NUMBER OF COMPONENTS OF THE NULLCONE

VLADIMIR L. POPOV*

Abstract

For every pair (G, V) where G is a connected simple linear algebraic group and V is a simple algebraic G-module with a free algebra of invariants, the number of irreducible components of the nullcone of unstable vectors in V is found.

1. We fix as the base field an algebraically closed field k of characteristic zero. Below the standard notation and terminology of the theory of algebraic groups and invariant theory [23] are used freely.

Consider a finite dimensional vector space V over the field k and a connected semisimple algebraic subgroup G of the group GL (V). Let $\pi_{G, V}: V \rightarrow V / / G$ be the categorical quotient for the action of G on V, i.e., $V / / G$ is the irreducible affine algebraic variety with the coordinate algebra $k[V]^{G}$ and the morphism $\pi_{G, V}$ is determined by the identity embedding $k[V]^{G} \hookrightarrow k[V]$. Denote by $\mathcal{N}_{G, V}$ the nullcone of the G module V, i.e., the fiber $\pi_{G, V}^{-1}\left(\pi_{G, V}(0)\right)$ of the morphism $\pi_{G, V}$. A point of the space V lies in $\mathcal{N}_{G, V}$ if and only if its G-orbit is nilpotent, i.e., contains in its closure the zero of the space V (see [23, 5.1]).

This article owes its origin to the following A. Joseph's question [8]: may it happen that the nullcone $\mathcal{N}_{G, V}$ is reducible if the group G is simple, its natural action on V is irreducible, and the algebra of invariants $k[V]^{G}$ is free?

Pairs (G, V) with a free algebra of invariants $k[V]^{G}$ have been studied intensively in the 70s of the last century (see [23], [17] and the literature cited there). Under the assumptions of simplicity of the group G and irreducibility of its action on V they are completely classified and constitute a remarkable class which admits a number of other important characterizations.

In Theorem 3 proved below we find the number of irreducible components of the nullcone $\mathcal{N}_{G, V}$ for every pair (G, V) from this class. As a corollary we obtain the affirmative answer to A. Joseph's question. The proof is based on the aforementioned classification and characterizations that are reproduced below in Theorems 1 and 2.

[^0]2. Up to conjugacy in $\mathrm{GL}(V)$, the group G is uniquely determined as the image of a representation $\widetilde{G} \rightarrow \mathrm{GL}(V)$ of its universal covering group \widetilde{G}. The equivalence class on this representation, if it is irreducible, is uniquely determined by its highest weight λ (with respect to a fixed maximal torus and a Borel subgroup of the group \widetilde{G} containing this torus). With this in mind, we shall write $G=(\mathrm{R}, \lambda)$, where R is the type of the root system of the group G. Note that $(R, \lambda)=\left(R, \lambda^{*}\right)$, where λ^{*} is the highest weight of the dual representation. We denote by $\varpi_{1}, \ldots, \varpi_{r}$ the fundamental weights of the group \widetilde{G} numbered as in Bourbaki [4]. If $\mathrm{R}=\mathrm{A}_{r}, \mathrm{~B}_{r}, \mathrm{C}_{r}, \mathrm{D}_{r}$, then we assume that, respectively, $r \geqslant 1,3,2,4$.

The following theorem is proved in [10]:
Theorem 1. All connected nontrivial simple algebraic subgroups G of the group GL(V) that act on V irreducibly and have a free algebra of invariants $k[V]^{G}$, are exhausted by the following list:
(i) (adjoint groups):

$$
\begin{aligned}
& \left(\mathrm{A}_{r}, \varpi_{1}+\varpi_{r}\right) ;\left(\mathrm{B}_{r}, \varpi_{2}\right) ;\left(\mathrm{D}_{r}, \varpi_{2}\right) ;\left(\mathrm{C}_{r}, 2 \varpi_{1}\right) ; \\
& \left(\mathrm{E}_{6}, \varpi_{2}\right),\left(\mathrm{E}_{7}, \varpi_{1}\right) ;\left(\mathrm{E}_{8}, \varpi_{8}\right) ;\left(\mathrm{F}_{4}, \varpi_{1}\right) ;\left(\mathrm{G}_{2}, \varpi_{2}\right)
\end{aligned}
$$

