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Abstract
We consider Yang–Baxter equations arising from its associative analog and
study the corresponding exchange relations. They generate finite-dimensional
quantum algebras which have the form of coupled NGL( ) Sklyanin elliptic
algebras. Then we proceed to a natural generalization of the Baxter–Belavin
quantum R-matrix to the case N MMat , Mat , .2 2( ) ( ) ÄÄ Ä It can be viewed
as symmetric form of NMGL( ) R-matrix in the sense that the Planck constant
and the spectral parameter enter (almost) symmetrically. Such type (sym-
metric) R-matrices are also shown to satisfy the Yang–Baxter like quadratic
and cubic equations.

Keywords: quantum R-matrices, Yang–Baxter equation, integrable systems

1. Introduction

The associative Yang–Baxter equation

R R R R R R 1.112 23 13 12 23 13 ( )= +

appeared in [1] as coassociativity condition id idA A( ) ◦ ( ) ◦D Ä D = Ä D D for the
(principle) derivation A A A:D  Ä defined in an associative algebra A by

a aR Ra,( )D = - a A" Î and some R A A.Î Ä In this paper A NMat , ,( )= i.e.
N×N matrices over .

The equation (1.1) was extended for R depending on additional parameters [17] and used
for description of structures behind the classical Yang–Baxter equation on elliptic curves and
their degenerations [6]. Let us write it as
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R R R R R R R R z z, , 1.2ab bc ac ab bc ac ab ab a b( ) ( )     = + = -h h h h- -

(see (A.23)) where z z z, , , ,a b c  h denote free generic complex parameters. Indices a b c, , are
distinct numbers of tensor components in NMat , .n 3( ) Ä Rab

 is defined in ath and bth
components. If c a b,¹ then Rab

 acts on the cth component of NMat , n( ) Ä by N N´
identity matrix.

The elliptic solution of (1.2) was found in [17]. It is the Baxter–Belavinʼs elliptic GLN

quantum R-matrix [4, 5] (in vector representation). The latter means that Rab
 satisfies the

quantum Yang–Baxter equation6:

R R R R R R . 1.3ab ac bc bc ac ab ( )     =

The property (1.2) of the Baxter–Belavin R-matrix was rediscovered in our papers
[12, 13] in the framework of integrable systems and related topics–Painlevé equations,
Schlesinger systems and their quantization via the Knizhnik–Zamolodchikov–Bernard (KZB)
equations.

Elliptic function identities. The associative Yang–Baxter equation (1.2) in the scalar case
(when N=1 and a b c, , 1, 2, 3= ) is the Fay trisecant identity on elliptic curve

z z z z z z z z z z z z, , , , , , .

1.4

1 2 2 3 1 3 1 2 2 3 1 3( ) ( ) ( ) ( )( ) ( )

( )

   f f h f h f h f h f- - = - - - + - - -

The function z u,( )f satisfying this equation is the Kronecker function. It is define as

z u
z u

z u
,

0
, 1.5( ) ( ) ( )

( ) ( )
( )f

J J
J J

=
¢ +

where z( )J is the odd Riemann theta-function7 (A.3). In this respect the Baxter–Belavinʼs R-
matrix can be viewed as non-abelian generalization of the Kronecker function. In [13] we
described a list of elliptic function identities and properties together with their R-matrix
analogues. In particular, it is easy to verify that the Baxter–Belavin R-matrix defined as8

R z z T T R z NP, , Res , 1.6
z

12
0

12 12

N N

( )( ) ( ) ( ) 

 
å j w= + Ä =

a
a a a a

Î ´
-

=

(see definition of z,( )j w +a a in (A.22)) satisfies the skew-symmetry property

R R 1.7ab ba ( ) = - -

and the unitarity condition (see appendix)

R R N N z z1 1 , 1.8ab ba a b
2 ( )( ) ( ) ( )  = Ä Ã - Ã -

where z( )Ã is the Weierstrass Ã-function. Condition (1.7) is analogue of
z u z u, ,( ) ( )f f= - - - while (1.8) is similar to (A.7) z u z u z u, , .( ) ( ) ( ) ( )f f - = Ã - Ã
In trigonometric (hyperbolic) or rational cases the Weierstrass Ã-function entering (1.8)

equals z z1 sinh2( ) ( )Ã = or z z1 2( )Ã = respectively. The simplest example of the R-matrix
satisfying (1.2), (1.3) and (1.7), (1.8) is the quantum Yangʼs R-matrix [22]:

R z
NP

z

1 1
. 1.912

Yang 12( ) ( )


=
Ä

+

6 See [9] for reviews on the Yang–Baxter equation and related structures.
7 In trigonometric (hyperbolic) or rational cases z u z u, coth coth( ) ( ) ( )f = + or z u z u, 1 1( )f = + respectively.
8 In [17] this R-matrix was found in different-Richey–Tracy form [18].

