь $\lambda_i^W(\mu)$ и $\lambda_i(\mu)$ — корни характеристических уравнений матриц $W(\mu)$ и $A(\mu)$ соответственно.

Пусть
$$\lambda_i^W(\mu) = \lambda_1(\mu) - k_{1n}(\mu)$$
 и $\lambda_n^W(\mu) = \lambda_n(\mu) + k_{n1}(\mu), k_{n1}(\mu) = k_{n1}(\mu)$. При этом

$$tr[W(\mu)] = \sum_{i=1}^{n} \lambda_{i}^{W}(\mu) = \sum_{i=1}^{n} \lambda_{i}(\mu) \pm k_{i(n+1-i)}(\mu) =$$

$$= 2 \sum_{i=1}^{n} \lambda_{i}(\mu).$$
(13)

Учитывая (13), отмечаем, что максимальные и минимальные значения корней характеристических уравнений матриц $A(\mu)$ и $W(\mu)$ принимают значения при одних и тех же значениях вектора μ . Это обстоятельство используем для поиска наименее благоприятных значений параметров матрицы $A(\mu)$.

Определим единичную сферу \wp в R^n как множество всех векторов в R^n , для которых $\langle z, z \rangle = 1$. Рассмотрим отношение Релея [9] для $W(\mu)$

$$R(z) = \frac{\langle z, W(\mu)z \rangle}{\langle z, z \rangle}$$
. Запишем условия, определя-

ющие стационарные собственные значения матицы $W(\mu)$

$$\max_{z \in \wp} \max_{\mu \in M} R(z) = \max_{z \in \wp} \max_{\mu \in M} \frac{\langle z, W(\mu)z \rangle}{\langle z, z \rangle},$$

$$\min_{z \in \wp} \min_{\mu \in M} R(z) = \min_{z \in \wp} \min_{\mu \in M} \frac{\langle z, W(\mu)z \rangle}{\langle z, z \rangle}. \quad (14)$$

Очевидно, что если вместо z можно подставить $kz = \mu \in M$, то отношение Релея останется без изменения. Тогда условия (14) можно переписать в виде

$$\lambda_{1}^{W}(\mu_{1}^{*}) = \max_{(\mu, \mu)} \frac{\mu^{T} W(\mu) \mu}{\mu^{T} \mu}, \quad \mu \neq 0,$$

$$\lambda_{n}^{W}(\mu_{n}^{*}) = \min_{(\mu, \mu)} \frac{\mu^{T} W(\mu) \mu}{\mu^{T} \mu}, \quad \mu \neq 0.$$
(15)

Воспользуемся экстремальными соотношениями Релея

$$\frac{\partial}{\partial \mu_{i}} \left[\frac{\mu^{T} W(\mu) \mu}{\mu^{T} \mu} \right] =$$

$$= \frac{(\mu^{T} \mu) \left[2 W_{i}(\mu) \mu + \mu^{T} \frac{\partial W(\mu)}{\partial \mu_{i}} \mu \right] - 2 \mu^{T} W(\mu) \mu \mu_{i}}{(\mu^{T} \mu)^{2}} = 0,$$

$$\mu \neq 0, i = 1, ..., n,$$

так как $(\mu, \mu)^2 \neq 0, \mu \neq 0$, то

$$(\mu^{T}\mu)\left[2W_{i^*}(\mu)\mu + \mu^{T}\frac{\partial W(\mu)}{\partial \mu_i}\mu\right] - 2\mu^{T}W(\mu)\mu\mu_i = 0,$$

$$\mu \neq 0, i = 1, ..., n,$$

где $W_{i*}(\mu) - i$ -ая строка матрицы $W(\mu)$.

Воспользовавшись уравнениями (15) можно найти векторы μ_1^* и μ_n^* , при которых собственные значения матрицы $W(\mu)$ принимают максимальные и минимальные значения. Таким образом, находим наименее благоприятные значения матрицы $A(\mu) = A(\mu_1^*) = A^*$.

