
Journal of Mathematical Sciences, Vol. 219, No. 1, November, 2016

TYPICAL PROPERTIES OF LEAVES OF CARTAN
FOLIATIONS WITH EHRESMANN CONNECTION

N. I. Zhukova

National Research University Higher School of Economics
25/12, Bol’shaya Pechorskaya St., Nizhny Novgorod 603155, Russia
n.i.zhukova@rambler.ru, nzhukova@hse.ru UDC 514.77 + 517.938.5

We consider a Cartan foliation (M,F ) of an arbitrary codimension q admitting an

Ehresmann connection such that all leaves of (M,F ) are embedded submanifolds of M .

We prove that for any foliation (M,F ) there exists an open, not necessarily connected,

saturated, and everywhere dense subset M0 of M and a manifold L0 such that the induced

foliation (M0, FM0) is formed by the fibers of a locally trivial fibration with the standard

fiber L0 over (possibly, non-Hausdorff) smooth q-dimensional manifold. In the case of

codimension 1, the induced foliation on each connected component of the manifold M0 is

formed by the fibers of a locally trivial fibration over a circle or over a line. Bibliography:

17 titles.

1 Introduction

We recall that a Gδ-subset of M is an at most countable intersection of open everywhere dense

subsets of M . By a typical property we mean any generic property of leaves of a foliation

(M,F ) that belong to some everywhere dense Gδ-subset of M . The problem for finding typical

properties of leaves of proper foliations was stated in [1]. We resolve this problem for Cartan

foliations, i.e., for leaves admitting a transverse Cartan geometry (cf. definitions in Section 2).

The choice of Cartan foliations is motivated by the fact that they involve large classes of

foliations such as Riemannian, pseudo-Riemannian, conformal, projective, transversally homo-

geneous foliations, and foliations with transverse linear connection. As was proved by the author

[2], if a foliation admits a noneffective transverse Cartan geometry, then it also admits an associ-

ated effective transverse Cartan geometry. Therefore, to study the topology of Cartan foliations,

we can without loss of generality assume that their transverse Cartan geometries are effective.

In this paper, we assume that the Cartan foliations under consideration admit Ehresmann con-

nections in the sense of [3].

We recall that a subset of a foliated manifold is saturated if it can be represented as the

union of leaves. A leaf L of a foliation (M,F ) is proper if L is an embedded submanifold of

the manifold M . A foliation (M,F ) is proper if each its leaf is proper. A leaf L of a foliation

(M,F ) is closed if L is a closed subset of M . As is known, any closed leaf of a foliation is proper.
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By the holonomy group we understand the germ holonomy group [4]. The M-holonomy group

was introduced in [3] for a foliation with an Ehresmann connection M. Genreally speaking, this

group differs from the germ holonomy group. However, as was proved by the author [5, Theorem

4], these groups are isomorphic in the case of Cartan foliations with Ehresmann connections.

The main result is formulated in the following theorem.

Theorem 1.1. Let (M,F ) be an arbitrary proper Cartan foliation of codimension q admit-

ting an Ehresmann connection. Then there exists an open, not necessarily connected, saturated,

and everywhere dense subset M0 and a manifold L0 such that the foliation (M0, FM0) is formed

by the fibers of a locally trivial fibration p : M0 → B with the standard fiber L0 over a smooth

q-dimensional (not necessarily Hausdorff) manifold B. For q = 1 the induced foliation on each

connected component of M0 is formed by the fibers of a locally trivial fibration over a circle or

by the fibers of a locally trivial fibration over a line.

Example 6.1 below shows that the condition of the existence of an Ehresmann connection

cannot be omitted in Theorem 1.1. In the proof of Theorem 1.1, we essentially use Theorem 4.1

below and results due to Glimm [6].

Remark 1.1. The method of the proof of Theorem 1.1 can be applied to foliations with

transverse rigid geometry in the sense of [5]. Therefore, a counterpart of Theorem 1.1 is valid

for any foliation with transverse rigid geometry, in particular, a G-foliation of finite type.

We introduce the category of foliations, objects of which are smooth foliations (M,F ),

whereas morphisms of foliations f : (M,F ) → (˜M, ˜F ) are smooth maps of manifolds f : M → ˜M

that transform leaves of one foliation to the corresponding leaves of the other foliation.

Definition 1.1. A leaf L = L(x) of a foliation (M,F ) of codimension q with the trivial

holonomy group is locally stable in the sense of Reeb if there exists a saturated neighborhood

U and an isomorphism in the category of foliations h : (U,FU ) → (L × Rq, Ftr) between the

induced foliation (U,FU ) and the trivial foliation Ftr := {L × {z}|z ∈ Rq} on the product of

manifolds L×Rq.

Thus, by Theorem 1.1, the triviality of the germ holonomy group, the local stability in the

sense of Reeb, and the property to be diffeomorphic to a fixed manifold L0 are typical properties

of leaves of any proper Cartan foliation with an Ehresmann connection.