(ii) (isotropy groups of symmetric spaces):

$$
\begin{gathered}
\left(\mathrm{B}_{r}, \varpi_{1}\right) ;\left(\mathrm{D}_{r}, \varpi_{1}\right) ;\left(\mathrm{A}_{3}, \varpi_{2}\right) ;\left(\mathrm{A}_{1}, 2 \varpi_{1}\right) ; \\
\left(\mathrm{B}_{r}, 2 \varpi_{1}\right) ;\left(\mathrm{D}_{r}, 2 \varpi_{1}\right) ;\left(\mathrm{A}_{3}, 2 \varpi_{2}\right) ;\left(\mathrm{C}_{2}, 2 \varpi_{1}\right) ;\left(\mathrm{A}_{1}, 4 \varpi_{1}\right) ; \\
\left(\mathrm{C}_{r}, \varpi_{2}\right) ;\left(\mathrm{A}_{7}, \varpi_{4}\right) ;\left(\mathrm{B}_{4}, \varpi_{4}\right) ;\left(\mathrm{C}_{4}, \varpi_{4}\right) ;\left(\mathrm{D}_{8}, \varpi_{8}\right) ;\left(\mathrm{F}_{4}, \varpi_{4}\right) ;
\end{gathered}
$$

(iii) (groups G with $\left.k[V]^{G}=k\right)$:

$$
\left(\mathrm{A}_{r}, \varpi_{1}\right) ;\left(\mathrm{A}_{r}, \varpi_{2}\right), r \geqslant 4 \text { even } ;\left(\mathrm{C}_{r}, \varpi_{1}\right) ;\left(\mathrm{D}_{5}, \varpi_{5}\right) ;
$$

(iv) (groups G with $\operatorname{tr} \operatorname{deg} k[V]^{G}=1$ not included in (i) and (ii)):

$$
\begin{gathered}
\left(\mathrm{A}_{r}, 2 \varpi_{1}\right), r \geqslant 2 ;\left(\mathrm{A}_{r}, \varpi_{2}\right), r \geqslant 5 \text { odd; } \\
\left(\mathrm{A}_{1}, 3 \varpi_{1}\right) ;\left(\mathrm{A}_{5}, \varpi_{3}\right) ;\left(\mathrm{A}_{6}, \varpi_{3}\right) ;\left(\mathrm{A}_{7}, \varpi_{3}\right) ; \\
\left(\mathrm{B}_{3}, \varpi_{3}\right) ;\left(\mathrm{B}_{5}, \varpi_{5}\right) ;\left(\mathrm{C}_{3}, \varpi_{3}\right) ;\left(\mathrm{D}_{6}, \varpi_{6}\right) ;\left(\mathrm{D}_{7}, \varpi_{7}\right) ; \\
\left(\mathrm{G}_{2}, \varpi_{1}\right) ;\left(\mathrm{E}_{6}, \varpi_{1}\right) ;\left(\mathrm{E}_{7}, \varpi_{7}\right) ;
\end{gathered}
$$

(v) (other groups):

$$
\left(\mathrm{A}_{2}, 3 \varpi_{1}\right) ;\left(\mathrm{A}_{8}, \varpi_{3}\right) ;\left(\mathrm{B}_{6}, \varpi_{6}\right) .
$$

Remark 1. There are no repeated groups inside each of these five lists (i)-(v). The unique group included in two different lists (namely, in (i) and (ii)) is $\left(\mathrm{A}_{1}, 2 \varpi_{1}\right)$. The groups G with $\operatorname{tr} \operatorname{deg} k[V]^{G}=1$ included in
at least one of the lists (i), (ii) are $\left(\mathrm{B}_{r}, \varpi_{1}\right),\left(\mathrm{D}_{r}, \varpi_{1}\right),\left(\mathrm{A}_{3}, \varpi_{2}\right),\left(\mathrm{C}_{2}, \varpi_{2}\right)$, $\left(\mathrm{A}_{1}, 2 \varpi_{1}\right),\left(\mathrm{B}_{4}, \varpi_{4}\right)$ and only these groups.
3. Recall from $[23,3.8,8.8]$, [17, Chap. 5, §1, 11], [18] that an algebraic subvariety S in V is called a Chevalley section with the Weyl group $W(S):=N(S) / Z(S)$, where $N(S):=\{g \in G \mid g \cdot S=S\}$ and $Z(S):=\{g \in G \mid g \cdot s=s \forall s \in S\}$, if the homomorphism of k-algebras $k[V]^{G} \rightarrow k[S]^{W(S)},\left.f \mapsto f\right|_{S}$, is an isomorphism. A linear subvariety in V that is a Chevalley section with trivial Weyl group (i.e., a linear subvariety intersecting every fiber of the morphism $\pi_{G, V}$ at a single point) is called a Weierstrass section. A linear subspace in V that is a Chevalley section with a finite Weyl group is called a Cartan subspace.