J. Phys. A: Math. Theor. 49 (2016) 014003 A Levin et al

2



It is the R-matrix analogue of function z1 1 . + The class of R-matrices under
consideration includes nontrivial trigonometric and rational degenerations (of (1.6)), which
satisfy (1.2), (1.7) and (1.8). These type R-matrices can be found in [2, 14, 21] for
trigonometric and rational cases respectively. In GL2 case the corresponding 7-vertex and 11-
vertex R-matrices were found in [7]. See also [6] which results are (presumably) gauge
equivalent to those of [2, 14, 21].

Purpose of the paper
(1) Yang–Baxter equation with two Planck constants. As we will see it follows from

(1.2), (1.7) and (1.8) that the quantum R-matrix satisfies also cubic equations of Yang–Baxter
type. The one closest to the original one (1.3) have the following form:

R R R R R R R R R R R R , 1.1012 13 23 12 13 23 23 13 12 23 13 12 ( )     + = +h h h h h h

where again R R z z .ab ab a b( ) = - When  h= (1.10) coincides with the Yang–Baxter
equation (1.3). Another (more general) type of equation contains Ã-function entering the
unitarity condition (1.8):

R R R R R R R N N N . 1.1112 13 23 23 13 12 13
2 ( ( ) ( )) ( )    h- = Ã - Ãh h h h+

Let us mention that equations of (1.11) type were considered in [19] in the context of double
Lie (and the quadratic Poisson) structures.

(2) Quantum algebras. Given a quantum R-matrix one can define the following (Sklyanin
type) algebra using exchange relations:

R z w L z S L w S L w S L z S R z w, , , , 1.1212 1 2 2 1 12( ) ( ) ( ) ( )( ) ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( ) ( )     - = -

with L z S R z S, tr .2 12 2
ˆ ( ˆ) ( ( ) ˆ )
 = For N=2, i.e. in the Baxterʼs case equation (1.12) provides

the Sklyanin algebra [20] for the components S ,â S S T .ˆ ˆå= a a a In particular case (see (3.3))
such L-operator is just the R-matrix (1.6) itself, and the exchange relations (1.12) are fulfilled
identically due to Yang–Baxter equation (1.3). It means that (1.12) follows from (1.3) by
treating one of tensor components as some Sklyanin algebra module.

In the same way we can define exchange relations corresponding to (1.10) as follows:

R z w L z S L w S R z w L z S L w S

L w S L z S R z w L w S L z S R z w

, , , ,

, , , , . 1.13

12 1 2 12 1 2

2 1 12 2 1 12

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ˆ ˆ ˆ ˆ ( ) ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ( ) ˆ ˆ ˆ ˆ ( ) ( )

    

    

- + -

= - + -

h h h h h

h h h h h

Again, when  h= it coincides with the ordinary exchange relations (1.12). As we will see
this equation defines coupled Sklyanin algebras, i.e. given a pair of Sklyanin algebras for Ŝ



and Ŝ
h
the equation (1.13) provides commutation relations between Ŝ


and S .ˆh

(3) Symmetric R-matrix in N MMat , Mat , .2 2( ) ( ) ÄÄ Ä Here we consider the fol-
lowing extension of the Baxter–Belavin R-matrix (1.6):

z ıN
M

R z N T T, exp 2 , 1.1412,12
2

12
M M

( )( ) ˜ ˜ ˜ ( )˜ ˜
˜

˜ ˜ ˜⎜ ⎟
⎛
⎝

⎞
⎠  

 
å p

a
w= + Ä Ä

a
a a a

Î ´
-R

where T̃ã is Ta of size M×M. We call this R-matrix symmetric in the sense that both
arguments (the Planck constant  and the spectral parameter z) are averaged over lattices

N N ´ and M M ´ respectively. In the simplest rational case corresponding to Yangʼs
R-matrix (1.9) the expression (1.14) is reduced to
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z M
P