The local stability of leaves of foliations in the sense of Reeb and Ehresmann was studied

by many researchers, in particular, by the author [7]–[9]. The local stability of an arbitrary

compact leaf without holonomy follows from the classical Reeb theorem [4].

As is known, any conformal foliation can be regarded as a Cartan foliation in the sense

of [10] or (which is equivalent in this case) in the sense of [2]. As was proved by the author

[11, Theorem 2], for any conformal foliation (M,F ) of codimension q > 2 the existence of an

Ehresmann connection is equivalent to the completeness of the foliation (M,F ). Furthermore,

the structure of complete conformal foliations is described in [11, Theorem 3]. By these results,

the following assertion holds.

Theorem 1.2. Let (M,F ) be a proper foliation that is either a Riemannian foliation of an

arbitrary codimension q � 1 or a conformal foliation of codimension q � 3. We assume that

the foliation (M,F ) admits an Ehresmann connection. Then there exists an open, connected,

saturated, and everywhere dense subset M0 of M and a manifold L0 such that the induced

foliation (M0, FM0) is formed by the fibers of a locally trivial fibration p : M0 → B with the

standard fiber L0 over a Hausdorff smooth q-dimensional manifold B.
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We emphasize that Theorem 1.2 is independently proved and improves Theorem 1.1 for the

above-mentioned classes of Cartan foliations.

Convention. Except for the Glimm theorem, it is assumed that all neighborhoods are open

and all manifolds are connected and Hausdorff with a countable base, unless otherwise stated.

Notation. Following [12], we denote by P (B,H) the principal H-bundle p : P → B. The

module of vector fields on a manifold M is denoted by X(M), and the set of tangent vector fields

to a distribution M on M is denoted by XM(M).

2 Cartan Foliations

2.1. Cartan geometries. We recall the definition of a Cartan geometry [13]. Assume

that G is a Lie group, H is a closed subgroup of G, g is the Lie algebra of G, and h is the Lie

subalgebra of H. Let p : P → N be a principal H-bundle given by a free right action of the group

H on a manifold P . The action of an element a ∈ H on P is denoted by Ra. A nondegenerate

g-valued 1-form ω on P is called a Cartan connection if the following two conditions hold:

1) ω(A∗) = A for A ∈ h, where A∗ is the fundamental vector field on P corresponding to A,

2) the 1-form ω is H-equivariant, i.e., (Ra)
∗ω = AdG(a

−1)ω for all a ∈ H, where AdG is the

adjoint representation of the group G in the Lie algebra g.

A principal H-bundle P (N,H) equipped with a Cartan connection ω is called a Cartan

geometry of type (G,H) and is denoted by ξ = (P (N,H), ω). The pair (N, ξ) is called a Cartan

manifold. A Cartan geometry of type (G,H) is effective if the group G effectively acts by left

translations on G/H.

If ξ = (P (N,H), ω) is a Cartan geometry of type (G,H), then the Cartan geometry of the

same type ξU = (PU (U,H), ω|PU ) is induced on each open subset U of the manifold N , where

PU := p−1(U).

2.2. Isomorphisms of Cartan geometries. Let ξ = (P (N,H), ω) and ˜ξ = ( ˜P ( ˜N,H), ω̃)

be two effective Cartan geometries of the same type (G,H). A diffeomorphism Γ : P → ˜P such

that Γ∗ω̃ = ω and Γ ◦Ra = Ra ◦Γ, where Ra is a right action of an element a ∈ H on the space

of the corresponding H-bundle, is called an isomorphism of Cartan geometries ξ and ˜ξ.

Each isomorphism Γ : P → ˜P of Cartan geometries ξ = (P (N,H), ω) and ˜ξ = ( ˜P ( ˜N,H), ω̃)

defines a projection γ : N → ˜N such that Γ ◦ p̃ = p ◦ γ, called an isomorphism of the Cartan

manifolds (N, ξ) and ( ˜N, ˜ξ). Since the Cartan geometries ξ and ˜ξ are effective, each isomorphism

γ : N → ˜N of Cartan manifolds is the projection of an exactly one isomorphism Γ : P → ˜P of

the Cartan geometries ξ and ˜ξ.

2.3. Definition of foliation by an N-cocycle. Let N be a (not necessasrily connected)

manifold of dimension q. We say that an N -cocycle η = {Ui, fi, {γij}}i,j∈J is given on an n-

dimensional manifold M, n > q, if we are given an open covering {Ui|i ∈ J} of the manifold M

and submersions fi : Ui → N in N with connected fibers such that

(i) if Ui∩Uj �= ∅, then there exists a diffeomorphism γij : fj(Ui∩Uj) → fi(Ui∩Uj) satisfying

the identity fi = γij ◦ fj on Ui ∩ Uj ;

(ii) γik = γij ◦ γjk for all x ∈ fk(Ui ∩ Uj ∩ Uk), where i, j, k ∈ J.

