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a b s t r a c t

We completely determine the complexity status of the dominating set problem for
hereditary graph classes defined by forbidden induced subgraphs with at most five
vertices.
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1. Introduction

A coloring is an arbitrary mapping of colors to vertices of some graph. A graph coloring is said to be proper if no two
adjacent vertices have the same color. The chromatic number χ(G) of a graph G is the minimal number of colors in proper
colorings of G. The coloring problem, for a given graph and a number k, is to determine whether its chromatic number is at
most k or not. The vertex k-colorability problem is to verify whether vertices of a given graph can be properly colored with at
most k colors. The edge k-colorability problem is defined by analogy.

An independent set and a clique of a graph are sets of pairwise non-adjacent and adjacent vertices, respectively. The
independent set problem is to determinewhether a given graph contains an independent setwith a given number of elements.
The clique problem is defined by analogy.

For a graph G, a subset V ′
⊆ V (G) dominates V ′′

⊆ V (G) if each of the vertices of V ′′
\V ′ has a neighbor in V ′. A dominating

set of a graph G is a subset dominating all its vertices. The size of a minimum dominating set of G is said to be the domination
number of G denoted by γ (G). For a graph G and a number k, the dominating set problem is to decide whether γ (G) ≤ k or
not.

A class is a set of simple unlabeled graphs closed under isomorphism. A class of graphs is hereditary if it is closed under
deletion of vertices. It is well-known that any hereditary (and only hereditary) graph class X can be defined by a set of its
forbidden induced subgraphs Y. We write X = Free(Y) in this case, and the graphs in X are said to be Y-free. If Y = {G},
then we will write ‘‘G-free’’ instead of ‘‘{G}-free’’. If a hereditary class can be defined by a finite set of forbidden induced
subgraphs, then it is said to be finitely defined.

The coloring problem for G-free graphs is polynomial-time solvable if G is an induced subgraph of a P4 or a P3 + K1, and
it is NP-complete in all other cases [13]. A similar result is known for the dominating set problem. Namely, the problem is
polynomial-time solvable for Free({G}) ifG = Pi+Ok, where i ≤ 4 and k is arbitrary, and it isNP-complete for all other choices
of G [11]. The situation for the vertex k-colorability problem is not clear, evenwhen only one induced subgraph is forbidden.
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Fig. 1. The graphs fork, orb and, etc.

The complexity of the vertex 3-colorability problem is known for all the classes of the form Free({G}) with |V (G)| ≤ 6 [5].
A similar result for G-free graphs with |V (G)| ≤ 5 was recently obtained for the vertex 4-colorability problem [10]. On the
other hand, for fixed k, the complexity status of the vertex k-colorability problem is open for P7-free graphs (k = 3), for
P6-free graphs (k = 4), and for P3 + P2-free graphs (k = 5).

The independent set problem is polynomial-time solvable for a hereditary class defined by forbidden induced subgraphs
with atmost five vertices if and only if a forest is one of the subgraphs, unless P = NP [14,16]. A similar complete complexity
dichotomy was obtained in [19] for the edge 3-colorability problem. For the coloring problem, a complete classification for
pairs of forbidden induced subgraphs is open, even if they have at most four vertices. Although, the complexity is known for
some such pairs [9,15,20,21,28].

In the paper, we present a complete dichotomy for the dominating set problem in the family of hereditary classes defined
by forbidden induced subgraphs with at most five vertices.

2. Notation

We use the standard notation Pn,On, Kn for a simple path, an empty graph, and a complete graph with n vertices,
respectively. A graph Kp,q is a complete bipartite graph with p vertices in the first part and q in the second. The graphs
fork, orb, sinker, bull, cricket, dart, kite, gem, hammer are drawn in Fig. 1.

A formula N(x) denotes the neighborhood of a vertex x. A sum G1 + G2 is the disjoint union of G1 and G2 with non-
intersected sets of vertices. A graph join G1 × G2 of graphs with non-intersected sets of vertices is a graph (V (G1) ∪

V (G2), E(G1) ∪ E(G2) ∪ {(v, u)| v ∈ V (G1), u ∈ V (G2)}). For a graph G and V ′
⊆ V (G), a graph G[V ′

] is the subgraph
of G induced by V ′. The symmetric difference of sets A and B is denoted by A ⊗ B.

We refer to textbooks in graph theory for any terminology undefined here [4,7].

3. Boundary graph classes for the dominating set problem and their applications

To answer the questionwhen anNP-complete graphproblembecomes easier, a natural idea coming tomind is to consider
a phase transition between easy and hard hereditary classes under some natural statements of the easiness and hardness.
We use the following formal definitions. For a given NP-complete graph problem Π , a hereditary class is said to be Π-easy
if Π can be polynomially solved for its graphs. A hereditary class is Π-hard if Π is NP-complete for it. Unfortunately, the
phase transition approach seems to be unsuccessful.

Maximal Π-easy and minimal Π-hard classes are natural boundary elements in the lattice of hereditary classes. It turns
out that the boundarymaybe absent at all. First, there are nomaximalΠ-easy classes, as anyΠ-easy classX can be extended
by adding a graph G ∉ X and all the proper induced subgraphs of G. Clearly, the resultant class is also Π-easy. Second,
minimal hard classes exist for some problems and do not exist for some others. For a given graph and a positive length
function on its edges, the traveling salesman problem is to check whether the minimum length of its cycles once visiting
each vertex is at most a given number or not. It is NP-complete in the class of all complete graphs. Each proper hereditary
subclass of the class is finite. Hence, the class of all complete graphs is a minimal hard case for the problem. On the other
hand, for the vertex and edge variants of the k-colorability problem, any hard class contains a proper hard subclass. Indeed,
if Y is a minimal hard case for the problem, then it must contain a graph H that cannot be properly colored in k colors.
Therefore, Y\Free({H}) contains only graphs that also cannot be properly colored in k colors. There is a trivial polynomial-
time algorithm to test whether a given graph in Y belongs to Y ∩ Free({H}). Hence, Y ∩ Free({H}) must be hard for the
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Fig. 2. The graph and the image of Q (·).

Fig. 3. The graph and the image of Q ∗(·).

problem, and we have a contradiction. The phenomena of the absence of the boundary we just considered were noticed
in [22].

So, to classify hereditary classes, we have to take into account that the sets of easy and hard classes can be open with
respect to the inclusion relation. In other words, there may be infinite monotonically decreasing sequences of hard classes.
Intuitively, the limits of such chains should play a special role in the analysis of the complexity. This observation leads to
the notion of a boundary graph class. A class X is Π-limit if there is an infinite sequence X1 ⊇ X2 ⊇ . . . of Π-hard classes
such that X =


∞

k=1 Xk. A Π-limit class that is minimal under inclusion is said to be Π-boundary. The following theorem
shows the significance of the boundary class notion.

Theorem 1 ([1,2]). A finitely defined class is Π-hard if and only if it includes some Π-boundary class.

The notion of a boundary graph class was originally introduced by V.E. Alekseev for the independent set problem [1]. It
was later applied for the dominating set problem [3]. Nowadays, boundary classes are known for several algorithmic graph
problems [1–3,12,18,22–25,27].