Для нахождение матриц g_1^* , g_2^* и H^* введем в рассмотрение функцию Ляпунова

$$V(\mu) = \mu^{T}(t)S(\mu)\mu(t).$$

Тогда с учетом уравнений (10) и (12), условия устойчивого движения будут иметь вид

$$\frac{d}{dt}V(\mu) = \mu^T(t)[A(\mu)S(\mu) + S(\mu)A^T(\mu) -$$

$$-2S(\mu)[g_1(\mu)P^{-1}g_1^T(\mu) - g_2(\mu)R^{-1}g_2^T(\mu)]S(\mu)]\mu(t) < 0,$$
 или, учитывая уравнение (11),

$$\frac{d}{dt}V(\mu) = -\mu^{T}(t)\{H^{T}(\mu)QH(\mu) + S(\mu)[g_{2}(\mu)R^{-1}g_{2}^{T}(\mu) - g_{1}(\mu)P^{-1}g_{1}^{T}(\mu)]S(\mu)\}\mu(t) < 0, \quad \mu \neq 0.$$

Используя полученное условие устойчивости, можно ввести следующие определения.

Определение 2. Под «наименее благоприятными значениями» матриц $g_2(\mu)$ и $H(\mu)$ будем понимать матрицы g_2^* и H^* с постоянными элементами, для которых выполняются следующие соотноше-

ния:
$$\min_{\mu} \operatorname{tr}[g_2(\mu)g_2^T(\mu)] = \min_{\mu} \sum_{p=1}^r \eta_{pp}(\mu), \ \mu(t) \in M,$$
 где η_{pp} — элемент главной диагонали симметрической матрицы $g_2(\mu)g_2^T(\mu)$ и $\min_{\mu} \operatorname{tr}[H(\mu)H^T(\mu)] =$

$$=\min_{\mu}\sum_{p=1}^{r}\eta_{kk}(\mu),\,\mu(t)\in\mathrm{M},\,$$
где η_{kk} — элемент главной

диагонали симметрической матрицы $H(\mu)H^T(\mu)$. \blacklozenge

Определение 3. Под «наименее благоприятным значением» матрицы $g_1(\mu)$ будем понимать матрицу g_1^* с постоянными элементами, для которой выполняется соотношение $\max_{\mu} \operatorname{tr}[g_1(\mu)g_1^T(\mu)] =$

$$=\max_{\mu}\sum_{q=1}^{k}v_{qq}(\mu),\,\mu(t)\in\mathrm{M},\,$$
где v_{qq} — элемент главной

диагонали симметрической матрицы $g_1(\mu)g_1^T(\mu)$. \blacklozenge

Значения вектора μ , при которых достигаются соответствующие минимальные и максимальные значения матриц $g_2(\mu)g_2^T(\mu)$, $H(\mu)H^T(\mu)$ и $g_1(\mu)g_1^T(\mu)$, нетрудно отыскать, используя экстремальные свойства этих матриц:

$$\frac{\partial}{\partial \mu} [g_2(\mu) g_2^T(\mu)] = 0, \quad \frac{\partial^2}{\partial \mu^2} [g_2(\mu) g_2^T(\mu)] > 0,$$

$$\frac{\partial}{\partial \mu}[H(\mu)H^{T}(\mu)] = 0, \quad \frac{\partial^{2}}{\partial \mu^{2}}[H(\mu)H^{T}(\mu)] > 0,$$

$$\frac{\partial}{\partial \mu}[g_1(\mu)g_1^T(\mu)] = 0, \quad \frac{\partial^2}{\partial \mu^2}[g_1(\mu)g_1^T(\mu)] \leq 0.$$

Отметим, что матрицы R и Pдолжны назначаться так, чтобы матрица $[g_2(\mu)R^{-1}g_2^T(\mu)-g_1(\mu)P^{-1}g_1^T(\mu)]$ была бы, по крайней мере, положительно полуопределенной.

Управляемая и наблюдаемая модель системы, содержащая наименее благоприятные параметры, будет иметь вид

$$\frac{d}{dt}\mu^*(t) = A^*\mu^*(t) + g_1^* w\mu(t) + g_2^* u_M(t), \quad \mu^*(t_0) = \mu_0,$$

$$\mu_P^*(t) = H_P^*\mu^*(t) + d^* u_M(t),$$

$$y^*(t) = H^*\mu^*(t). \tag{16}$$

Запишем функционал качества для синтеза управляющих воздействий с использованием модели (16):

$$J(y^*, u_M, w) = \lim_{T \to \infty} \int_0^T [(y^*(t))^T Q y^*(t) + u_M^T(t) R u_M(t) - w^T(t) P w(t)] dt.$$
 (17)

Для стационарной системы (16) с функционалом (17) $\{\partial V(\mu^*)/\partial \mu^*\}^T = S^*\mu^*(t)$, где положительно определенная матрица S^* находится решением уравнения Риккати [5]

$$S^*A^* + (A^*)^T S^* + S^* [g_1^* P^{-1} (g_1^*)^T - g_2^* R^{-1} (g_2^*)^T] S^* + (H^*)^T Q H^* = 0.$$
 (18)

Здесь матрица $[g_2^* R^{-1} (g_2^*)^T - g_1^* P^{-1} (g_1^*)^T]$ должна быть по крайней мере положительно полуопределена, что можно обеспечить соответствующим выбором весовых матриц R и P.