We assume that the family η is maximal, i.e., contains all Ui, fi, γij possessing the above
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properties and N = {⋃Ui|i ∈ J}. Then the set of fibers of the submersions {f−1
i (x)|x ∈ N, i ∈

J} forms a base of the new topology Υ in M, called foliated. The connected components of the

topological space (M,Υ) form a partition F of the manifold M, called a foliation of codimension

q defined by a cocycle η and is denoted by (M,F ).

2.4. Cartan foliations. Assume that (M,F ) is a foliation defined by an N–cocycle η =

{Ui, fi, {γij}}i,j∈J . Let ξ = (P (N,H), ω) be an effective Cartan geometry of type (G,H) on the

manifold N . If each local diffeomorphism γij is the projection of some local isomorphism Γij

of the induced Cartan geometries ξfj(Ui∩Uj) and ξfi(Ui∩Uj), then the foliation (M,F ) is called a

Cartan foliation of type (G,H) and ξ is called its transverse Cartan geometry. In this case, we

say that the foliation (M,F ) is modelled on the Cartan geometry ξ.

Remark 2.1. The definition of a Cartan foliation with a noneffective transverse Cartan

geometry is given in [2]. In [2, Proposition 1], it is shown that such a foliation also admits an

induced effective Cartan geometry. Without loss of generality we will further assume that the

Cartan geometries under consideration are effective.

3 Foliated Bundle of a Proper Cartan Foliation

3.1. Ehresmann connections for foliations. We recall the definition of an Ehresmann

connection for a foliation introduced in [3]. As in [2], we use the term vertical-horizontal homo-

topy proposed in [14].

Let (M,F ) be a foliation of an arbitrary codimension q. A distribution M on a manifold M

is transverse to the foliation F if TxM = TxF ⊕Mx for any x ∈ M , where ⊕ is the symbol of the

direct sum of vector subspaces. The vectors in Mx, x ∈ M , are said to be horizontal. A piecewise

smooth curve σ is horizontal if all its tangent vectors are horizontal. In other words, a piecewise

smooth curve is horizontal if each its smooth piece is an integral curve of the distribution M.

The distribution TF tangent to leaves of the foliation F is called vertical. We say that a curve

h is vertical if h lies in one leaf of the foliation F .

A vertical-horizontal homotopy is a piecewise smooth map H : I1× I2 → M , I1 = I2 = [0, 1],

such that for any (s, t) ∈ I1×I2 the curveH|I1×{t} is horizontal and the curveH|{s}×I2 is vertical.

A pair of curves (H|I1×{0}, H|{0}×I2) is called the base of the vertical-horizontal homotopy H.

Two paths (σ, h) with common start point σ(0) = h(0), where σ is a horizontal path and h is a

vertical path, is called an admissible pair of paths. As is known, for any admissible pair of paths

(σ, h) there exists at most one vertical-horizontal homotopy with base (σ, h).

A distribution M transverse to a foliation F is called an Ehresmann connection for F if for

any admissible pair of paths (σ, h) there exists a vertical-horizontal homotopy with base (σ, h).

3.2. Foliated bundle. First of all, we prove the following assertion.

Theorem 3.1. Let a proper Cartan foliation (M,F ) of type (G,H) with an arbitrary codi-

mension q admit an Ehresmann connection. Then the following assertions hold.

1. A principal right H-bundle π : R → M with H-invariant transversally parallelizable folia-

tion (R,F ) is defined.

2. The foliation (R,F ) is formed by the fibers of a locally trivial fibration πb : R → W with

the standard fiber L0.
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3. The restriction of the projection π|L : L → L to an arbitrary leaf L of the foliation

(R,F ) is a regular covering map on the corresponding leaf L = L(x) of the foliation

(M,F ); moreover, the group of desk transformations is isomorphic to the germ holonomy

group Γ(L, x) and the M-holonomy group HM(L, x) of the leaf L as well.

4. A locally free right action RW of the Lie group H is induced on the manifold W by the

rule RW (w, a) = πb(Rau), where w = πb(u), u ∈ R, and Ra is the action of a ∈ H on R.

5. A stationary subgroup Hw of the group H at any point w ∈ πb(π
−1(L)) is isomorphic to

the holonomy group Γ(L) of the leaf L and is a discrete subgroup of the Lie group H.

Proof. Let (M,F ) be a Cartan foliation modelled on an effective transverse Cartan geometry

of type (G,H). For the foliation (M,F ) it is possible to define (cf. [2, Proposition 2]) an H-

bundle with the projection π : R → M and H-invariant e-foliation (R,F ); moreover, π is a

morphism of the foliation (R,F ) to (M,F ) in the category of foliations.

By assumption, the foliation (M,F ) admits an Ehresmann connection M. In this case, it is

easy to verify that the distribution ˜M := π∗M is a connection for the e-foliation (R,F ).