Assuming P ≠ NP , four concrete graph classes are known to be boundary for the dominating set problem [3,25]. The
first of them is S. It constitutes all the forests with at most three leaves in each connected component. The second one is T ,
which is the set of all the line graphs of the graphs in S. To define the two remaining classes, we need to define two operators
acting on graphs.

For a graph G = (V , E), a graph Q (G) has vertex set V ∪ E and edge set {(vi, vj)| vi, vj ∈ V } ∪ {(v, e)| v ∈ V , e ∈

E, v is incident to e}. The class Q is the set {G| ∃H ∈ S,G = Q (H)} plus the set of all the induced subgraphs of all its graphs.
Let G = (V , E) be a graph having degrees of vertices at most three. Let V ′ be the set of all the degree three vertices of G and
V ′′ , V (G)\V ′. We define a graph Q ∗(G) as follows. The set V (Q ∗(G)) coincides with V ′′

∪ E. A vertex x ∈ V ′ is incident
to edges e1(x), e2(x), e3(x) in the graph G. The set E(Q ∗(G)) coincides with {(vi, vj)| vi, vj ∈ V ′′

} ∪ {(v, e)| v ∈ V ′′, e ∈

E, v is incident to e} ∪


x∈V ′{(e1(x), e2(x)), (e1(x), e3(x)), (e2(x), e3(x))}. The class Q∗ is the set {G| ∃H ∈ S,G = Q ∗(H)}
plus the set of all the induced subgraphs of all its graphs. Figs. 2 and 3 clarify the operators Q (·) and Q ∗(·).

Unfortunately, a complete description of all the boundary classes for the dominating set problem is not known. At the
same time, there is no a complete complexity dichotomy for the problem in the family of all finitely defined classes. A natural
idea arises is to consider some ‘‘simple’’ its subfamily, where one can hope for obtaining a dichotomy. For example, to focus
on a family of hereditary classes defined by a small number of forbidden induced fragments or small forbidden induced
structures. D.V. Korobitsyn has considered in [11] hereditary classes defined by a single forbidden induced subgraph. He
proved that the problem is polynomial-time solvable forG-free graphs ifG = Pi+Ok, where i ≤ 4 and k is arbitrary, otherwise
the problem is NP-complete. The complexity of the problem for hereditary subclasses of P5-free graphs is considered in [25].
It has been proved in [25] that if Y consists of some graphs with five vertices and P5 ∈ Y, then the dominating set problem
for Free(Y) is polynomial whenever Y ∩ Q ≠ ∅, otherwise it is NP-complete for Free(Y). The two mentioned results can be
reformulated by means of boundary classes in a form similar to Theorem 1.
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Theorem 2. A hereditary class defined by a single forbidden induced subgraph is hard for the dominating set problem if it includes
at least one of the classes S, T , Q. Otherwise, it is easy.

Theorem 3. Let Y be a set of graphs with at most five vertices and P5 ∈ Y. Then the dominating set problem is polynomial-time
solvable for Free(Y) if Free(Y) ⊉ Q, otherwise it is NP-complete for Free(Y).

Of course, any result on a complexity dichotomy in a family of hereditary classes defined by small forbidden induced
subgraphs can be formulated in terms of an explicit description of ‘‘easy’’ prohibitions not in terms of boundary classes. It
was done in [5,10,11,13,19,25,26] and many other papers. At the same time, the size of an answer can quickly grow with
the size of the prohibitions. The notion of a boundary class helps to represent the answer more compactly.

In this paper, based on Theorems 1 and 3, we extend Theorem 3 by presenting a dichotomy for all possible subsets of
forbidden induced subgraphs with at most five vertices. Namely, such a class is hard for the problem if it includes S or
T or Q, otherwise it is easy. Our way to prove this fact is to take an arbitrary five-vertex graph in S ∪ T that is not an
induced subgraph of a P5, an arbitrary five-vertex graph inQ, forbid them as induced subgraphs, and show polynomial-time
solvability of the problem for the resultant class.

4. The basic idea and the first steps of its implementation

An independent dominating set of a graph G is a subset V ′
⊆ V (G), which is an independent set of G and a dominating

set of G, simultaneously. The size of a minimum independent dominating set of G is said to be the independent domination
number of G denoted by i(G).

Let G be a connected P3 + P2-free graph, x and y be its adjacent vertices. Let Gxy be the induced subgraph of G obtained
by deleting x and y, simultaneously. Its vertex set can be partitioned into two parts Axy and Bxy, where Axy , {z ∈

V (Gxy)| z ∈ N(x) ∪ N(y)}. Let γ ′(Gxy) be the minimum cardinality of the subsets of V (Gxy) that dominate Bxy. Clearly,
γ (G) = min(i(G), 2 + minxy∈E(G) γ ′(Gxy)).

The independent domination number can be computed in polynomial time for P3 + P2-free graphs [17]. Therefore, to
showpolynomial-time solvability of the dominating set problem in a subclassX ⊆ Free({P3+P2}), it is sufficient to compute
γ ′(Ge) in time bounded by a concrete polynomial on |V (G)| for each G ∈ X and e ∈ E(G). This reduction is our basic idea.

Clearly, G[Bxy] is P3-free, i.e. it is the disjoint union of complete graphs. If a vertex v ∈ Bxy has no neighbors in Axy, then
any dominating set of G must contain an element of the clique of G[Bxy] containing v. Removing this clique produces an
induced subgraph H of the graph G such that γ ′(Hxy) = γ ′(Gxy) − 1, where Hxy is obtained from H by deleting x and y.
This is why we shall always assume that each of the elements of Bxy has a neighbor in Axy, since computing γ ′(Gxy) can be
polynomially reduced to this case. Let γ ′′(Gxy) be the minimum cardinality of the subsets of Axy that dominate Bxy, and let
kxy be the number of the connected components of G[Bxy].

Lemma 1. If γ (G) ≥ 4, then γ ′(Gxy) = min(γ ′′(Gxy), kxy).

Proof. As γ (G) ≥ 4, G[Bxy] has at least two connected components. Clearly, γ ′(Gxy) ≤ min(γ ′′(Gxy), kxy). Let Dxy be a
minimum subset of V (Gxy) dominating Bxy. It must have at least two elements. If this set contains no elements of Axy, then
|Dxy| = kxy = γ ′(Gxy). Therefore, we may assume that Dxy ∩ Axy ≠ ∅. If some vertex of a connected component of G[Bxy]

is not dominated by Dxy ∩ Axy, then we consider the subclique of the connected component induced by all its vertices non-
dominated by Dxy ∩ Axy. Let G1,G2, . . . ,Gs be all the subcliques of this type. We will show that each of them has exactly one
vertex. Assume thatGi has at least two vertices for some i ∈ 1, s. AsDxy dominates Bxy, it contains an element belonging to the
clique ofG[Bxy] includingV (Gi). Recall thatDxy∩Axy ≠ ∅ andDxy isminimum. By the facts from the last two sentences, there is
a vertex z = z(i) ∈ Dxy∩Axy and a connected component K = K(i) ofG[Bxy] such that V (Gi)∩V (K) = ∅ and z has a neighbor
z ′

∈ V (K). The vertices z ′, z, x or y, and any two elements of V (Gi) induce a P3 + P2. Hence, Gi has only one vertex denoted
by bi. As Dxy dominates Bxy, bi belongs to Dxy. The vertex bi has a neighbor ai ∈ Axy. Therefore, (Dxy\

s
i=1{bi}) ∪

s
i=1{ai} is

a subset of Axy with γ ′(Gxy) vertices dominating Bxy. Hence, γ ′′(Gxy) ≤ γ ′(Gxy), i.e. γ ′′(Gxy) = γ ′(Gxy). �

LetA′
xy be the set of those elements z ∈ Axy having a neighbor in Bxy that Bxy\N(z) is independent,Hz , G\({z}∪N(z)∩Bxy)

for z ∈ A′
xy, H

z
xy is obtained from Hz by deleting x and y.