Управления для модели системы (16) определяются следующими соотношениями

$$w(t) = P^{-1}g_1^* S^* \mu^*(t), \ u_M(t) = -R^{-1}g_2^* S^* \mu^*(t).$$
 (19)

Исходная система уравнений (6) с гарантирующим управлением u(t) принимает вид

$$\frac{d}{dt}\mu(t) = f(\mu) + [g_1(\mu)P^{-1}g_1^* + g_2(\mu)R^{-1}g_2^*]S^*\mu(t),$$

$$\mu(t_0) = \mu_0,$$

$$\mu_P(t) = h_P(\mu) + d(\mu)u(t),$$

$$y(t) = h(\mu).$$

2. ГАРАНТИРУЮЩЕЕ УПРАВЛЕНИЕ В ЗАДАЧЕ ПРИМЕНЕНИЯ АНТИВИРУСНЫХ ПРЕПАРАТОВ И РЕЗУЛЬТАТЫ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

Приведем математическую модель (1)—(5) к виду системы с параметрами, зависящими от состояния объекта.

$$\frac{d}{dt}\mu(t) = A(\mu)\mu(t) + K(\lambda) + B(\mu)u(t) + D(\mu)y(t),$$

$$\mu(t_0) = \mu_0,$$

где

$$A(\mu) = \begin{pmatrix} -d & 0 & 0 & 0 & 0 \\ 0 & -a(\mu) & 0 & 0 & 0 \\ 0 & 0 & -b_1 & 0 & 0 \\ 0 & 0 & 0 & -b(\mu) & 0 \\ 0 & 0 & 0 & 0 & -h \end{pmatrix}, \quad K(\lambda) = \begin{pmatrix} \lambda \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix},$$

$$B(\mu) = \begin{pmatrix} \beta \eta^* x(t) y(t) \\ -\beta \eta^* x(t) y(t) \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad D(\mu) = \begin{pmatrix} -\beta x(t) \\ \beta x(t) \\ c_1 z_1(t) \\ -c_2 q w(t) \\ c_2 q w(t) \end{pmatrix},$$

$$a(\mu) = a + \rho_1 z_1(t) + \rho_2 z_2(t), b(\mu) = b_2 - c_2 x(t) y(t).$$

Модель, содержащая наименее благоприятные параметры исходной нелинейной системы, записывается в виде

$$\frac{d}{dt}\mu^*(t) = A^*\mu^*(t) + K(\lambda) + B^*u_M(t) + D^*y_M(t),$$

$$\mu^*(t_0) = \mu_0.$$

Здесн

$$A^* = \begin{pmatrix} -d & 0 & 0 & 0 & 0 \\ 0 & -a^* & 0 & 0 & 0 \\ 0 & 0 & -b_1 & 0 & 0 \\ 0 & 0 & 0 & -b^* & 0 \\ 0 & 0 & 0 & 0 & -h \end{pmatrix}, \quad B^* = \begin{pmatrix} \beta \eta^* x_0 y_0 \\ -\beta \eta^* x_0 y_0 \\ 0 \\ 0 \\ 0 \end{pmatrix},$$

$$D^* = \begin{pmatrix} -\beta x_0 \\ \beta x_0 \\ c_1 z_{10} \\ -c_2 q w_0 \\ c_2 q w_0 \end{pmatrix},$$

$$a^* = a + \rho_1 z_{10} + \rho_2 z_{20}, \quad b^* = b_2 - c_2 x_0 y_0.$$

Гарантирующее и противодействующее управления определяются соотношениями (19). Матрица S^* определяется решением алгебраического уравнения (18), в котором заданы весовые матрицы

$$R = 0,1, \quad P = 1, \quad Q = \left(\begin{array}{ccccc} 10 & 0 & 0 & 0 & 0 \\ 0 & 0,01 & 0 & 0 & 0 \\ 0 & 0 & 0,01 & 0 & 0 \\ 0 & 0 & 0 & 0,01 & 0 \\ 0 & 0 & 0 & 0 & 0,01 \end{array}\right).$$