We note that foliations admitting effective Cartan geometries form a subclass of foliations

with transverse rigid geometry in the sense of [5]. It can be seen that Theorem 4 in [5] remains

valid if the completeness condition is replaced with the weaker condition of the existence of

an Ehresmann connection for this foliation. Therefore, Theorem 4 in [5] is applicable to the

foliation (M,F ). Hence the restriction of the projection π|L on an arbitrary leaf L of the

foliation (R,F ) is a regular covering map for the leaf L := π(L ) of the foliation (M,F ) with

the group of desk transformations isomorphic to the M-holonomy group HM(L, x) and the germ

holonomy group Γ(L, x) of the leaf L = L(x) as well. We emphasize that the proof of Theorem

4 in [5] is essentially based on the fact that the pseudogroup of holonomy of a Cartan foliation

is quasianalytic.

It is known [15] that any foliation has a leaf with the trivial holonomy group. Since the

foliation (M,F ) is proper, it has a proper leaf L with the trivial holonomy group. Taking into

account the above interpretation of the holonomy group, we find that the leaf L of the foliation

(R,F ) lying over L is also proper. We recall that all germ holonomy groups of any e-foliation

are trivial. Thus, (R,F ) is a proper Riemannian foliation with an Ehresmann connection such

that all its holonomy groups are trivial. Consequently [7, Theorem 2], the leaf space R/F is

a smooth manifold, denoted by W , and the projection πb : R → W on the leaf space form a

locally trivial fibration. Thus, Assertions 1–3 are proved.

A verification shows that the rule in Assertion 4 determines a smooth action of the Lie group

H on the manifold W .

We take any points w ∈ W , x ∈ π(π−1
b (w)) and u ∈ π−1(x). Let Hw be a stationary

subgroup at the point w of the action RW of the group H on W . For a leaf L = L (u) of

a foliation (R,F ) we introduce the subgroup H(u) := {a ∈ H|Ra(L ) = L } of the group H

which preserves L . By [5, Theorem 4], the group H(u) is isomorphic to the holonomy group

Γ(L, x) of the leaf L = L(x). The restriction πb|π−1(x) : π−1(x) = uH → wH is a submersion

of the orbit uH to the orbit wH. Since πb|π−1(x) = uH ∩L = uH(u), we have an isomorphism

of groups χ(u) : H(u) → Hw : a �→ RW
a , a ∈ H. Since the leaf L is proper, the intersection

uH ∩L is a discrete subset of the leaf π−1(x) = uH. Consequently, H(u) is a discrete subgroup

of the Lie group H. Hence the stationary subgroup Hw is discrete. Assertions 4 and 5 are
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proved. The theorem is proved.

We recall that an H-bundle R(M,H) with a projection π : R → M is called a foliated bundle

and (R,F ) is referred to as a lifted foliation relative to the initial Cartan foliation (M,F ).

Corollary 3.1. Any leaf L of a Cartan foliation (M,F ) having the trivial germ holonomy

group Γ(L, x) is diffeomorphic to the manifold L0.

Corollary 3.2. The connected components of orbits of a locally free action RW of a Lie

group H on a manifold W form a smooth foliation (W,FH).

4 Proof of Theorem 1.1

4.1. The Glimm theorem. Under rather general assumptions, Glimm [6] established

equivalence of seven conditions, but we indicate only two of these conditions which will be used

below. As in [6], we say that a space M is locally compact if each neighborhood of a point in

M contains a compact neighborhood of this point in M . We recall that a topological space N

satisfies the separability axiom T0 and is called a T0-space if for any two distinct points in N

there exists a neighborhood of at least one of these points that does not contain the other point.

Theorem (Glimm). Let G be a locally compact Hausdorff topological transformation group

acting on a locally compact topological space M . We assume that the topologies in G and M

have countable bases and every nonempty locally compact G-invariant subspace V of M contains

a nonempty relatively open Hausdorff subset. Then the following conditions are equivalent.

(1) The orbit space M/G is a T0-space.

(2) For each neighborhood N of the unit element e of the group G, any nonempty G-invariant

locally compact subspace V of M , and any nonempty relatively compact subset V0 of V

there exists a nonempty relatively open subset U of V0 such that, at each point m ∈ U ,

Nm ∩ U = Gm∩U. (4.1)

4.2. Locally free actions of Lie groups. An action of a Lie group H on a manifold is

locally free if all stationary subgroups of this action are discrete subgroups of H. For smooth

actions of Lie groups on manifolds the Glimm theorem is satisfied. Applying this theorem, we

prove the following assertion.

Theorem 4.1. Let an action of a Lie group H on a smooth manifold W is smooth and locally

free, and let the orbit space W/H is a T0-space. Then there exists an open and everywhere dense

submanifold W0 of W that is invariant under the action of the group H and possesses the

following properties:

(1) the action of the group H on W0 is free,

(2) the orbit space W0/H is a smooth, q-dimensional (not necessarily connected and Hausdorff)

manifold, where q = dim(W )− dim(H),
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Proof. By Theorem 3.1, the smooth action of the group H on the manifold W is locally free.