Lemma 2. If γ (G) ≥ 4, then γ ′′(Gxy) = minz∈A′
xy

γ ′′(Hz
xy) + 1.

Proof. Since γ (G) ≥ 4, the graph G[Bxy] has at least two connected components. Let Dxy be a minimum subset of Axy
dominating Bxy. If it contains an element of A′

xy, then γ ′′(Gxy) = minz∈A′
xy

γ ′′(Hz
xy) + 1. Hence, we may assume that none of

the elements of Dxy is an element of A′
xy. Since γ (G) ≥ 4, |Dxy| ≥ 2. To avoid an induced P3 + P2, z must have neighbors only

in one of the connected components of G[Bxy] for any z ∈ Dxy. Indeed, any two adjacent elements of Bxy\N(z)must belong to
the same clique of G[Bxy]. Hence, they, the vertex z, some its neighbor in V (G[Bxy]), x or y induce a P3 + P2. Let z1 ∈ Dxy and
z2 ∈ Dxy be vertices having neighbors z ′

1 and z ′

2 in distinct connected components of G[Bxy]. If a and b are adjacent elements
of Bxy\N(z1), then z ′

1, a, b belong to the same clique of G[Bxy]. Otherwise, G is not P3 + P2-free. Clearly, (a, z2) ∉ E(G) and
(b, z2) ∉ E(G). Hence, a and b, z ′

2, z2, x or y induce a P3 + P2. We have a contradiction with the assumption. �
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Now, let Axy and Bxy mean the corresponding sets of the graph Hz for the edge xy. Clearly, Bxy is independent. We will
assume that Hz is connected, Axy and Bxy are non-empty, and any element of Axy has a neighbor in Bxy. Additionally, we
will also assume that Bxy has no degree one vertices and Axy has no two vertices u and v such that N(u)\(Axy ∪ {x, y}) ⊆

N(v)\(Axy ∪ {x, y}). Computing γ ′′(Hz
xy) can be easily reduced to the case in polynomial time.

Lemma 3. For the graph Hz , any element of N(x)\({y} ∪ N(y)) is adjacent to any element of N(y)\{x}.

Proof. Assume that there are non-adjacent vertices a ∈ N(x)\N(y), a ≠ y and b ∈ N(y), b ≠ x. By the properties of Hz

above, there are vertices a′, b′
∈ Bxy such that a′

∈ N(a)\N(b) and b′
∈ N(b)\N(a). Then a′, a, b′, b, y induce a P3 + P2. We

have a contradiction. �

5. Auxiliary results

5.1. Properties of irreducible graphs

By some results of the previous section, the dominating set problem for a hereditary class X ⊆ Free({P2 + P3}) can be
polynomially reduced to a similar-type problem for graphs in X, whose vertex sets were partitioned into two non-empty
subsets. If G is such a graph and (A, B) is its partition, thenwewrite G , G(A, B). Moreover, B is independent, B has no degree
one vertices, A has no two vertices u and v such that N(u)\A ⊆ N(v)\A, and none of the elements of B is adjacent to all the
elements of A. The last requirement is explained by the following two reasons. If each of the elements of B is adjacent to all
the elements of A, then any element of A dominates B. Otherwise, any subset of A dominating B̃ also dominates B, where
B̃ , {x ∈ B| N(x) ≠ A}. Moreover, A is split into three subsets A1, A2, A3 such that adding vertices x and y, and all the edges
in {(x, x′)| x′

∈ A1 ∪ A3} ∪ {(y, y′)| y′
∈ A2 ∪ A3} to G produce a graph G′

∈ X. A graph with the properties mentioned above
is said to be irreducible.

Let NB(a) , {b ∈ B| (a, b) ∈ E(G)} for a vertex a ∈ A, and let NB(A′) ,


a∈A′ NB(a) for a subset A′ of A. Let G∗ be
the graph obtained from G by adding the minimum possible number of edges to make A to be a clique. Let γ ′′(G) be the
minimum cardinality of the subsets of A that dominate B. Clearly, γ (G∗) = γ ′′(G), as there is a minimum dominating set of
G∗ contained in A.

Lemma 4. Let A′ , {a1, a2, . . . , ak} be an independent subset of A and bi ∈ NB(ai)\
k

j=1,j≠i NB(aj). Then each of the elements
of N ′ , NB(A′)\{b1, b2, . . . , bk} is adjacent to all the elements of A′.

Proof. If there is an element ap ∈ A′ having a neighbor b ∈ B, b ≠ bp and an element aq ∈ A′, (aq, b) ∉ E(G), then
b, bp, ap, aq, bq induce a P3 + P2. Hence, every element of N ′ must be adjacent to all the elements of A′. �

Lemma 5. For any three vertices a1, a2, a3 ∈ A such that (a1, a2) ∈ E(G), (a1, a3) ∉ E(G), (a2, a3) ∉ E(G), we have NB(a3) ⊆

NB(a1) ∪ NB(a2). If D is a minimal subset of A dominating B, then the graph G[D] is complete multipartite.

Proof. Assume that there is a vertex b ∈ NB(a3)\(NB(a1) ∪ NB(a2)). To avoid an induced P3 + P2 in G, any element of
NB(a1) ⊗ NB(a2) is adjacent to a3. Any element of NB(a1) ∩ NB(a2) is adjacent to a3, otherwise an element of the set, a1, any
element of NB(a2)\NB(a1), a3, and b induce a P3 + P2 in G. We obtain that NB(a1) ∪ NB(a2) ⊆ NB(a3), which is impossible by
the definition of an irreducible graph.

If G[D] is not complete multipartite, then there are elements a1, a2, a3 of D such that (a1, a2) ∈ E(G), (a1, a3) ∉

E(G), (a2, a3) ∉ E(G). As D is minimal, then there is a vertex in NB(a3)\(NB(a1) ∪ NB(a2)), which is impossible by the
previous paragraph. �

Lemma 6. Let A∗
= A1 if A1 ≠ ∅, otherwise A∗

= A3. Let K be the set of all the connected components of G[A∗
]. Then A∗ is

independent or γ ′′(G) = min{K∈K| NB(V (K)∪(A\A∗))=B}{γ
′′(GK )| GK , G[V (K) ∪ (A\A∗) ∪ B]}.