Найденная матрица S^* (оператор lqr в пакете MatLab) имеет вид

$$S = \left(\begin{array}{ccccc} 9,0620 & 0,0168 & 0 & 0 & 0 \\ 0,0168 & 0,0227 & 0 & 0 & 0 \\ 0 & 0 & 0,05 & 0 & 0 \\ 0 & 0 & 0 & 1,25 & 0 \\ 0 & 0 & 0 & 0 & 0,05 \end{array}\right).$$

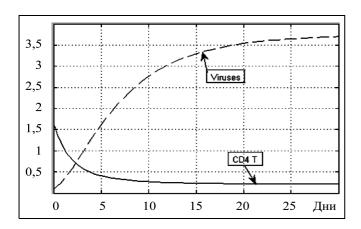


Рис. 2. Изменение концентрации CD4 Т-клеток и вирусов без введения препарата

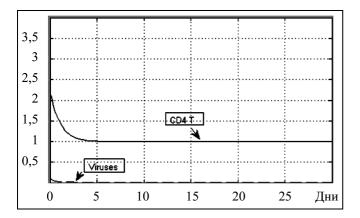


Рис. 3. Изменение концентрации CD4 Т-клеток и вирусов в случае продолжения лечения

Рассмотрим ситуацию, когда «пациент», долго принимал ВААРТ, «накопил» в организме значительное количество CD4 Т-клеток, но прекратил лечение. Начальные условия для этого случая будут следующими:

$$x_0 = 1.5 \text{ mm}^{-1}, \quad y_0 = 0.1 \text{ mm}^{-1}, \quad z_1 = 0.01 \text{ mm}^{-1},$$

 $w = 3 \text{ mm}^{-1}, \quad z_2 = 0.01 \text{ mm}^{-1}.$

На рис. 2 показано поведение CD4 Т-клеток и вирусов в случае отсутствия введения препарата.

Видно, что если пациенту, иммунная система которого относительна стабилизирована, перестать давать препарат, вирусная активность снова проявится и начнет доминировать, что приведет к снижению иммунитета и, как следствие, к летальному исходу.

Однако если продолжать лечение, то можно отсрочить наступление смерти и привести систему к состоянию долгосрочного непрогрессора, что можно наблюдать на рис. 3.

На графиках переходных процессов (см. рис. 3) видно, что под действием управляющих воздействий CD4 Т-клетки преобладают и при условии, что вирус на данный момент не может быть побежден, клетки-хелперы держат их на низком уровне и не дают «атаковать» иммунную систему.

В силу принятого решения о применении стратегии гарантированного управления и представлении задачи поддержания жизни ВИЧ-инфицированных как антагонистическую игру CD4 Т-клеток и вирусов смоделируем поведение динамической модели. Гарантированное управление должно выводить систему из критического состояния. Для наглядной демонстрации этого положения установим следующие начальные значения параметров:

$$x_0 = 0.291 \text{ mm}^{-1}, \ y_0 = 4.333 \text{ mm}^{-1}, \ z_1 = 0.913 \text{ mm}^{-1}, \ w = 0.001 \text{ mm}^{-1}, \ z_2 = 0.001 \text{ mm}^{-1}.$$

Система с заданными значениями параметров описывает пациента, иммунная система которого сильно подорвана ВИЧ-инфекцией. Графики переходных процессов в этом случае имеют вид, представленный на рис. 4. Видно, что система пытается бороться с популяцией вирусов самостоятельно, однако их концентрация слишком велика. Это происходит потому, что наша динамическая модель является прототипом ВИЧ-положительного больного, находящегося в критическом состоянии.

Рассмотрим поведение динамической модели при наличии управляющих воздействий (рис. 5). Графики переходных процессов наглядно демонстрируют, что при наличии активных управляющих воздействий система успешно справляется с критическими начальными условиями и приводит систему в состояние долгосрочного непрогрессора, что в свою очередь облегчает и продлевает жизнь ВИЧ-инфицированным больным.