Therefore, the connected components of orbits form a smooth foliation (W,FH). Consequently,

at any point v ∈ W , there exists a foliated chart (U , ψ) with respect to this foliation such that

ψ(U ) = Rm ×Rq, where m = dim(H) and q = dim(W )−m.

We note that foliated neighborhoods at each point v ∈ W form a neighborhood base for the

point v in the topological space W . Therefore, by the continuity of the action of the group H

on the manifold W , for a neighborhood U of the point v there exists a connected neighborhood

N of the unity e of the group H and a foliated neighborhood V0 ⊂ U of v such that NV0 ⊂ U .

We apply the Glimm theorem to V = W and fixed neighborhoods N and V0. Then there

exists a neighborhood U ⊂ V0 such that Nw ∩ U = Hw ∩ U for all points w ∈ U . Without

loss of generality we can assume that U is the foliated neighborhood of w0 ∈ U corresponding

to the chart (U,ψ|U ). Let ψ(U) = A1 × A2, where A1 and A2 are open subsets of Rm and

Rq respectively, ψ(w0) = (a1, a2) ∈ A1 × A2. Then D := ψ−1({a1} × Rq) is a q-dimensional

transversal disk at the point w0.

Since N is connected and NV0 ⊂ U , for any w ∈ D ⊂ V0 the set Nw belongs to one local

leaf of the foliation (W,FH) in the foliated neighborhood U . Consequently, Nw∩D = {w} and

Nw ∩ U = Hw ∩ U imply Nw ∩D = Hw ∩D = {w} for any point w in D.

Thus, in any foliated neighborhood U there exists a subordinated foliated neighborhood

U ⊂ U , such that each orbit of the group H intersects U at most one local leaf. Let fH : W →
W/H be the quotient map on the orbit space. Then fH |D : D → W/H is a homeomorphism to

an open subset B := fH(D) = fH(U) in the orbit space W/H. The map χ := pr2 ◦ψ ◦ (ψ|D)−1,

where pr2 : R
m×Rq → Rq is the canonical projection on the second factor, is a homeomorphism

from B to an open subset A2 in Rq.

Let N(U) be the saturation of U , i.e., the union of all orbits intersecting U . Since N(U) =

(fH)−1(fH(U)), we conclude that N(U) is open in W and invariant under the action of the

group H. We denote by W0 the union of saturations of all open subsets U obtained as above.

In each foliated neighborhood there exist points in W0. Therefore, W0 is open and everywhere

dense in W . Hence fH(W0) is open and everywhere dense in the orbit space W/H.

The above-defined pair (B,χ) is a chart in fH(W0). A verification shows that the family

A := {(B,χ)|B = fH(U), U ⊂ W0} of all such charts forms a smooth atlas on the set fH(W0).

Thus, fH(W0) becomes a smooth q-dimensional manifold.

Remark 4.1. Theorem 4.1 remains valid if the left action of the group H on the manifold

W is replaced with the right action.

4.3. Lemmas. Let (M,F ) be an arbitrary foliation, and let V be any subset of M . The

union of all leaves of the foliation (M,F ) intersecting V is called the saturation of V and is

denoted by N(V ). As is known, the saturation N(V ) of any open subset is open in M .

We denote by f : M → M/F the quotient map on the leaf space of a foliation (M,F ). A

leaf L of the foliation (M,F ), regarded as a point of the leaf space M/F , is denoted by [L];

moreover, f(L) = [L].

Lemma 4.1. If a foliation (M,F ) is proper, then the leaf space M/F satisfies the separability

axiom T0.

Proof. We assume that (M,F ) is a proper folliation. Let [L1] and [L2] be any two distinct

points in the leaf space M/F . By [4, Theorem 4.11], a leaf L1 is proper if and only if there
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exists a foliated neighborhood U intersecting L1 by one local fiber.

Case 1. The leaf L2 does not intersect the neighborhood U . Then L2 does not intersect the

saturation N(U). Consequently, [L2] does not belong to the neighborhood f(N(U)) of the point

[L1] in M/F .

Case 2. The intersection U ∩ L2 is not empty. Then ˜U := U \ L1 is an open subset of M

that intersects L2 and does not intersect L1. Therefore, f(˜U) is a neighborhood of [L2] in the

leaf space M/F that does not contain the point [L1].

In the following lemma, we use the notation introduced in Theorem 3.1.

Lemma 4.2. Let (M,F ) be a proper Cartan foliation of type (G,H) admitting an Ehresmann

connection. Let fH : W → W/H be the projection onto the orbit space of the action RW of the

group H on the basic manifold W . Then there exists a homeomorphism θ : M/F → W/H of

topological spaces satisfying the commutative diagram

R
π

����������
πb

����������

M

f
��

W

fH

��
M/F

θ �� W/H

(4.2)

Proof. We denote by [wH] the orbit of a point w ∈ W regarded as a point in W/H.