N
P

z
,

1 1 1 1
. 1.15N N M M

12,12
12 12( )

˜ ˜ ˜
( )˜ ˜

˜ ˜



=

Ä Ä
+

Ä Ä
R

The limiting cases N=1 or M=1 are given as follows:

z

R z R

,

. 1.16

M N

z

12,12

1 1

12 12

( )

( ) ( ) ( )

˜ ˜

˜ ˜





= = 
R

We will show that such an R-matrix satisfies a set of relations similar to those for the ordinary
R-matrix. In particular, we have the following generalization of the associative Yang–Baxter
equation (1.4):

, 1.1712,12 23,32 13,32 12,13 23,31 13,12 ( )˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜= +R R R R R R

where z z , .ab ab ab ab a b a b, , ( )˜ ˜ ˜ ˜ ˜ ˜ = - -R R The cubic equations arise similarly. For example,
the generalizations of (1.11) takes the form:

N M N N

N M Mz Mz

,

,

1.18

12,32 13,13 23,32 23,13 13,32 12,13
2 2

13,12 32 13

32,12 13,13 32,23 13,23 32,13 13,12
2 2

12,13 23 13

( )
( )

( ) ( )
( ) ( )

( )

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

 = + Ã - Ã

= + Ã - Ã

R R R R R R R

R R R R R R R

where z z zab a b= - and .ab a b˜ ˜ ˜ ˜  = - The Yang–Baxter like equation (1.10) is
generalized as follows:

z z z

z z z

z z z

z z z

, , ,

, , ,

, , ,

, , ,

12,32 12 32 13,13 13 13 23,32 23 32

12,32 12 13 13,13 13 32 23,32 23 13

23,13 23 13 13,32 13 32 12,13 12 13

23,13 23 32 13,32 13 13 12,13 12 32

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

  

  

  

  

+

=

+

R R R

R R R

R R R

R R R

and

z z z

z z z

z z z

z z z

, , ,

, , ,

, , ,

, , , .

32,12 32 12 13,13 13 13 32,23 32 23

32,12 13 12 32,13 13 13 32,23 13 23

13,23 13 23 32,13 32 13 13,12 13 12

13,23 32 23 32,13 13 13 13,12 32 12

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

  

  

  

  

+

=

+

R R R

R R R

R R R

R R R

2. Yang–Baxter equations with two Planck constants

Consider a quantum R-matrix which satisfies the associative Yang–Baxter equation (1.2) and
the properties (1.7) and (1.8). Then it is easy to get a set of cubic (in R) relations.

Proposition 2.1. The following cubic relations are valid for a common solution of (1.2),
(1.7) and (1.8):

R R R R R R , 2.112 13 23 23 13 12 ( )     =

R R R R R R N N 1 1 1 , 2.2ab bc ca ac cb ba a b c
3 ( ) ( )     + = - Ã¢ Ä Ä
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R R R R R R R N N N , 2.3ab ac bc bc ac ab ac
2 ( ( ) ( )) ( )    h- = Ã - Ãh h h h+

R R R R R R R R R R R R , 2.4ab ac bc ab ac bc bc ac ab bc ac ab ( )     + = +h h h h h h

where R R z zab ab a b( ) = - and a b c, , are distinct numbers from the set 1, 2, 3 .{ }

Proof. First, notice that the primary one is the third identity (2.3) since all others follow
from it. Indeed, the Yang–Baxter equation (2.1) follows from (2.3) in the case . h=

The second equation (2.2) appears from (2.3) in the limit :h  - one should use the
classical limit (A.25), and then the skew-symmetry property (1.7) to arrange the indices in a
cyclic order. This gives (2.2) up to permutation of indices.

The fourth relation (2.4) can be called Yang–Baxter equation with two Planck constants
because its structure is similar to (2.1) and it is coincide with (2.1) for . h= It is easy to see
that (2.4) follows from (2.3) as skew symmetry of (2.3) lhs with respect to interchanging 
and η.