Recall also (see [23, Thm. 3.3 and Cor. 4 of Thm. 2.3]) that semisimplicity of the group G implies the equality

$$
\begin{equation*}
m_{G, V}:=\max _{v \in V} \operatorname{dim} G \cdot v=\operatorname{dim} V-\operatorname{dim} V / / G \tag{1}
\end{equation*}
$$

Consider the following properties:
(FA) $k[V]^{G}$ is a free k-algebra;
(FM) $k[V]$ is a free $k[V]^{G}$-module;
(ED) all fibers of the morphism $\pi_{G, V}$ have the same dimension;
$\left(\mathrm{ED}_{0}\right) \operatorname{dim} \mathcal{N}_{G, V}=m_{G, V}($ see (1));
(FO) every fiber of the morphism $\pi_{G, V}$ contains only finitely many G-orbits;
$\left(\mathrm{FO}_{0}\right) \mathcal{N}_{G, V}$ contains only finitely many G-orbits;
(NS) G-stabilizers of points in general position in V are nontrivial;
(CS) there is a Cartan subspace in V;
(WS) there is a Weierstrass section in V.
The following implications between them hold true:

$$
\begin{aligned}
(\mathrm{FM}) & \Leftrightarrow(\mathrm{FA}) \&(\mathrm{ED}) \quad(\text { see }[17, \text { p. } 127, \text { Thm. }]] ; \\
\left(\mathrm{ED}_{0}\right) & \Leftrightarrow(\mathrm{ED}) \Leftarrow\left(\mathrm{FO}_{0}\right) \quad(\text { see }[17, \text { p. } 128, \text { Thm. } 3, \text { Cor. }]) ; \\
(\mathrm{FO}) & \Leftrightarrow(\mathrm{FO}) \quad(\text { see }[23, \text { Cor. } 3 \text { of Prop. } 5.1]) ; \\
(\mathrm{CS}) & \Rightarrow(\mathrm{FM}) \Leftarrow(\mathrm{WS}) \quad(\text { see }[17, \text { p. } 133, \text { Thm. } 7]) .
\end{aligned}
$$

Theorem 2. For the connected simple algebraic subgroups G in $\mathrm{GL}(V)$, acting on V irreducibly, all nine properties (FA), (FM), (ED), (ED_{0}), (FO), (FO_{0}), (NS), (CS), and (WS) are equivalent ${ }^{1}$.

[^1]Proof. The complete list of the groups G having the property (FA) is obtained in [10]; the one having the property (ED) is obtained in [16], [17, p. 141, Thm. 8] and, in the same papers, that having the property (FM); the one having the property (FO) is obtained in [11]. The results of papers [3], [2], [14], [15] yield the complete list of the groups G having the property (NS). Matching the obtained lists proves the equivalence of the properties (FA), (FM), (ED), (FO), and (NS) (see [23, Thm. 8.8] and [17, p. 127, Thm. 1]). It is proved in [17, p. 142, Thm. 9] that each of the properties (CS) and (WS) is equivalent to the property (ED).

Remark 2. The conditions of simplicity of the group G and irreducibility of its action on V in Theorem 2 are essential, see [18].
4. Now we turn to finding the number of irreducible components of the nullcone $\mathcal{N}_{G, V}$.

Lemma 1. If $\operatorname{dim} V / / G \leqslant 1$, then the nullcone $\mathcal{N}_{G, V}$ is irreducible. If $\operatorname{dim} V / / G=0$, then it contains an open dense G-orbit.

Proof. The equality $\operatorname{dim} V / / G=0$ means that $\operatorname{dim} V / / G$ is a single point. By the definition of the nullcone, the latter condition is equivalent to the equality $\mathcal{N}_{G, V}=V$. In particular, in this case the nullcone $\mathcal{N}_{G, V}$ is irreducible. On the other hand, in view of (1), the equality $\operatorname{dim} V / / G=0$ is equivalent to that V contains a G-orbit of dimension $\operatorname{dim} V$, i.e., an open and dense orbit.