Then fH(wH) = [wH]. For any leaf L of the foliation (M,F ) we set θ([L]) := [wH], where

w ∈ πb(π
−1(L)), πb : R → W . It is easy to see that the above equality defines a map θ :

M/F → W/H. By the definition of the action RW of the Lie group H on the basic manifold W ,

the map θ : M/F → W/H is bijective. By the definition of θ, the diagram (4.2) is commutative.

Since the maps f , fH , π, and πb are simultaneously continuous and open, the commutativity

of the diagram (4.2) implies that θ is an open continuous map. Thus, θ : M/F → W/H is a

homeomorphism of topological spaces.

In the proof of the following lemma, we use the known facts: if a foliation (M,F ) is formed

by the fibers of a submersion p : M → B, then the Ehresmann connection for this foliation is

the Ehresmann connection for the submersion p : M → B ( cf. [3, Proposition 1.3]), and the

foliation (M,F ) is formed by the fibers of a locally trivial fibration.

Lemma 4.3. Let (M,F ) be a smooth foliation of codimension 1 admitting an Ehresmann

connection. We assume that each leaf has the trivial holonomy group and is locally stable in the

sense of Reeb. Then either (M,F ) is isomorphic to the trivial foliation Ftr = {L0 × {t}|t ∈ R
1}

of the product L0×R
1 or (M,F ) is formed by the fibers of a locally trivial fibration over a circle.

Proof. Let M be an Ehresmann connection for a foliation (M,F ). Since the codimension

of (M,F ) is equal to 1, the distribution M is integrable and determines a foliation, denoted by

(M,F T ). We consider the universal covering map k : ˜M → M and the induced foliations ˜F , ˜F T

respectively on ˜M . By the Kashiwabara theorem [16], the manifold ˜M is diffeomorphic to the

product N × R
1 and ˜F = {N × {t}|t ∈ R

1}, ˜F T = {{v} × R
1|v ∈ N}. The fundamental group

π1(M,x), x ∈ M , acts on ˜M = N × R
1 as the group of desk transformations preserving the
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structure of product. Therefore, with the help of the canonical projection on the second factor

pr : N×R
1 → R

1, the group of diffeomorphisms Ψ is induced on R
1. Assume that τ : R1 → R

1/Ψ

is the projection on the orbit space of the group Ψ and f : M → M/F is the quotient map on the

leaf space of the foliation (M,F ). We note that there exists a homeomorphism h : M/F → R
1/Ψ

such that τ ◦ pr = h ◦ f ◦ k. We identify (by using h) the topological spaces M/F and R
1/Ψ.

Case 1. The group Ψ is trivial, i.e., Ψ = {id
R1}. In this case, M/F ∼= R

1/Ψ ∼= R
1. Con-

sequently, the foliation (M,F ) is formed by the fibers of a submersion f : M → R
1 with an

Ehresmann connection. Therefore, f : M → R
1 is a locally trivial fibration with the standard

fiber L0 over a contractible base isomorphic to the trivial fibration L0 × R
1 → R

1.

Case 2. The group Ψ is not trivial. By assumption, each leaf of a foliation (M,F ) has the

trivial holonomy group and is locally stable in the sense of Reeb. Consequently, the action

of the group Ψ on the line R
1 is completely discontinuous, i.e., for each point t ∈ R

1 there

exists a neighborhood U = U(t) such that U ∩ ψ(U) = ∅ for any nontrivial element ψ ∈ Ψ.

It is possible only if the group Ψ is isomorphic to the group Z of integers and the orbit space

R
1/Ψ is diffeomorphic to the circle S

1. As was shown above, there exists a homeomorphism

h : M/F → W/H. Therefore, the leaf space M/F is also diffeomorphic to a circle. Thus,

the foliation (M,F ) is formed by the fibers of a submersion f : M → S
1 with an Ehresmann

connection and, consequently, by the fibers of a locally trivial fibration.

4.4. Proof of Theorem 1.1. We use the notation introduced in Theorem 3.1. Let (M,F )

be an arbitrary proper Cartan foliation of type (G,H) with an Ehresmann connection M. By

Lemma 4.1, the leaf space M/F satisfies the separability axiom T0. By Lemma 4.2, there exists

a homeomorphism θ : M/F → W/H from the leaf space M/F to the orbit space W/H of the

action RW of the group H on the basic manifold W . Hence W/H is a T0-space. By Theorem

3.1, the associated action of the Lie group H on W is locally free and, consequently, we can

apply Theorem 4.1 to the action RW of the group H on W . By Theorem 4.1, there exists an

open subset fH(W0) which is a smooth q-dimensional, not necessarily Hausdorff, and everywhere

dense manifold in W/H. Hence S := θ−1(fH(W0)) is an open and everywhere dense subset of

M/F which is a smooth q-dimensional (possibly, non-Hausdorff) manifold. Consequently, the

preimage M0 := f−1(S) = π(π−1
b (W0)) of the set S under the quotient map f : M → M/F is

an open, saturated, and everywhere dense subset of M and the induced foliation (M0, FM0) is

formed by the fibers of the submersion f |M0 : M0 → S. Consequently, all germ holonomy groups

of the foliation (M0, FM0) are trivial. Therefore, by assertion (3) of Theorem 3.1, each leaf in

M0 is diffeomorphic to the manifold L0.