Proof. Let D be a minimum subset of A dominating B. Wemay assume that D∩A∗ has at least two elements (otherwise, the
equality is obvious) and A∗ is not independent. By Lemma 5, NB(A∗) = NB(V (K)) for any connected component K ∈ K with
at least two vertices. Let K ′ be a connected component of G[A∗

] with at least two vertices. If (D∩ A∗)\V (K ′) has at least two
elements, thenD∩(A\A∗)∪D∩V (K ′)∪{a′, a′′

} also dominates B by Lemma 5, where a′ and a′′ are arbitrary adjacent vertices
of K ′. If (D ∩ A∗)\V (K ′) has only one element a∗, then D ∩ V (K ′) has an element a∗∗, as |D ∩ A∗

| ≥ 2. The set D\{a∗
} ∪ {a}

dominates B, where a ∈ V (K ′) is an arbitrary vertex adjacent to a∗∗. Hence, γ ′′(G) must be equal to the minimum in both
cases. The equality is obvious whenever D ∩ A∗

⊆ V (K ′). �

According to Lemma 6, we may assume that each of the graphs G[A1] and G[A2] is either connected or empty. By γ ′′

k (G)
we denote the size of a minimum subset of A dominating B and inducing a complete multipartite subgraph with at most k
parts if one exists. If there is no such a subset, then γ ′′

k (G) = +∞.

Lemma 7. For each fixed k, γ ′′

k (G) can be computed in O(|A|
k
|V (G)|O(1)) time.
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Proof. Let D be a minimal subset of A dominating B. By Lemma 5, G[D] is complete multipartite. By Lemma 4, any element
of B having a neighbor in a part of G[D] must be adjacent to all the elements of this part or to exactly one of its element. If
G[D] has at most k parts, then a subset A′ of A containing exactly one element of every part and NB(A′) can be removed from
G such that any element of B∗ in the resultant graph GA′(A∗, B∗) has only one neighbor in A∗. A subset A′ of this type is said
to be admissible. If there is no an admissible set, then γ ′′

k (G) = +∞. Otherwise, γ ′′

k (G) is equal to the minimal of the sums
|A′

| + |B∗
| over all the admissible subsets. This optimal sum can be computed in O(|A|

k
|V (G)|O(1)) time. �

5.2. The classes Free({P3 + P2, orb}), Free({P3 + P2, K5}), Free({P3 + P2, gem}), and Free({P3 + P2, sinker})

Lemma 8. If G(A, B) is an irreducible {P3 + P2, orb}-free or {P3 + P2, K5}-free graph, then γ ′′(G) = γ ′′

4 (G).

Proof. Let D be a minimum subset of A dominating B. As D is minimum, for each a ∈ D, there is a vertex ba ∈

NB(a)\


v∈D\{a} NB(v). Hence, G[D] is complete multipartite with at most four parts by Lemma 5. Therefore, γ ′′(G) =

γ ′′

4 (G). �

Lemma 9. The dominating set problem for {P3 + P2, gem}-free graphs can be polynomially reduced to the same problem for
{P5, gem}-free graphs

Proof. Let G(A, B) be an irreducible {P3 + P2, gem}-free graph. By Lemma 6, we may assume that G[A1] is connected and
G[A2] is connected or an empty graph. There is no a vertex in B adjacent to a vertex in A3 and to a vertex in A1 ∪ A2. It is
a corollary of Lemma 3 and the fact that G′ is gem-free. Let b be an arbitrary vertex of B adjacent to a vertex in A1 and to
a vertex in A2. By Lemma 3 and the fact that G′ is gem-free, A3 must be empty. The vertex b must be adjacent to all the
elements of A1. Otherwise, by the connectivity of G[A1], there are adjacent vertices a11, a

2
1 ∈ A1 and a2 ∈ A2 such that

(b, a11) ∈ E(G), (b, a2) ∈ E(G), (b, a21) ∉ E(G). By Lemma 3, (a11, a2) and (a12, a2) are some edges of G. Then b, a11, a
2
1, a2, x

induce a gem in G′. The set A2 is independent, otherwise G[A2] is connected and b must be adjacent to all the vertices of A,
which is impossible by the definition of an irreducible graph. So, any element of B having a neighbor in A1 and a neighbor in
A2 must be adjacent to all the elements of A1.

We may assume that |A1| ≥ 2, otherwise G[A] is bipartite and γ ′′(G) can be computed in polynomial time by Lemma 7.
As G is irreducible, there are two elements a′, a′′

∈ A1 such that NB(a′)\NB(a′′) is not empty. Hence, any element of
NB(a′)\NB(a′′) can be adjacent to none of the elements of A2. Therefore, any subset of A dominating B must contain an
element of A1. Hence, γ ′′(G) = γ ′′(G[A1 ∪ NB(A1)]) + γ ′′(G[A2 ∪ (NB(A2)\NB(A1))]) + γ ′′(G[A3 ∪ NB(A3)]). This equality
also holds if there is no an element of B adjacent to an element of A1 and to an element of A2. Further, we will explain how
computing γ ′′(G[A1 ∪NB(A1)]), γ

′′(G[A2 ∪ (NB(A2)\NB(A1))]), γ
′′(G[A3 ∪NB(A3)]) can be reduced to solving the dominating

set problem for {P5, gem}-free graphs. Without loss of generality, we will consider the graph H , G[A1 ∪ NB(A1)].
It is well-known that for any connected P4-free graph H ′ with at least two vertices there are its induced subgraphs H ′′

and H ′′′ such that H ′
= H ′′

×H ′′′ [6]. Hence, there is an unique decomposition H ′
= H ′

1 ×H ′

2 × · · ·H ′
p, where H ′

1, . . . ,H
′

k are
disconnected and each of the graphs H ′

k+1, . . . ,H
′
p is the one-vertex graph. Moreover, this decomposition can be computed

in polynomial time [6].
We may assume that H is irreducible. By Lemma 6, we may also assume that G[A1] is connected. This graph is P4-free,

otherwise some four its vertices and x induce a gem in G′. Any graph whose vertex set can be partitioned into a clique and
an independent set is P5-free [8]. Hence, H is {P5, gem}-free whenever A1 is a clique. Assume that A1 is not a clique. There is
a decomposition H = H1 × H2 × · · · × Hk+1 for k > 1, where H1, . . . ,Hk are disconnected, Hk+1 is either disconnected or a
clique.

Let us show that if there is a vertex b ∈ B adjacent to a vertex a′
∈ V (Hi) with i ≤ k and to a vertex a′′

∈ A1\V (Hi), then
b is adjacent to all the vertices of Hi. Let K be an arbitrary connected component of Hi such that a′

∉ K . The vertex bmust be
adjacent to all the vertices of K , otherwise b, a′, a′′, x, and some element of K induce a gem in G′. Hence, b is adjacent to all
the vertices of K . As H is irreducible, for each i ≤ k, there is a vertex in NB(V (Hi)) that is not adjacent to each of the elements
of A1\V (Hi). Hence, γ ′′(H) =

k+1
i=1 γ ′′(G[V (Hi) ∪ Vi]), where, for each i, Vi = NB(V (Hi))\

k+1
j=1,j≠i NB(V (Hj)). This formula

and Lemma 6 give a polynomial-time reduction to {P5, gem}-free graphs. �

Lemma 10. The dominating set problem for {P3 + P2, sinker}-free graphs can be solved in polynomial time.