Thus we need to prove (2.3). Consider(1.2) and multiply both parts by Rbc
 h- from the left

side:

R R R R R R R R R . 2.5bc ab bc bc ac ab bc bc ac ( )      = +h h h h h h h- - - - -

Now interchange the indices 2, 3 in (1.2) and multiply both parts by Rbc
h

R R R R R R R R R , 2.6ac cb bc ab ac bc bc ab bc ( )   = -h h h h h h h- -

where in the last term we have already used R R .cb bc
 = -h h- - From (1.7), (1.8) it follows that

R Rbc bc
 h h- - and R Rcb bc

h h are scalar operators. Subtracting (2.6) from (2.5) we get (2.3)
with .≔  h- ,

Let us also remark that the identity (2.2) appeared to be related to R-matrix valued Lax
operator for the classical Calogero–Moser model [12]. Consider the following block-matrix:

E R z z1 , 2.7
a b

n

ab ab ab a b
, 1

( )( ) ˜ ( ) ( )  å d= Ä - -
=

where Eab˜ is the standard basis in nMat , ,( ) i.e. E .ab cd ac bd( ˜ ) d d= Then the diagonal blocks
of tr k ( )  are scalar operators, and the scalar functions are obtained as if ( )  were element
of nMat ,( ) with matrix elements l N N z z1 , :ab ab a b( ) ( ) ( ) d f= - -

l1 ... 1 . 2.8k
aa

k
aa( ) ( )( ) ( ) ( )  = Ä Ä

When n=2 this equation is equivalent to the unitarity condition (1.8), while for n=3 (2.8)
reproduces (2.2).

One more application of (2.2) comes from the classical limit (A.25). The identities which
appear from (2.2) together with (A.29) provide sufficient conditions for compatibility of the
KZB connections (see details in [12]).

Finally we conclude that the identity (2.3) is of great importance. On one hand it
reproduces the Yang–Baxter equations, and in this sense it ‘knows’ about quantum integr-
ability and related algebraic structures including quantum groups, Sklyanin algebras, etc. On
the other hand (2.3) also ‘knows’ about classical integrable system of Calogero type. At last,
the same identity provides the quantization of the Schlesinger systems via compatibility of the
KZB connections.
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3. Quantum algebras

In this section we discuss differen types of quadratic finite-dimensional quantum algebras
arising from exchange like relations. The quantum (Lax) L-operator [11, 20] is defined as

L z S L z R z S S T S, tr , , 3.12 12 2( ) ( )ˆ ˆ ˆ ( ) ( ) ˆ ˆ ˆ ( )   å= = =
a

a a

where S , N
2{ ˆ }a Îa

´ is the set of generators of the quantum algebra . For the elliptic R-
matrix (1.6) we have

L z T S z, . 3.2( )ˆ ( ) ˆ ( ) å j w= +
a

a a a a

For the vector representation Nr of  given by

S T NMat , 3.3N )( )ˆ ( ( )r = Îa a-

the Lax operator (3.2) coincides with the R-matrix (1.6).
Finite Heisenberg group (see (A.18) in appendix) is the simplest example of quantum

algebra which comes from R-matrix relations for the L-operator (3.1).

Proposition 3.1. Relations

L z L w L w R z w R z w L z 3.41 2 2 12 12 1
ˆ ( ) ˆ ( ) ˆ ( ) ( ) ( ) ˆ ( ) ( )   

= - - -
h h h h+ - +

or

L w L z R z w L w L z R z w 3.52 1 12 2 1 12
ˆ ( ) ˆ ( ) ( ) ˆ ( ) ˆ ( ) ( ) ( )   

= - - -
h h h h+ + -

with L-operator defined in (3.2) and R-matrix (1.6) are equivalent to

S S NP S , 3.61 2 12 1
ˆ ˆ ˆ ( )=

i.e.

S S S 3.7,
ˆ ˆ ˆ ( )k=a b a b a b+

in components. The associativity condition for the triple product L z L w L x1 2 3
ˆ ( ) ˆ ( ) ˆ ( ) h x

follows
from the associative Yang–Baxter equation (1.2).

The proof of (3.4) and (3.5) follows directly from the Fay identity (1.4). The statement
about associativity is analogues to the derivation of (1.1) in [1].