For any leaf L ⊂ M0 there exists a neighborhood V of the point [L] in the manifold S that

is homeomorphic to Rq. Moreover, U := f−1(V ) is an open saturated neighborhood of the fiber

L in M . Let M be an Ehresmann connection for the foliation (M,F ). In this case, MU := M|U
is an Ehresmann connection for the foliation (U, FU). As is known (cf. [3, Proposition 1.3]),

an Ehresmann connection for a foliation formed by the fibers of a submersion is an Ehresmann

connection for this submersion. Since any submersion with an Ehresmann connection over a

Hausdorff manifold forms a locally trivial fibration, the foliation (U, FU) is formed by fibers of a

locally trivial fibration over a contractible base. This means that the neighborhood U of the leaf

L is diffeomorphic to the product of manifolds L0 × Rq and the foliation (U, FU) is isomorphic

in the category of foliations to the trivial foliation Ftr := {L0×{z}|z ∈ Rq} of this product, i.e.,

the leaf L is locally stable in the sense of Reeb.

Assume that a foliation (M,F ) has codimension 1. In this case, applying Lemma 4.3 to each
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connected component of the submanifold M0, we arrive at the required assertion.

Remark 4.2. As is established in [1, Theorem 3], for any smooth proper foliation (M,F )

there exists an open and everywhere dense subset of M formed by the union of leaves without

holonomy. However, the proof of Lemma 3 in [1], used in the proof of the above assertion, is

not correct. Therefore, the results of [1] will not be used here.

5 Proper Riemannian and Conformal Foliations

5.1. Conformal foliations. Let (N1, g1) and (N2, g2) be Riemannian manifolds. We recall

that a diffeomorphism f : N1 → N2 is conformal if f∗g2 = eλg1, where λ is a smooth function on

N1. If λ = const, then f is called similarity of the Riemannian manifolds (N1, g1) and (N2, g2).

If an N -cocycle η = {Ui, fi, {γij}}i,j∈J determines a foliation (M,F ) and there exists a

Riemannian metric on N with respect to which any element γij is an isometry of Riemannian

manifolds induced on the corresponding open subsets, then (M,F ) is called a Riemannian

foliation.

A folliation given by a cocycle η = {Ui, fi, {γij}}i,j∈J is called conformal if each element

γij of the cocycle η is a local conformal diffeomorphism of conformal structures induced on the

corresponding open subsets.

5.2. Proof of Theorem 1.2. We assume that (M,F ) is a Riemannian foliation of an

arbitrary codimension q with an Ehresmann connection M. Then, on the manifold M , there

exists a transversally projectable Riemannian metric g (cf. [17]) relative to the foliation (M,F )

such that M is a q-dimensional distribution that is the orthogonal complement of TF . Further-

more, the lengths of horizontal curves remain unchanged under translations along any vertical

curves relative to the Ehresmann connection. This property of vertical-horizontal homotopies

with respect to a complete Riemannian foliation was used in [7]. Therefore, all the results of

[7] remain valid provided that the condition of the transverse completeness of a Riemannian

foliation is replaced with the weaker condition of the existence of an Ehresmann connection for

this foliation.

By assumption, the foliation (M,F ) is proper, i.e., all its leaves are proper. Consequently,

by [7, Theorems 1 and 3], all leaves of the foliation (M,F ) are closed, have the finite holonomy

groups, and are locally stable in the sense of Reeb and Ehresmann, whereas the leaf space M/F

is a smooth q-dimensional orbifold. Let f : M → M/F be a quotient map on the leaf space.

We denote by [L] a leaf L of the foliation (M,F ), regarded as a point in the space M/F . Then

f(L) = [L]. Any leaf L with the trivial holonomy group Γ(L, x) is mapped to a regular point of

the orbifold M/F . The converse assertion is also valid: any regular point of the orbifold M/F

is the image of some leaf with the trivial holonomy group. As is known, the set of all regular

points of any smooth orbifold is a q-dimensional stratum which is a connected, Hausdorff, and

everywhere dense subset of the orbifold which is a smooth q-dimensional manifold. We denote by

B the q-dimensional stratum of the orbifold M/F . Then M0 := f−1(B) is an open, connected,

and everywhere dense submanifold of M and the induced foliation (M0, FM0) is formed by the

fibers of a locally trivial fibration FM0 : M0 → B over the connected Hausdorff manifold B.

Let (M,F ) be a non-Riemannian conformal foliation of codimension q � 3 admitting an

Ehresmann connection M. By assumption, (M,F ) is a proper folliation. By [11, Theorems 1

and 3], the foliation (M,F ) has a global attractor M that is either a single closed leaf or the
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union of two closed leaves of this foliation. Hence M \ M is a connected open subset of M .