In view of smoothness of V, the algebraic variety $V / / G$ is normal (see. [23, Thm. 3.16]). Let $\operatorname{dim} V / / G=1$. It follows from rationality of the algebraic variety V, dominance of the morphism $\pi_{G, V}$, and Lüroth's theorem that the curve $V / / G$ is rational. Being normal, it is smooth. Hence $V / / G$ is isomorphic to an open subset of the affine line. Since every invertible element of the algebra $k[V]$ is a constant, the algebra $k[V]^{G}$ has the same property. Hence the curve $V / / G$ is isomorphic to the affine line, and therefore, there is a polynomial $f \in k[V]^{G}$ such that $f(0)=0$ and $k[V]^{G}=k[f]$. Since the group G is connected and has no nontrivial characters, the polynomial f is irreducible (see [23, Thm. 3.17]). Since $\mathcal{N}_{G, V}=\{v \in V \mid f(v)=0\}$, this implies irreducibility of the nullcone $\mathcal{N}_{G, V}$.

Theorem 3. The nullcone $\mathcal{N}_{G, V}$ of the connected nontrivial simple algebraic group $G \subseteq \mathrm{GL}(V)$ acting irreducibly on V and having the equivalent properties listed in Theorem 2 is reducible if and only if G is contained in the following list:

$$
\begin{equation*}
\left(\mathrm{D}_{r}, 2 \varpi_{1}\right),\left(\mathrm{A}_{3}, 2 \varpi_{2}\right),\left(\mathrm{A}_{7}, \varpi_{4}\right) . \tag{2}
\end{equation*}
$$

For every group G from list (2), the number of irreducible components of the nullcone $\mathcal{N}_{G, V}$ is equal to 2 .

Proof. From Theorem 2 we obtain the following interpretation of the number of irreducible components of the nullcone $\mathcal{N}_{G, V}$. Using (1) and the fiber dimension theorem (see [7, Chap. II, §3]), we infer that dimension of every irreducible component of the nullcone $\mathcal{N}_{G, V}$ is at least $m_{G, V}$. This and the property $\left(\mathrm{ED}_{0}\right)$ imply that dimension of every irreducible component of the nullcone $\mathcal{N}_{G, V}$ is equal to $m_{G, V}$. But in view of the property $\left(\mathrm{FO}_{0}\right)$ every irreducible component of the nullcone $\mathcal{N}_{G, V}$ is the closure of some G-orbit. Hence the number of irreducible components of the nullcone $\mathcal{N}_{G, V}$ is equal to the number of $m_{G, V^{-}}$ dimensional nilpotent G-orbits in V.

Now we shall use Theorem 1 and find, for every group G listed in it, the number of irreducible components of the nullcone $\mathcal{N}_{G, V}$.

1. If the group G is adjoint, then according to [11, Cor. 5.5], the nullcone $\mathcal{N}_{G, V}$ is irreducible. This conclusion covers all the groups G from list (i) of Theorem 1.
2. In view of Lemma 1 , the nullcone $\mathcal{N}_{G, V}$ is irreducible for all the groups G from lists (iii) and (iv) of Theorem 1 and also for the groups with $\operatorname{trdeg}_{k} k[V]^{G}=1$ mentioned in Remark 1.
3. Consider all the groups G from list (v) of Theorem 1.
(3a) The orbits of the group $\left(\mathrm{A}_{2}, 3 \varpi_{1}\right)$ are the orbits of the natural action of the group SL_{3} on the space of cubic forms in three variables. According to [23, 5.4, Example $\left.2^{\circ}\right]$, the Hilbert-Mumford criterion implies the existence of a linear subspace L in V such that $\mathcal{N}_{G, V}=G \cdot L$. Hence the nullcone $\mathcal{N}_{G, V}$ is irreducible.
(3b) The orbits of the group ($\mathrm{A}_{8}, \varpi_{3}$) are the orbits of the natural action of the group SL_{9} on the space of 3 -vectors $\wedge^{3} k^{9}$. The classification of them is obtained in [24]; it shows (see [24, Table 6, $\operatorname{dim} S=0]$) that in this case there is a unique nilpotent orbit of dimension $m_{G, V}=$ 80. Hence the nullcone $\mathcal{N}_{G, V}$ is irreducible.
(3c) The orbits of the group $\left(\mathrm{B}_{6}, \varpi_{6}\right)$ are the orbits of the natural action of the group Spin_{13} on the space of spinor representation. The classification of them is obtained in [6]; it shows (see [6, Thm. 1(3)]) that in this case there is a unique nilpotent orbit of dimension $m_{G, V}=$ 62 , and hence the nullcone $\mathcal{N}_{G, V}$ is irreducible.
4. Let us now consider all the groups G from the remaining list (ii) of Theorem 1. By virtue of the Lefschetz principle, we may (and shall) assume that $k=\mathrm{C}$. All these groups are obtained by means of the following general construction.