Notice that the commutation relations

L z L w L z R z w L w R z w, , , 3.81 2 1 12 2 12
ˆ ( ) ˆ ( ) ˆ ( ) ( ) ˆ ( ) ( ) ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦
   = - + -

h h h h+ - +

are equivalent to those for the Lie algebra gl :N

S S N P S, , . 3.91 2 12 1
ˆ ˆ ˆ ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦=

Obviously the same expression (rhs of (3.8)) can be used for definition of the Poisson–
Lie brackets S S N P S, ,1 2 12 1{ } [ ]= on gl :N

*

L z L w L z R z w L w R z w, , , . 3.101 2 1 12 2 12{ }( ) ( ) ( ) ( ) ( ) ( ) ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦   = - + -h h h h+ - +

with the classical matrix-valued function L z S,( ) on the phase space glN* parameterized by Sa
(S S Tå= a a a). The Jacobi identity is due to (1.2). The relation (3.10) differs from the
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custom classical exchange relations

l z l w l z r z w l w r z w, , , , 3.111 2 1 12 2 12[ ] [ ]{ }( ) ( ) ( ) ( ) ( ) ( ) ( )= - + -

where the classical r-matrix r z12 ( ) (A.25) is used, and the Jacobi identity is fulfilled due the
classical Yang–Baxter equation (A.26) for r z .12 ( ) Alternatively, we can say that in the case
under consideration the constant  (and η) is not the Planck constant entering the quantum R-
matrix but rather additional spectral parameter entering the classical r-matrix. Indeed, the final
commutation relations (3.9) are independent of , h (as well as they are independent of z and
w). Such interpretation is close to the consideration suggested in [17].

Exchange relations with two Planck constants and coupled Sklyanin algebras. Consider
a pair of the quantum Lax operators

L z L z S T S z, , 3.12( ) ( )ˆ ( ) ˆ ˆ ˆ ( )   
å j w= = +
a

a a a a

and

L z L z S T S z, , . 3.13( )ˆ ( ) ˆ ˆ ˆ ( ) ( )å j w h= = +h h h

a
a a

h
a a

Each of them defines its own Sklyanin algebra via exchange relations (1.12). See details
in the appendix. Here we suggest another exchange type relation which provides commu-
tation relations between Ŝ


and S .ˆh It is of the form:

R z w L z L w R z w L z L w

L w L z R z w L w L z R z w . 3.14

12 1 2 12 1 2

2 1 12 2 1 12

( ) ˆ ( ) ˆ ( ) ( ) ˆ ( ) ˆ ( )
ˆ ( ) ˆ ( ) ( ) ˆ ( ) ˆ ( ) ( ) ( )

  

  

- + -

= - + -

h h h

h h h

Proposition 3.2. Equation (3.14) for the Lax operators L Sˆ ( ˆ ) 
and L Sˆ ( ˆ )h h

is equivalent to
the following commutation relations for the components of Ŝ


and S :ˆh

S S f S S f 0, 3.15, , ,
,

, , ,
,ˆ ˆ ˆ ˆ ( )   åk k+ =

g
g a b a g

h
b g a b g

h
g a b a g b g

h
a b g
h

- - + - - +

where the structure constants f , ,
,

a b g
h are given by

f E E

E E

f

for 0:

,

for 0: . 3.16

, ,
,

1 1

1 1

,0,
,

( )
( )

( )

( )

( )

( ) ( )











b w w h

w h w

b w w h

¹ = + - +

+ + - +

= =Ã + - Ã +

a b g
h

g a b g

a g b g

a g
h

g a g

- -

- +

-

Proof. Here we use short notation z z, .( ) ( ) j j w= +a a a Compute

R z w L z L w L w L z R z w T T12 1 2 2 1 12
, ,

( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )  
å- - - = Ä

h h h

a b g
a b

S S z w z w

S S z w z w

,

,

(
)

ˆ ˆ ( ) ( ) ( )

ˆ ˆ ( ) ( ) ( )

  

 

k j j j

k j j j

´ -

- -

a g
h

b g g a b a g
h

b g g

b g
h

a g a b g a g b g
h

g
h

- + - - +

+ - - - +
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By redefining the summation index for the second term as g a b g - - we get for the
following coefficient behind the tensor component T T :Äa b

T T S S z w z w

z w z w

, ,
, (

)
ˆ ˆ ( ) ( ) ( )

( ) ( ) ( )

  



å k j j j

j j j

= Ä -

- -

a b g
a b a g

h
b g g a b a g

h
b g g

b g a g
h

a b g
h

- + - - +

+ - - -

T T S S f z w ,
, ,

, , ,
,ˆ ˆ ( ) ( )  å k j j= Ä

a b g
a b a g

h
b g g a b a b g

h
a

h
b- + -

+

where we assume w 1.0 ( )j = The last equality follows from (A.8) and (A.9). In this way we
reproduce the first term in (3.15). The second term in (3.15) is obtained in the same way by
interchanging  and η. ,

Notice that when  h= the structure constants f f, ,
,

, ,
  =a b g a b g coincide with those for the

Sklyanin algebra (A.31).
Recently the coupled Sklyanin algebras appeared also in different way—via the modular

double [8]. In that case two algebras depend on different modular parameters τ. In our case
this parameter is the same but the Planck constants are different.