Proof. Let G(A, B) be an irreducible {P3 + P2, sinker}-free graph. By Lemma 3 and the fact that G is sinker-free, at least one
of the sets A1 and A2 is independent. Let A2 be independent. If A3 ≠ ∅, then H , G[A1 ∪ A3] is connected by Lemma 3. If A3
is empty and A1 is independent, then G[A] is bipartite and γ ′′(G) = γ ′′

2 (G). If A3 is empty and A1 is not independent, then H
is also connected by Lemma 6. If the graph G[A] is K5-free, then γ ′′(G) = γ ′′

4 (G) by Lemma 5. Hence, by Lemma 7, γ ′′(G) can
be computed in polynomial time. We will assume that H is a connected graph containing a K4.

Let Q be a maximum clique of H and |Q | ≥ 4. Any element of V (H)\Q adjacent to an element of Q must have exactly
|Q | − 1 neighbors in Q , as G′ is sinker-free. Since G′ is sinker-free and H is connected, there is no an element of V (H)\Q that
has no neighbors in Q . Hence, if a1 and a2 belong to V (H)\Q , then they are adjacent if and only if N(a1) ∩ Q ≠ N(a2) ∩ Q .
Thus, H is a complete multipartite graph with at least four parts.
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There is no a vertex in B adjacent to an element of A1 ∪ A3 and to an element of A2, simultaneously. Indeed, if such a
vertex b and its neighbors a1 ∈ A1 ∪ A3, a2 ∈ A2 exist, then there is a clique Q ′ of H with at least three vertices such that
a1 ∈ Q ′. By Lemma 3, a2 is adjacent to all the vertices of Q ′. To avoid an induced sinker in G, the vertex bmust be adjacent to
at least two vertices of Q ′. Hence, b, a2, two vertices in Q ′

∩ N(b), and x induce a sinker in G′. We have a contradiction with
the existence of b. Hence, γ ′′(G) = γ ′′(G[A1 ∪ A3 ∪ NB(A1 ∪ A3)]) + γ ′′(G[A2 ∪ NB(A2)]).

We may assume that the subgraph induced by A1 ∪ A3 ∪ NB(A1 ∪ A3) is also irreducible. Let us show that there is no an
element of B adjacent to vertices in distinct parts of H . Let b′ be a vertex of this type, a′

1 and a′

2 be its neighbors in distinct
parts of H . There is a clique Q ′′ of H containing exactly one representative of each of the parts of H that also contains a′

1 and
a′

2. Clearly, |Q
′′
| ≥ 4. To avoid an induced sinker in G′, b′ must be adjacent to all the elements of Q ′′. If two vertices a′

∉ Q ′′

and a′′
∈ Q ′′ belong to the same part ofH , then b′ must be adjacent to a′. Otherwise, b′, any two elements of Q ′′

\{a′′
}, a′, and

x induce a sinker in G′. Therefore, b′ must be adjacent to all the vertices of A1 ∪A3, which is impossible by the definition of an
irreducible graph. So, γ ′′(G[A1 ∪ A3 ∪ NB(A1 ∪ A3)]) =

k
i=1 γ ′′(G[Vi ∪ NB(Vi)]), where V1, . . . , Vk are all the parts of H . By

Lemma 7, the sum and γ ′′(G[A2∪NB(A2)]) can be computed in polynomial time, as γ ′′(G[A2∪NB(A2)]) = γ ′′

1 (G[A2∪NB(A2)])
and γ ′′(G[Vi ∪ NB(Vi)]) = γ ′′

1 (G[Vi ∪ NB(Vi)]) for each i. �

5.3. The classes Free({P3 + P2, K1,4}), Free({P3 + P2, fork}), Free({P3 + P2, cricket}), Free({P3 + P2, bull}), Free({P3 +

P2, kite}), Free({P3 + P2, dart})

Lemma 11. The dominating set problem for Free({P3 + P2, K1,4}) can be polynomially reduced to the same problem for
Free({P5, K1,4}).

Proof. Let G(A, B) be an irreducible {P3 + P2, K1,4}-free graph. Let us show that G∗ is {P5, K1,4}-free. Clearly, G∗ is P5-free.
Suppose that G∗ has a K1,4 induced by vertices a, b1, b2, b3, b4, where (a, b1), (a, b2), (a, b3), (a, b4) are the edges of this
K1,4. The vertex a belongs to A, otherwise non-adjacent vertices b1 and b2 belong to A, which is impossible, as A is a clique
of G∗. There are at least three vertices among b1, b2, b3, b4 belonging to B. These three vertices, a, x or y induce a K1,4 in G′.
We have a contradiction. �

Lemma 12. The dominating set problem for Free({P3 + P2, fork}) can be polynomially reduced to the same problem for
Free({P5, fork}).

Proof. Let G(A, B) be an irreducible {P3+P2, fork}-free graph. To prove the lemma, we only need to show that G∗ is fork-free.
Suppose that G∗ has a fork induced by vertices x1, x2, x3, y1, y2, where (x1, y1), (x2, y1), (y1, y2), (y2, x3) are the edges of the
fork. The vertices x1, x2, x3 must belong to B and the vertices y1, y2 must belong to A, as B is an independent set and A is a
clique ofG∗. The graphGmust have the edge (y1, y2), otherwise x1, x2, x3, y1, y2 induce a P3+P2 inG′. ThenG is not fork-free.
We have a contradiction. �

Lemma 13. For each of the classes Free({P3 + P2, cricket}) and Free({P3 + P2, bull}), the dominating set problem can be
polynomially reduced to the same problem for Free({P5, fork}).

Proof. Let X be one of the two classes, G(A, B) be an irreducible graph in X. Let a1 and a2 be arbitrary elements of A having
a common neighbor b ∈ B. We will show that a1 and a2 belong to exactly one of the sets A1, A2, A3. Assume the opposite.
We may also assume that (a1, x) and (a2, y) are the edges of G. By Lemma 3, a1 and a2 are adjacent. There are elements
b′

∈ NB(a1)\NB(a2) and b′′
∈ NB(a2)\NB(a1). Hence, a1, a2, b′, b, b′′ induce a bull in G. If (a1, y) ∉ E(G) or (a2, x) ∉ E(G),

then either b, b′′, a1, a2, y or b, b′, a1, a2, x induce a cricket in G′. The case (a1, y) ∈ E(G) and (a2, x) ∈ E(G) is impossible
by our assumption. Hence, the neighborhood of each of the elements of B is included in one of the sets A1, A2, A3. Hence,
γ ′′(G) = γ ′′(G1) + γ ′′(G2) + γ ′′(G3), where Gi is a subgraph of G induced by Ai ∪ NB(Ai). Similar to the reasonings of the
previous lemma, it is easy to check that all the graphs G∗

1,G
∗

2,G
∗

3 are {P5, fork}-free. So, the lemma holds. �

Lemma 14. For each of the classes Free({P3+P2, kite}) and Free({P3+P2, dart}), the dominating set problem can be polynomially
reduced to the same problem for Free({P5, kite}) and Free({P5, dart}), respectively.