Consider a semisimple complex Lie algebra \mathfrak{h}, it adjoint group Ad \mathfrak{h}, and an involution $\theta \in$ Aut \mathfrak{h}. The decomposition
$\mathfrak{h}=\mathfrak{k} \oplus \mathfrak{p}, \quad$ where $\mathfrak{k}:=\{x \in \mathfrak{h} \mid \theta(x)=x\}, \mathfrak{p}:=\{x \in \mathfrak{h} \mid \theta(x)=-x\}$.
is a Z_{2}-grading of the Lie algebra \mathfrak{h}, and \mathfrak{k} is its proper reductive subalgebra (see [25]). Let K be the connected algebraic subgroup of $\operatorname{Ad} \mathfrak{h}$ with the Lie algebra \mathfrak{k}. The subspace \mathfrak{p} is invariant with respect to the restriction to K of the natural action of the group $\operatorname{Ad} \mathfrak{h}$ on \mathfrak{h}. The action of K on \mathfrak{p} arising this way determines a homomorphism $\iota: K \rightarrow \operatorname{GL}(\mathfrak{p})$.

For every group from list (ii) of Theorem 1 , there is a pair (\mathfrak{h}, θ) such that $V=\mathfrak{p}$ and $G=\iota(K)$.

Next, we use the following facts (see [12], [5], [25], [22]).
In \mathfrak{h}, there is a θ-stable real form \mathfrak{r} of the Lie algebra \mathfrak{h}, such that $\mathfrak{r}=(\mathfrak{r} \cap \mathfrak{k}) \oplus(\mathfrak{r} \cap \mathfrak{p})$ is its Cartan decomposition (thereby $\mathfrak{r} \cap \mathfrak{k}$ is a compact real form of the Lie algebra \mathfrak{k}). The semisimple real Lie algebra \mathfrak{r} is noncompact and the juxtaposition $\mathfrak{r} \rightsquigarrow \theta$ determines a bijections between the noncompact real forms of the Lie algebra \mathfrak{h}, considered up to an isomorphism, and the involutions in Aut \mathfrak{h}, considered up to conjugation. By means of this bijection and described construction, every group G from list (ii) of Theorem 1 is determined by some noncompact semisimple real Lie algebra \mathfrak{s}; we say that G and \mathfrak{s} correspond each other.

The nullcone $\mathcal{N}_{K, \mathfrak{p}}$ for the action of K on \mathfrak{p} contains only finitely many K-orbits, therefore, every its irreducible component contains an open dense K-orbit; the latter is called principal nilpotent K-orbit and its dimension is equal to the maximum of dimensions of K-orbits in \mathfrak{p}.

Let $\sigma: \mathfrak{h} \rightarrow \mathfrak{h}, x+i y \mapsto x-i y, x, y \in \mathfrak{r}$. Denote by $\mathcal{N}_{\mathfrak{r}}$ the set of nilpotent elements of the Lie algebra \mathfrak{r}. In every nonzero K-orbit $\mathscr{O} \subset \mathcal{N}_{K, \mathfrak{p}}$, there is an element e such that $\{e, f:=-\sigma(e), h:=[e, f]\}$ is an $\mathfrak{s l} l_{2}$-triple (i.e., $[h, e]=2 e$ and $[h, f]=-2 f$). Then the element $(i / 2)(e+f-h)$ lies in $\mathcal{N}_{\mathfrak{r}}$, its Ad \mathfrak{r}-orbit \mathscr{O}^{\prime} does not depend on the choice of e, the equality $2 \operatorname{dim}_{\mathrm{C}} \mathscr{O}=\operatorname{dim}_{\mathrm{R}} \mathscr{O}^{\prime}$ holds, and the map $\mathscr{O} \mapsto \mathscr{O}^{\prime}$ is a bijection between the set of nonzero K-orbits in $\mathcal{N}_{K, \mathfrak{p}}$ and the set of nonzero Ad \mathfrak{r}-orbits in $\mathcal{N}_{\mathfrak{r}}$.

A nilpotent element of a real semisimple Lie algebra \mathfrak{s} is called compact if the reductive Levi factor of its centralizer in \mathfrak{s} is a compact Lie algebra, [22]. For all simple real Lie algebras \mathfrak{s} and their compact elements x, the orbits $(\operatorname{Ad} \mathfrak{s}) \cdot x$ are classified (and their dimensions are found) in [22]. If, in the above notation, the elements of an $\operatorname{Ad} \mathfrak{r}$-orbit \mathscr{O}^{\prime} are compact, then the K-orbit \mathscr{O} is called (-1)-distinguished, [19]. All principal nilpotent K-orbits are (-1)-distinguished, [21].