Remark. One can also consider (quasi)classical limits of the Yang–Baxter (2.4) and
exchange relations (3.14). There are different possibilities for the limits since we deal with
two Planck constants. In particular, when 0  (while η is finite) (2.4) is reduced to

R R R r r R, , , 0, 3.1712 23 13 23 12 13[ ] [ ] [ ] ( )+ + =h h h h

where rab is the classical r-matrix (A.25). At this stage the generators Ŝ

a become classical

variables Sa while Ŝa
h
are still quantum. Then we get a ‘half-quantum’ Poisson structure

between the commutative classical variables Sa and noncommutative variables S .b̂
h

Taking
then limit 0h  the equation (3.17) is reduced to the ordinary classical Yang–Baxter
equation (A.26), and the Poisson structure is the standard classical Sklyanin algebra. We will
describe the quasiclassical limits in our next paper.

4. Symmetric R-matrix in Mat N ;Cð Þ⊗2 ⊗ Mat M ;Cð Þ⊗2

In this section we consider an extension of the R-matrix (1.6) in NMat , 2( ) Ä to the matrix
function in N MMat , Mat , .2 2( ) ( ) ÄÄ Ä This type of R-matrices (see e.g. [3, 10, 15])
appears naturally when N N M≔ ´ from the original NMat , 2( ) Ä -valued one. Our defi-
nition is slightly modified in a way to get expression which is symmetric in spectral parameter
z and the Planck constant . The simplest example of the R-matrix which we are going to
discuss here can be given in the rational case. Consider the following expression:

z z M
P

N
P

z z

z z N M

,
1 1 1 1

,

, Mat , Mat , ,

4.1

N N M M
12,12 1 2 1 2

12

1 2

12

1 2

12,12 1 2 1 2
2 2

( )

( )

˜ ˜ ˜

( ) ( )
( )

˜ ˜ ˜ ˜
˜ ˜

˜ ˜

˜ ˜ ˜ ˜

 
 

   

- - =
Ä Ä

-
+

Ä Ä
-

- - Î ÄÄ Ä

R

R

where P12˜ ˜ ˜ is the permutation operator in MMat , ,2( ) Ä and1N (or 1M
˜ ) is the identity matrix in

NMat ,( ) (or in MMat ,( ) ). 12,12˜ ˜R has four tensor indices. The first pair is for the
components of NMat , ,2( ) Ä and the second pair is for the components of MMat , .2( ) Ä
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When M=1 (4.1) coincides with the Yangʼs R-matrix (1.9) R z z NMat , .12 1 2
21 2( ) ( )˜ ˜  - Î- Ä

In the same way when N=1 (4.1) gives R MMat , .z z
12 1 2

21 2 ( ) ( )˜ ˜  - Î- Ä

The expression (4.1) is not a new R-matrix of course. Multiplying it by P1 1N N 12˜ ˜ ˜Ä Ä
we get a special form of the Yangʼs R-matrix in NMMat , .2( ) Ä

Below we define elliptic analogue of (4.1). But first we recall some important properties
of the Baxter–Belavinʼs R-matrix which will be to extended to the case

N MMat , Mat ,2 2( ) ( ) ÄÄ Ä for the proper definition of underlying set of functions. To be
exact, our goal is to define a set of functions z, ,, ( )˜ Fa a ,N N a Î ´ M M˜  a Î ´ which
are invariant with respect to shift by the full lattice periods N ,a a + Na a t +
and M,˜ ˜a a + M .˜ ˜a a t +

For the reasons given above (and for the brevity sake) we will refer to 12,12˜ ˜R type
expression as symmetric R-matrix though it is not such symmetric in the elliptic case as
in (4.1).

Symmetries of Baxter–Belavin R-matrix. The quantum elliptic R-matrix (1.6) is N N ´
symmetric, i.e.