Proof. Let G(A, B) be an irreducible {P3 + P2, kite}-free or {P3 + P2, dart}-free graph. We will show that G[A1 ∪ A3] and
G[A2 ∪A3] are P3-free. Assume that G[A1 ∪A3] contains vertices a1, a2, a3 ∈ A such that (a1, a2) ∈ E(G), (a2, a3) ∈ E(G), and
(a1, a3) ∉ E(G).Wewill show thatNB(a1)∩NB(a2) = ∅. Assume the opposite. Then an element ofNB(a1)\NB(a2), an element
of NB(a1)∩NB(a2), a1, a2, x induce a dart in G′. The equality NB(a1)\NB(a2) = NB(a3)\NB(a2) holds, otherwise an element of
NB(a1)\(NB(a2) ∪NB(a3)) or an element of NB(a3)\(NB(a2) ∪NB(a1)), a1, a2, a3, x induce a kite in G′. If (a1, y) and (a2, y) are
not edges of G′, then an element of NB(a1)∩NB(a2), a1, a2, x, y induce a kite in G′. If (a1, y) ∉ E(G′) and (a2, y) ∈ E(G′), then
an element of NB(a1)\NB(a2), a1, a2, x, y induce a kite in G′. If (a1, y) ∈ E(G′), then (a3, y) ∈ E(G′) by Lemma 3. There is an
element b∗

∈ NB(a1)∩NB(a2) that is not adjacent to a3, otherwise NB(a1) ⊆ NB(a3), which is impossible by the definition of
an irreducible graph. Then b∗, a1, a3, x, y induce a kite in G′. So, NB(a1) ∩ NB(a2) must be empty. Similarly, NB(a2) ∩ NB(a3)
must be empty. Hence, the set NB(a2)\(NB(a1) ∪ NB(a3)) is not empty and any its element, a1, a2, a3, x induce a dart . The
set NB(a1)\(NB(a2)∪NB(a3)) is also not empty, and any its element, a1, a2, a3, x induce a kite. We have a contradiction with
the initial assumption.
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Let A3 be non-empty. Then A1 and A2 must be cliques by Lemma 3 and the fact that G[A1 ∪ A3] and G[A2 ∪ A3] are P3-free.
Similarly, A3 is a clique whenever A1 ∪ A2 ≠ ∅. Hence, if A1 ∪ A2 ≠ ∅, then A is a clique and G is {P5, dart}-free or {P5, kite}-
free. Let A1 ∪ A2 be empty. By Lemmas 6 and 7, we may assume that G[A3] is connected. As G[A3] is P3-free, then this graph
is complete. Hence, G is also {P5, dart}-free or {P5, kite}-free.

Let A3 be empty. If G[A] is bipartite, then γ ′′(G) = γ ′′

2 (G) and γ ′′(G) can be computed in polynomial time by Lemma 7.
Otherwise, by Lemma6,wemay assume thatG[A1] is complete andG[A2] is complete or an empty graph. IfG[A2] is complete,
then G is {P5, dart}-free or {P5, kite}-free by Lemma 3. If A2 is independent andmin(|A1|, |A2|) = 1, then G[A] is also bipartite
or complete. Assume that A1 and A2 have at least two vertices and A2 is independent.

Let us show that there is no a vertex in B adjacent to a vertex in A1 and a vertex in A2. Let b be such a vertex. Those
neighbors of b must be adjacent by Lemma 3. If G′ is dart-free, then b is adjacent to all the vertices of A1. Then, for each
a′, a′′

∈ A1, an element of NB(a′)\NB(a′′), b, a′, a′′, x induce a dart in G′. If G′ is kite-free, then b must also be adjacent to all
the elements of A1, otherwise there are vertices a1, a2 ∈ A1 such that (a1, b) ∉ E(G), (a2, b) ∈ E(G). The set A2 contains an
element a3 adjacent to b. Clearly, NB(a1) ∩ NB(a2) = ∅, otherwise an element of NB(a1) ∩ NB(a2), a1, a2, x, y induce a kite in
G′. Hence, an element of NB(a1)\NB(a3), a1, a2, a3, b induce a kite in G.

So, γ ′′(G) = γ ′′(G[A1∪NB(A1)])+γ ′′(G[A2∪NB(A2)]) and γ ′′(G[A2∪NB(A2)]) = γ ′′

1 (G[A2∪NB(A2)]). Hence, by Lemma 7,
computing γ ′′(G) can be polynomially reduced to computing γ ′′(G[A1 ∪ NB(A1)]), where G[A1 ∪ NB(A1)] is {P5, dart}- or
{P5, kite}-free. �

5.4. The class Free({fork, K3 + K2})

Two non-adjacent vertices x and y of a graph are said to be quasi-twins if N(x) ⊆ N(y). If x and y are quasi-twins of a
graph G, then γ (G) = γ (G\{y}). Hence, the dominating set problem for a hereditary class can be polynomially reduced to
the same problem for its graphs without quasi-twins.

Lemma 15. Let G be a connected {fork, K3+K2}-free graphwithout quasi-twins, and let G ∉ Free({P5}). Let P , (x1, x2, . . . , xk)
be a maximum induced path of G if G ∈ Free({P7}), otherwise let P be a maximal induced path of G with at least seven vertices.
If a vertex x ∈ (


v∈V (P) N(v))\V (P) has a neighbor y ∉


v∈V (P) N(v), then x must be adjacent to all the vertices of P.

Proof. Assume the opposite. The path P must have at least five vertices. The vertex x cannot have exactly one neighbor in
V (P), otherwise this neighbor must be an end of P contradicting the maximality of P . If x has more than two neighbors in
V (P), then they must be consecutive in P to avoid a fork induced by y, x, some neighbors a′ and a′′ of x on P , and a neighbor
a′′′

∈ V (P)\N(x) of a′′. Nevertheless, G contains an induced fork, as x cannot be adjacent to all the vertices of P . Hence, x
must have exactly two neighbors on P . They must be adjacent, as G is fork-free. Moreover, k ≤ 6, as G is K3 +K2-free. Hence,
P is maximum. We may assume that x2 and x3 are the neighbors in the case k = 5, x3 and x4 are the neighbors for k = 6,
since G is K3 + K2-free. Suppose that k = 5. As G has no quasi-twins, there is a vertex x′

∈ N(x5)\N(x3). As P is maximum,
x′ must have a neighbor in V (P)\{x5}. As G is {fork, K3 + K2}-free, N(x′) ∩ V (P) = {x1, x5} or N(x′) ∩ V (P) = {x1, x2, x5} or
N(x′) ∩ V (P) = {x1, x2, x4, x5} or N(x′) ∩ V (P) = {x1, x4, x5}. Hence, x′ and y cannot be adjacent. Due to the maximality of
P , x′ must be adjacent to x in the case, when N(x′) ∩ V (P) = {x1, x2, x5}. It is also true in all the three remaining cases, as G
is K3 + K2-free. Hence, G contains an induced fork. We have a contradiction. The case k = 6 can be considered similarly. �

Lemma 16. The dominating set problem for {fork, K3 + K2}-free graphs can be polynomially reduced to the same problem for
{P5, fork, K3 + K2}-free graphs