It follows from the aforesaid that the number of irreducible components of the nullcone $\mathcal{N}_{K, p}$ is equal to the number of (-1)-distinguished K-orbits of maximal dimension in \mathfrak{p}, and also to the number of orbits $(\operatorname{Ad} \mathfrak{r}) \cdot x$ of maximal dimension, where x is a compact element in \mathfrak{r}.

This reduces the problem to pointing out for every group G from list (ii) of Theorem 1 the simple real Lie algebra \mathfrak{s} corresponding to it, and then to finding the number of orbits $(\operatorname{Ad} \mathfrak{s}) \cdot x$, where x is a compact element of \mathfrak{s}, such that their dimension is maximal.

Now we shall perform this for every group from list (ii) of Theorem 1, except those from Remark 1 that have already been considered above.
(4a) Let G be one of the groups $\left(\mathrm{B}_{r}, 2 \varpi_{1}\right),\left(\mathrm{D}_{r}, 2 \varpi_{1}\right),\left(\mathrm{A}_{3}, 2 \varpi_{2}\right)$, $\left(\mathrm{C}_{2}, 2 \varpi_{1}\right),\left(\mathrm{A}_{1}, 4 \varpi_{1}\right)$. Therefore, $\mathfrak{k}=\mathfrak{s o}_{n}$, where, respectively, $n=2 r+1$ (with $r \geqslant 3$), $2 r$ (with $r \geqslant 4$), 6, 5, 3. Hence the maximal compact subalgebra in \mathfrak{s} is $\mathfrak{s o}_{n, 0}$ (see [25], [5], [22, Table 1]). In this case, \mathfrak{s} is a real form of the Lie algebra $\mathfrak{s l}_{n}$ (see Summary Table at the end of [23] and Tables 7, 9 in Reference Chapter of [25]). It follows from this and Table 8 in Reference Chapter of [25] that $\mathfrak{s}=\mathfrak{s l}_{n}(\mathrm{R})$. According to $[22$, Thm. 8$]$, the number of orbits $(\operatorname{Ad} \mathfrak{s}) \cdot x$, where x is a nonzero compact element of \mathfrak{s}, is equal to 1 if n is add, and to 2 if n is even, and in the case of even n both of these orbits have the same dimension. Therefore, the nullcone $\mathcal{N}_{G, V}$ is irreducible for odd n and has exactly two irreducible components for even n.
(4b) Let $G=\left(\mathrm{C}_{r}, \varpi_{2}\right)$. Therefore, $\mathfrak{k}=\mathfrak{s p}_{2 r}$, so the maximal compact subalgebra in \mathfrak{s} is $\mathfrak{s p}_{r, 0}$ (see [25], [5], [22, Table 1]). In this case, \mathfrak{s} is a real form of the Lie algebra $\mathfrak{s l}_{2 r}$ (see Summary Table at the end of [23] and Tables 7, 9 in Reference Chapter of [25]). It follows from this and Table 8 in Reference Chapter of [25] that $\mathfrak{s}=\mathfrak{s l}_{r}(\mathrm{H})$. According to [22, Thm. 8], the number of orbits $(\operatorname{Ad} \mathfrak{s}) \cdot x$, where x is a nonzero compact element of \mathfrak{s}, is equal to 1 . Therefore, the nullcone $\mathcal{N}_{G, V}$ is irreducible.