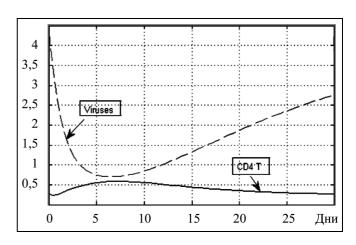


Рис. 4. Изменение концентрации CD4 Т-клеток и вирусов без введения препаратов

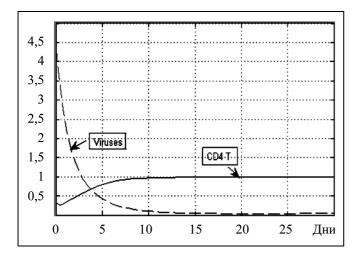


Рис. 5. Изменение концентрации CD4 Т-клеток и вирусов при введении препаратов в соответствии с предложенным методом гарантированного управления

Математическое моделирование динамики ВИЧ-инфекции от времени с управлениями, синтезированными с помощью представленного в § 1 метода показывает эффективность гарантированных управлений для различных состояний иммунной системы.

ЗАКЛЮЧЕНИЕ

На основе анализа математических моделей зарубежных и отечественных исследователей выбрана математическая модель, описывающая нелинейную динамику состояния CD4 Т-клеток в крови пациента. Разработанная методика поиска гарантированных управлений, основанная на представлении нелинейных систем в виде систем с линейной структурой, но с зависящими от состояния параметрами применена для решения конкретной задачи управления уровнем CD4 Т-клеток, которые позволяют поддерживать жизнь ВИЧ-инфицированным людям.

Математическое моделирование динамики ВИЧ-инфекции от времени с управлениями, синтезированными с помощью разработанного метода, показывает эффективность гарантированных управлений для различных состояний иммунной системы.

ЛИТЕРАТУРА

- Величенко В.В., Притыкин Д.А. Нелинейные процессы динамики СПИДа. Математические методы оптимизации стратегий лечения // Тр. второй междунар. конф. «Устойчивость и управление для нелинейных трансформирующихся систем». М., 2000. С. 88—107.
- 2. Величенко В.В., Притыкин Д.А. Социология, информатика и динамика ВИЧ-инфицированной системы человека и оптимальные стратегии лечения // Тр. XII Байкальской междунар. конф. Иркутск, 2001. Т. 6. С. 110—117.
- Chang H. and Astolfi A. Immune response's enhancement via controlled drug scheduling // Proc. of Conference on Decision and Control. — 2007. — P. 3919—3924.
- 4. *Wodarz D.* Helper-dependent vs. helper-independent CTL responses in HIV infection: implications for drug therapy and resistance // J. of Theoretical Biology. 2001. P. 447—459.
- Chang H., Astrofi F. Control of HIV Infection Dynamics by the Enhancement of the Immune System // Proc. 17th World Conf. IFAC, Seoul, Korea, July 6–11. – P. 14217–12222.
- Афанасьев В.Н. Управление нелинейными объектами с параметрами, зависящими от состояния // Автоматика и телемеханика. 2011. № 4. С. 43—56.
- 7. *Афанасьев В.Н.* Концепция гарантированного управления в задачах управления неопределенными объектами // Изв. РАН. ТиСУ. 2011.— № 1. C. 24—31.
- Cimen T.D. State-Dependent Riccati Equation (SDRE) Control: A Survey // Proc. 17th World Conf. IFAC, Seoul, Korea, July 6–11. 2008. P. 3771–3775.
- 9. $\mathit{Ланкастер}\ \mathit{\Pi}$. Теория матриц. М.: Наука, 1978. 280 с.

Статья представлена к публикации членом редколлегии В.Н. Новосельцевым.

Андрюхина Валерия Николаевна — магистрант,

Афанасьев Валерий Николаевич — д-р техн. наук, зав. кафедрой, afanval@mail.ru.

Московский государственный институт электроники и математики.

Конференция «Управление в технических, аргатических, организационных и сетевых системах» (УТЭОСС-2012)

Конференция состоится с 9 по 11 октября 2012 г. в Санкт-Петербурге в рамках 5-й Мультиконференции по проблемам управления (МКПУ-2012) и посвящена памяти академика РАН В.М. Матросова.

Научные направления конференции:

- управление в технических системах;
- мехатронные и эргатические системы;
- организационные системы;
- адаптивное, коммуникационно-сетевое и интеллектуальное управление.

Подробную информацию о конференции можно найти на сайте http://uteoss2012.ipu.ru/.

Контактная информация:

канд. физ.-мат. наук Иван Николаевич Барабанов, ученый секретарь Программного комитета УТЭОСС-2012; **☎**(495) 335-23-53, ⊠ivbar@ipu.ru.

48