Proof. Let G be a connected {fork, K3+K2}-free graphwithout quasi-twins containing an induced P5. Let P , (x1, . . . , xk) be
a maximum induced path of G if G ∈ Free({P7}), otherwise let P be a maximal induced path of Gwith at least seven vertices.
It can be computed in polynomial time. Assume that V (P) is a dominating set of G. If |V (P)| ≤ 8, then γ (G) ≤ 8. Suppose
that |V (P)| ≥ 9 and G is distinct from a simple path and a cycle. Hence, there is a vertex x ∈ (


v∈V (P) N(v))\V (P). Since G

is fork-free and P is maximal, x has at least two neighbors on P . If it has exactly two neighbors, then x must be adjacent to
the ends of P . As G is {fork, K3 +K2}-free and it is not a cycle, an element of V (G)\V (P) has at least three neighbors on P . We
may assume that x has at least three neighbors on P . Let xs be the first neighbor of x on P counting from x1. Clearly, s ≤ 2,
otherwise x, xs, xs+1, xs−1, xs−2 or x, xs, xs+1, x1, x2 induce a fork or a K3 + K2, respectively. If s = 2, then N(x) ∩ {x4, . . . , xk}
has at most two vertices and they must be adjacent, as G is fork-free. It is impossible, as G is {fork, K3 + K2}-free. If s = 1
and (x, x2) ∉ E(G), then N(x) ∩ {x4, . . . , xk} is a clique with at most two vertices, as G is fork-free. It is also impossible, as
G is {fork, K3 + K2}-free. If (x, x1) ∈ E(G) and (x, x2) ∈ E(G), then no two vertices of V (P)\(N(x) ∪ {x3}) are adjacent, as
G is K3 + K2-free. Hence, this set has at most two elements, as G is {fork, K3 + K2}-free. In other words, x is adjacent to at
least |V (P)| − 3 vertices of P . Therefore, each of the elements of V (G)\V (P) is adjacent to only the ends of P or to at least
|V (P)| − 3 its vertices. Hence, {x1, x2, x3, x4, x} is a dominating set of G.

Now, assume that V (P) is not a dominating set of G and γ (G) ≥ 11. Let V1 be the set of those elements in


v∈V (P)

N(v)\V (P) that are adjacent to all the vertices of P and have a neighbor outside


v∈V (P) N(v). By the previous lemma,
V1 is not empty. Let V2 be the set of those elements in


v∈V (P) N(v)\V (P) that are not adjacent to all the vertices of P ,

V3 , V (G)\


v∈V (P) N(v). The set V3 is not empty. By the previous lemma, none of the elements of V2 has a neighbor
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Fig. 4. All the five-vertex graphs in S ∪ T ∪ Q.

outside


v∈V (P) N(v). It is easy to check that each of the elements of V1 is adjacent to each of the elements of V2, as G is
{fork, K3 + K2}-free. As G is connected and fork-free, any element of V3 has a neighbor in V1.

Let H be a graph obtained from G by removing any vertex of P . We will show that there is a minimum dominating set of
H containing an element of V1. Hence, this set must be a dominating set of G. Therefore, γ (H) = γ (G). Let D be a minimum
dominating set ofH containing no elements of V1. The set D∩


v∈V (P) N(v) has at most one element, otherwise any element

of V (P) ∩ V (H), any element of V1, and V3 ∩ D form a dominating set of G containing an element of V1. To avoid an induced
fork in G, N(z ′)∩V1 = N(z ′′)∩V1 for any two adjacent vertices z ′

∈ V3 and z ′′
∈ V3. Hence, each of the elements of N(z)∩V1

is adjacent to each of the elements of N(z)∩V3 for any z ∈ V3. Hence, wemay assume that V3 ∩D is independent. Otherwise
some its element can be replaced by any its neighbor in V1 such that the resultant set is a dominating set of G containing an
element of V1. Let V3 ∩ D , {z1, . . . , zp}. For any i, there is a vertex yi ∈ V1 such that yi ∈ N(zi)\

p
j=1,j≠i N(zj), otherwise

the idea of a replacement also works. As γ (G) ≥ 11, then |V3 ∩ D| ≥ 9. By Ramsey’s theorem, some three vertices among
y1, . . . , yp are pairwise non-adjacent or some four vertices form a clique. The first alternative is impossible, as G is fork-free.
Suppose that y1, y2, y3, y4 constitute a clique ofH . Let us show that (D\{z1, z2, z3, z4})∪{y1, y2, y3, y4} is a dominating set of
G. Clearly, V3∩

4
i=1 N(zi) ⊆

4
i=1 N(yi). If y ∈ V1\{y1, . . . , yp} has a neighbor in {z1, z2, z3, z4}, then ymust have a neighbor

in {y1, y2, y3, y4}, otherwise G is not K3 + K2.
So, deleting vertices in long induced paths in {fork, K3 + K2}-free graphs gives a polynomial-time reduction to

{P5, fork, K3 + K2}-free graphs. �

6. Main result

The following result was proved in [25].

Lemma 17. The dominating set problem for a hereditary class X ⊆ Free({G + O1}) can be polynomially reduced to the same
problem for X ∩ Free({G}).

Recall that the classes S, T , Q, Q∗ defined in the third section are boundary for the dominating set problem. To simplify
understanding the proof of the last theorem, a complete list of all the five-vertex graphs in S ∪ T ∪ Q is presented in the
figure below. Its completeness can be verified by the list of all five-vertex graphs in [29] and the fact that any graph in Q can
contain none of the graphs C4, C5, K2 +K2, none of the complements of K2 +O3, K3 +O2 as an induced subgraph (see Fig. 4).
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Theorem 4. Let X be defined by a set of forbidden induced subgraphs with at most five vertices. The dominating set problem
is NP-complete for X if it includes at least one of the classes S, T , Q. Otherwise, the problem can be solved in polynomial time
for X.

Proof. Let Y be a minimal set such that X = Free(Y). By Theorem 1, the dominating set problem is NP-complete for
X if it includes S or T or Q. Assume that S ⊈ X, T ⊈ X, Q ⊈ X. Hence, Y contains a forest. It must be an induced
subgraph of a P5 + O2 or a P3 + P2 or a fork + O1. If Y contains an induced subgraph of a P5 + O2, then X is easy for
the problem by Theorem 3 and Lemma 17. Suppose that a P3 + P2 belongs to Y. Let G be a graph in Q containing at
most five vertices. Taking into account the presented list of all the five-vertex graphs in S ∪ T ∪ Q, it is easy to check
that G is an induced subgraph of at least one of the graphs O5, P4 + O2, K5 + O2, orb, sinker, kite, dart, cricket, fork +

O1, K1,4, gem + O1, bull. By Lemmas 7–14 and 17, the problem for X can be polynomially reduced to the same problem for
the classes Free({P4}), Free({P5,O5}), Free({P5, K5}), Free({P5, orb}), Free({P5, sinker}), Free({P5, sinker}), Free({P5, kite}),
Free({P5, dart}), Free({P5, cricket}), Free({P5, fork}), Free({P5, K1,4}), Free({P5, gem}), Free({P5, bull}). Hence, by Theorem 3,
X is easy for the problem. Assume that Y contains an induced subgraph of a fork + O1 and it contains none of the induced
subgraphs of a P5 + O2. As T ⊈ X, Y contains a graph in T , which is an induced subgraph of a K3 + K2 or a hammer + O1 or
a bull. The classes Free({fork, bull}) and Free({fork, hammer}) are easy for the problem [25]. By these facts, Lemmas 16 and
17, and Theorem 3, the problem is polynomial-time solvable for X. �

There is an interesting detail concerning the previous theorem. Namely, S, T , Q do not provide a dichotomy in the family
of all the hereditary classes defined by at most six vertices. That is, assuming P ≠ NP , it is not true that such a class is hard
for the dominating set problem if and only if it includes S or T or Q. Indeed, none of the classes S, T , Q is contained in
Free({K1,4, P3 +P3}). Hence, it should be an easy case for the dominating set problem assuming the correctness of those fact.
But, by Theorem 1, the class is a hard case for the problem, since Free({K1,4, P3 + P3}) ⊇ Q∗.