(4c) Let $G=\left(\mathrm{A}_{7}, \varpi_{4}\right)$. Then $\mathfrak{k}=\mathfrak{s l}_{8}$, so the maximal compact subalgebra in \mathfrak{s} is $\mathfrak{s u}_{8}$ (see [25], [5], [22, Table 1]). In this case, \mathfrak{s} is a real form of the Lie algebra E_{7} (see Summary Table at the end of [23] and Tables 7, 9 in Reference Chapter of [25]). It follows from this and [22, Table 5] that, using E. Cartan's notation, $\mathfrak{s}=\mathrm{E}_{7(7)}$. According to [22, Table 12], for this \mathfrak{s}, the number of (-1)-distinguished K-orbits of maximal dimension $(=63)$ in $\mathcal{N}_{K, \mathfrak{p}}$ is equal to 2 . Therefore, the number of irreducible componenets of the nullcone $\mathcal{N}_{G, V}$ is equal to 2 as well.
(4d) Let $G=\left(\mathrm{C}_{4}, \varpi_{4}\right)$. Therefore, $\mathfrak{k}=\mathfrak{s p}_{8}$, and hence the maximal compact subalgebra in \mathfrak{s} is $\mathfrak{s p}_{4,0}$ (see [25], [5], [22, Table 1]). In this case, \mathfrak{s} is a real form of the Lie algebra E_{6} (see Summary Table at the end of [23] and Tables 7, 9 in Reference Chapter of [25]). It follows from
this and [22, Table 5] that $\mathfrak{s}=\mathrm{E}_{6(6)}$. According to [22, Table 7], for this \mathfrak{s}, there is a unique (-1)-distinguished K-orbit of maximal dimension (=36) in $\mathcal{N}_{K, \mathfrak{p}}$. Therefore, the nullcone $\mathcal{N}_{G, V}$ is irreducible.
(4e) Let $G=\left(\mathrm{D}_{8}, \varpi_{8}\right)$. Therefore, $\mathfrak{k}=\mathfrak{s o}_{16}$, so the maximal compact subalgebra in \mathfrak{s} is $\mathfrak{s o}_{16,0}$ (see [25], [5], [22, Table 1]). In this case, \mathfrak{s} is a real form of the Lie algebra E_{8} (see Summary Table at the end of [23] and Tables 7, 9 in Reference Chapter of [25]). It follows from this and [22, Table 5] that $\mathfrak{s}=\mathrm{E}_{8(8)}$. According to [22, Table 14], for this \mathfrak{s}, there is a unique (-1)-distinguished K-orbit of maximal dimension $(=129)$ in $\mathcal{N}_{K, \mathfrak{p}}$. Hence the nullcone $\mathcal{N}_{G, V}$ is irreducible.
(4f) Let $G=\left(\mathrm{F}_{4}, \varpi_{4}\right)$. Therefore, $\mathfrak{k}=\mathfrak{f}_{4}$, so the maximal compact subalgebra in \mathfrak{s} is $\mathrm{F}_{4(-52)}$ (see [22, Sect. 5]). In this case, \mathfrak{s} is a real form of the Lie algebra E_{8} (see Summary Table at the end of [23] and Tables 7, 9 in Reference Chapter of [25]). It follows from this and [22, Table 5] that $\mathfrak{s}=\mathrm{E}_{6(-26)}$. According to [22, Table 9], for this \mathfrak{s}, there is a unique (-1)-distinguished K-orbit of maximal dimension ($=24$) in $\mathcal{N}_{K, \mathfrak{p}}$. Hence in this case the nullcone $\mathcal{N}_{G, V}$ is irreducible.