Furthermore, by [11, Theorems 1 and 3], the induced foliation (M \M , FM\M ) is a Riemannian

foliation with the Ehresmann connection MM\M . As was shown above, there exists an open,

connected, saturated, and everywhere dense subset M0 of M \M such that the induced foliation

(M0, FM0) is formed by the fibers of a locally trivial fibration M0 → B over a Hausdorff manifold

B. To complete the proof, we note that M0 is open and everywhere dense in M .

6 Examples

Example 6.1. We introduce the notation: N is the set of natural numbers, Q := {qm|m ∈
N} is the enumerated set of rational numbers, Rn, n � 3, is the n-dimensional arithmetical

space, lm := {(m, 0, . . . , 0), t ∈ R
n|t � qm} is a ray, and l :=

⋃

m∈N lm. Then M := R
n \ l

is open, simply connected, and everywhere dense in R
n. The foliation (M,F ), where F :=

{Lt := (Rn−1 × {t}) ∩ M |t ∈ R
1}, is formed by the fibers of a submersion p : M → R

1 :

(x1, ..., xn−1, t) �→ t. Therefore, (M,F ) is a proper foliation without holonomy and every leaf

of (M,F ) is diffeomorphic to the manifold R
n \ N. The folliation (M,F ) does not have locally

stable leaves in the sense of Reeb. Indeed, if L is a locally stable leaf, then for any small number

ε < 1/3 there exists a neighborhood (a−ε, a+ε) such that the open submanifold p−1(a−ε, a+ε)

is diffeomorphic to the product of manifolds (Rn \ N)× (a− ε, a+ ε), which is impossible. We

note that the foliation (M,F ) does not have Ehresmann connection. Otherwise, in view of [16],

the manifold M should be diffeomorphic to the product (Rn \ N) × R
1, which contradicts the

definition of M .

A construction similar to Example 6.1 was used in [1].

Example 6.2. We consider the unit circle as a set of points in the plane S
1 = {eπti

2 |t ∈
[−2, 2]}. The map f : S1 → S

1 : e
πti
2 �→ e

πh(t)i
2 , where

h(t) :=

⎧

⎨

⎩

t, t ∈ [−2, 0],

t+ e
1

(t−1)2−1 , t ∈ (0, 2],

is a C∞-diffeomorphism. We define the action of the group Z of integers on the cylinder S1×R
1

by the formula

n · (x, y) := (fn(x), y + n) ∀(x, y) ∈ S
1 × R

1,∀n ∈ Z.

Since this action is free and properly discontinuous, we can define the quotient manifold M =

(S1 × R
1)/Z diffeomorphic to the torus T

2. Let p : S1 × R
1 → M be the natural projection.

Then F := {p(S1 × {y})|y ∈ R
1} is a proper foliation with an integrable Ehresmann connection

on the manifold M . The union of leaves without holonomy forms an open and everywhere dense

subset M0 of M with two connected components. All leaves are diffeomorphic to the circle S
1

in one of these components and to the line R
1 in the other. Thus, unlike Theorem 1.1 and

Corollary 3.1, the standard fiber L0 does not exist for the foliation (M0, FM0). This situation is

caused by the fact that the foliation (M,F ) admits no transverse Cartan geometry. Otherwise,

the pseudogroup generated by the diffeomorphism f of the circle S
1 which is the holonomy

pseudogroup of this foliation should be quasianalytic, i.e., the equality fk|U = idU for some

k ∈ Z on some open subset U in S
1 implies fk = id

S1 ,

Example 6.3. We define the action of the group Z of integers on R
1 × R

q, q � 2, by

the formula n · (t, z) := (t + n, 2nz) for any point (t, z) ∈ R
1 × R

q and n ∈ Z. Then we can
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introduce the quotient manifold M := (R1×R
q)/Z, the quotient map p : R1×R

q → M , and the

proper foliation (M,F ) with F := {p(R1×{z})|z ∈ R
q}. We note that (M,F ) is a transversally

homotetic foliation, regarded as a Cartan foliation (cf., for example, [2]). Let L∗ := p(R1×{0}),
where {0} is the zero in R

q. The set of leaves without holonomy of the foliation (M,F ) is defined

by M0 := M \ L∗. This set is open, saturated, and everywhere dense in M .

For q = 1 the manifold M0 has two connected components diffeomorphic to a cylinder,

whereas the induced folliation on each component is formed by the fibers of a locally trivial

fibration over a circle with the standard fiber L0 diffeomorphic to the line.

For q � 2 the manifold M0 is connected and the foliation (M0, FM0) is formed by the fibers

of a locally trivial fibration over the product S
q−1 × S

1 of the (q − 1)-dimensional sphere S
q−1

and the circle S
1 with the standard fiber L0 diffeomorphic to the line.
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