Acknowledgments

The articlewas preparedwithin the framework of the Academic Fund Programat theNational ResearchUniversityHigher
School of Economics (HSE) in 2015–2016 (grant 15-01-0010) and supported within the framework of a subsidy granted to
the HSE by the Government of the Russian Federation for the implementation of the Global Competitiveness Program.

The author would like to thank anonymous reviewers for their interest in the paper and valuable comments.

References

[1] V. Alekseev, On easy and hard hereditary classes of graphs with respect to the independent set problem, Discrete Appl. Math. 132 (2003) 17–26.
[2] V. Alekseev, R. Boliac, D. Korobitsyn, V. Lozin, NP-hard graph problems and boundary classes of graphs, Theoret. Comput. Sci. 389 (2007) 219–236.
[3] V. Alekseev, D. Korobitsyn, V. Lozin, Boundary classes of graphs for the dominating set problem, Discrete Math. 285 (2004) 1–6.
[4] A. Bondy, U. Murty, Graph theory, in: Graduate Texts in Mathematics, Springer-Verlag, 2008.
[5] H. Broersma, P. Golovach, D. Paulusma, J. Song, Updating the complexity status of coloring graphs without a fixed induced linear forest, Theoret.

Comput. Sci. 414 (2012) 9–19.
[6] D. Corneil, Y. Perl, L. Stewart, Cographs: recognition, application and algorithms, Congr. Numer. 43 (1984) 249–258.
[7] R. Diestel, Graph theory, in: Graduate Texts in Mathematics, Springer-Verlag, 2010.
[8] S. Foldes, P. Hammer, Split graphs, Congr. Numer. 19 (1977) 311–315.
[9] P. Golovach, D. Paulusma, List coloring in the absence of two subgraphs, Discrete Appl. Math. 166 (2014) 123–130.

[10] P. Golovach, D. Paulusma, J. Song, 4-coloring H-free graphs when H is small, Discrete Appl. Math. 161 (2013) 140–150.
[11] D. Korobitsyn, On the complexity of domination number determination in monogenic classes of graphs, Discrete Math. Appl. 2 (1992) 191–199.
[12] N. Korpelainen, V. Lozin, D. Malyshev, A. Tiskin, Boundary properties of graphs for algorithmic graph problems, Theoret. Comput. Sci. 412 (2011)

3544–3554.
[13] D. Kral’, J. Kratochvil, Z. Tuza, G. Woeginger, Complexity of coloring graphs without forbidden induced subgraphs, Lecture Notes in Comput. Sci. 2204

(2001) 254–262.
[14] D. Lokshtantov, M. Vatshelle, Y. Villanger, Independent set in P5-free graphs in polynomial time, in: Proceedings of the ACM-SIAM Symposium on

Discrete Algorithms, 2014, pp. 570–581.
[15] V. Lozin, D. Malyshev, Vertex coloring of graphs with few obstructions, Discrete Appl. Math. (2015) http://dx.doi.org/10.1016/j.dam.2015.02.015.
[16] V. Lozin, R. Mosca, Independent sets in extensions of 2K2-free graphs, Discrete Appl. Math. 146 (2004) 74–80.
[17] V. Lozin, R. Mosca, C. Purcell, Independent domination in finitely defined classes of graphs: polynomial algorithms, Discrete Appl. Math. 182 (2015)

2–14.
[18] V. Lozin, C. Purcell, Boundary properties of the satisfiability problems, Inform. Process. Lett. 113 (2013) 313–317.
[19] D. Malyshev, The complexity of the edge 3-colorability problem for graphs without two induced fragments each on at most six vertices, Sib. Electron.

Math. Rep. 11 (2014) 811–822.
[20] D. Malyshev, The coloring problem for classes with two small obstructions, Optim. Lett. 8 (2014) 2261–2270.
[21] D.Malyshev, Two cases of polynomial-time solvability for the coloring problem, J. Comb. Optim. (2015) http://dx.doi.org/10.1007/s10878-014-9792-3.
[22] D. Malyshev, On minimal hard classes of graphs, Diskretn. Anal. Issled. Oper. 16 (2009) 43–51. (in Russian).
[23] D. Malyshev, Classes of graphs critical for the edge list-ranking problem, J. Appl. Ind. Math. 8 (2014) 245–255.
[24] D. Malyshev, Boundary graph classes for some maximum induced subgraph problems, J. Comb. Optim. 7 (2014) 345–354.
[25] D. Malyshev, A complexity dichotomy and a new boundary class for the dominating set problem, J. Comb. Optim. (2015)

http://dx.doi.org/10.1007/s10878-015-9872-z.
[26] D. Malyshev, The complexity of the 3-colorability problem in the absence of a pair of small forbidden induced subgraphs, Discrete Math. 338 (2015)

1860–1865.
[27] D. Malyshev, Continued sets of boundary classes of graphs for colorability problems, Diskretnyi Analiz i Issledovanie Operatsii 16 (2009) 41–51

(in Russian).
[28] D. Malyshev, O. Lobanova, The coloring problem for {P5, P5}-free graphs and {P5, Kp − e}-free graphs is polynomial, arXiv:1503.02550.
[29] Graphs: 5-vertices, Information system on graph classes and their inclusions, http://www.graphclasses.org/smallgraphs.html#nodes5. Accessed 15

August 2015.

http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref1
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref2
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref3
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref4
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref5
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref6
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref7
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref8
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref9
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref10
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref11
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref12
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref13
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref14
http://dx.doi.org/10.1016/j.dam.2015.02.015
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref16
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref17
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref18
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref19
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref20
http://dx.doi.org/10.1007/s10878-014-9792-3
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref22
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref23
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref24
http://dx.doi.org/10.1007/s10878-015-9872-z
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref26
http://refhub.elsevier.com/S0166-218X(15)00480-1/sbref27
http://arxiv.org/1503.02550
http://www.graphclasses.org/smallgraphs.html%23nodes5

	A dichotomy for the dominating set problem for classes defined by small forbidden induced subgraphs
	Introduction
	Notation
	Boundary graph classes for the dominating set problem and their applications
	The basic idea and the first steps of its implementation
	Auxiliary results
	Properties of irreducible graphs
	The classes  F r e e ({ P3+ P2, orb}), F r e e ({ P3+ P2, K5}), F r e e ({ P3+ P2, gem}) , and  F r e e ({ P3+ P2, sinker}) 
	The classes  F r e e ({ P3+ P2, K1, 4}), F r e e ({ P3+ P2, fork}), F r e e ({ P3+ P2, cricket}), F r e e ({ P3+ P2, bull}), F r e e ({ P3+ P2, kite}), F r e e ({ P3+ P2, dart}) 
	The class  F r e e ({ fork, K3+ K2}) 

	Main result
	Acknowledgments
	References