Remark 3. In [20] is obtained an algorithm that employs only elementary geometric operations (the orthogonal projection of a finite system of points onto a linear subspace and taking its convex hull) and, starting from the system of weights of the G-module V and the system of roots of the group G, finds a finite set of linear subspaces L in V such that the irreducible components of maximal dimension of the nullcone $\mathcal{N}_{G, V}$ are the varieties $G \cdot L$. In particular, if the property $\left(\mathrm{ED}_{0}\right)$ holds (see above the list of properties after formula (1)), this algorithm describes all the irreducible components of the nullcone $\mathcal{N}_{G, V}$. For instance, this is so for every pair (G, V) from Theorem 1 . The computer implementation of this algorithm is obtained in [1].

References

[1] N. A'Campo, V. L. Popov, The computer algebra package HNC (Hilbert Null Cone), http://www.geometrie.ch, Math. Institut Universität Basel, 2004.
[2] E. M. Andreev, V. L. Popov, Stationary subgroups of points in general position in the representation space of a semisimple Lie group, Funkts. Anal. Prilozh. 5 (1971), no. 4, 1-8 (Russian). Engl. transl.: Funct. Anal. Appl. 5 (1972), 265-271.
[3] E. M. Andreev, E. B. Vinberg, A. G. Ehlashvili, Orbits of highest dimension of semisimple linear Lie groups, Funkts. Anal. Prilozh. 11 (1967), no. 1, 3-7 (Russian). Engl. transl.: Funct. Anal. Appl. 1 (1968), 257-261.
[4] N. Bourbaki, Groupes et Algèbres de Lie, Chap. IV, V, VI, Hermann, Paris, 1968.
[5] D. H. Collingwood, W. M. McGovern, Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold, New York, 1992.
[6] V. Gatti, E. Viniberghi, Spinors of 13-dimensional space, Adv. Math. 30 (1978), no. 2, 137-155.
[7] R. Hartshorne, Algebraic Geometry, Graduate Text in Mathematics, Vol. 52, Springer-Verlag, New York, 1977.
[8] A. Joseph, Private communication, March 2013.
[9] V. G. Kac, Concerning the question of description of the orbit space of a linear algebraic group, Uspekhi Mat. Nauk 30 (1975), no. 6, 173-174 (Russian).
[10] V. G. Kac, V. L. Popov, E. B. Vinberg, Sur les groupes linéaires algébriques dont l'algébre des invariants est libre, C. R. Acad. Sci. Paris Sér. A-B 283 (1976), no. 12, A875-A878.
[11] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math. 81 (1959), 973-1032.
[12] B. Kostant, S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753-809.
[13] D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 34, Springer-Verlag, Berlin, 1994.
[14] A. M. Popov, Irreducible simple linear Lie groups with finite stationary subgroups of general position, Funkts. Anal. Prilozh. 9 (1975), no. 4, 81-82 (Russian). Engl. transl.: Funct. Anal. Appl. 9 (1975), no. 4, 346-347.
[15] A. M. Popov, Finite isotropy subgroups in general position in simple linear Lie groups, Tr. Mosk. Mat. Ob. 48 (1985), 7-59 (Russian). Engl. transl.: Trans. Mosc. Math. Soc. 1986 (1988), 3-63.
[16] V. L. Popov, Representations with a free module of covariants, Funkts. Anal. Prilozh. 10 (1976), no. 3, 91-92. (Russian). Engl. transl.: Funct. Anal. Appl. 10 (1977), 242-244.
[17] V. L. Popov, Groups, Generators, Syzygies, and Orbits in Invariant Theory, Translations of Mathematical Monographs, Vol. 100, Amer. Math. Soc., Providence, RI, 1992.
[18] V. L. Popov, Sections in invariant theory, in: Proceedings of The Sophus Lie Memorial Conference (Oslo, 1992), Scandinavian University Press, Oslo, 1994, 315-361.
[19] V. L. Popov, Self-dual algebraic varieties and nilpotent orbits, in: Proceedings of the International Conference "Algebra, Arithmetic and Geometry", Part II (Mumbai, 2000), Tata Institute of Fundamental Research, Vol. 16, Narosa Publishing House, New Delhi, 2002, pp. 509-533.
[20] V. L. Popov, The cone of Hilbert nullforms, Trudy Mat. Inst. Steklova 241 (2003), 192-209 (Russian). Engl. transl.: Proc. Steklov Inst. of Math. 241 (2003), 177-194.
[21] V. L. Popov, Projective duality and principal nilpotent elements of symmetric pairs, in: Lie Groups and Invariant Theory, Amer. Math. Soc. Transl. (2), Vol. 213, Amer. Math. Soc., Providence, RI, 2005, pp. 215-222.
[22] V. L. Popov, E. A. Tevelev, Self-dual projective algebraic varieties associated with symmetric spaces, in: Algebraic Transformation Groups and Algebraic Varieties, Encycl. Math. Sci.,Vol. 132, Subseries Invariant Theory and Algebraic Transformation Groups, Vol. III, Springer, Berlin, 2004, pp. 130-167.
[23] V. L. Popov, E. B. Vinberg, Invariant theory, in: Algebraic Geometry IV, Encyclopaedia of Mathematical Sciences, Vol. 55, Springer-Verlag, Berlin, 1994, pp. 123-278.
[24] È. B. Vinberg, A. G. Èlashvili, Classification of trivectors of a nine-dimensional space, Tr. Semin. Vektorn. Tenzorn. Anal. Prilozh. Geom. Mekh. Fiz. 18 (1976), 197-233 (Russian). Engl. transl.: Sel. Math. Sov. 7 (1988), no. 1, 63-98.
[25] E. B. Vinberg, A. L. Onishchik, Seminar on Lie Groups and Algebraic Groups, Nauka, Moscow, 1988 (Russian). Engl. transl.: A. L. Onishchik, E. B. Vinberg, Lie Groups and Algebraic Groups, Springer-Verlag, Berlin, 1990.

Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina 8, Moscow, 119991, Russia

E-mail address: popovvl@mi.ras.ru

[^0]: * This work is supported by the RSF under a grant 14-50-00005.

[^1]: ${ }^{1}$ In [13, p. 207, Thm.], the property (NS) is replaced by the property that the G-stabilizer of every point of V is nontrivial. It is a mistake: for instance, the $\mathrm{SL}_{2}{ }^{-}$ module of binary forms in x and y of degree 3 has the property (FA), but the SL_{2}-stabilizer of the form $x^{2} y$ is trivial.