R z g g R z g g g g g g, 1, 1 , 4.212 1
1

2
1

12 1 2 1 2( ) ( ) ( ) = = Ä = Ä- -

where g=Q or g = L (A.14). This R-matrix is the quasiperiodic function of the spectral
parameter z

R z Q R z Q

R z ı R z

1 ,

exp 2 4.3
12 1

1
12 1

12 1
1

12 1

( ) ( )
( ) ( ) ( ) ( )

 

 t p

+ =

+ = - L L

-

-

on the elliptic curve with periods 1, .t At the same time it is the quasiperiodic function of the
Planck constant  on the smaller elliptic curve with periods N N1 , :t

R z Q R z Q

R z ız N R z

,

exp 2 . 4.4

N

N
12

1
1

1
12 2

12 1
1

12 2

( ) ( )
( ) ( ) ( ) ( )

 

 p

=

= - L Lt

+ -

+ -

The property (4.4) can be considered as a consequence of (4.3) and the arguments
symmetry property

R z R N P , 4.5
z
N

12 12 12( ) ( ) ( ) =

which follows from (A.12) and (A.13). In order to verify (4.4) directly consider

T R z T
1

1
12 2( ) ( )( )

g g
-

for some fixed Tg (A.17). Here the lower indices 1, 2 are the numbers of the tensor
components (4.2), and T T1 =g g

-
- due to (A.18). For the above expression we have:

z T T T T z T T, , .
N N N N

( ) ( ) 
   
å åj w j w= + Ä = + Ä

a
a a g a a g

a
a a a g g a

Î ´
- -

Î ´
- -

Now shift the summation indices .a a g + Then from (A.22) we get

T R z T ı R zexp 2 . 4.6
1

1
12 2 12( ) ( ) ( )( ) ( ) ( ) p w= ¶g g t g

w- + g

This answer reproduces (4.4) for 1, 0( )g = and 0, 1( )g = (then T Q,=g N1w =g and
T ,= Lg Nw t=g respectively).

Notice that in the proof of (4.4) we used the shift of summation indices (a a g + ). At
the same time the limits of the sum were not changed because .N N a Î ´ In fact, we also
used the periodicity of functions (A.10) z,( )j w +a a in indices considered as discrete
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variables:

z z z, , , . 4.7N N N N, ,0 , 0,1 2 1 2( ) ( ) ( ) ( )( ) ( )  j w w j w w j w+ + = + + = +a a a a a a a a+ +

The property (4.7) demonstrates necessity of the exponential factor ıexp 2( )p w¶t a in the
definition (A.10).

Symmetric R-matrix in N MMat , Mat , .2 2( ) ( ) ÄÄ Ä In this section we assume that N
and M are coprime integers unless otherwise specified9.

Consider the following expression:

z z T T T T, , , 4.812,12 ,

N N M M

( ) ( ) ˜ ˜ ( )˜ ˜
˜

˜ ˜ ˜ 
   
å å= F Ä Ä Ä

a a
a a a a a a

Î ´ Î ´
- -R

where (with the definition (A.10))

z ı z N
N

ı N
M

z N, exp 2 2 , 4.9,
2 2( ) ( )( ) ˜ ˜ ˜ ( )˜ ˜ ˜⎜ ⎟

⎛
⎝

⎞
⎠  p w

a
p

a
f w wF = + + + +a a a a a

ı N
M

z Nexp 2 ,2 ( )˜ ˜ ˜⎜ ⎟
⎛
⎝

⎞
⎠ p

a
j w w= + +a a a

and for any , N N1 2( )  a a a= Î ´ and , M M1 2˜ ( ˜ ˜ )  a a a= Î ´

N M
, , 4.101 2 1 2˜ ˜ ˜ ( )˜w

a a t
w

a a t
=

+
=

+
a a

while T{ }a (and T{ ˜ }ã ) is the basis in NMat ,( ) (and MMat ,( ) respectively) defined as in
(A.14)–(A.18). That is, we mark the MMat ,( ) elements and related quantities (including
related indices) by tildes. For example, ı Mexp ., 1 2 2 1˜ ( ( ˜ ˜ ˜ ˜ ) )˜ ˜k p b a b a= -a b For coprime N
and M two sets f N , M M{ ( ˜ ) ˜ }˜  w a Î ´a and f , M M{ ( ˜ ) ˜ }˜  w a Î ´a are equal for a
periodic function f on the lattice .M M ´

First, notice that for M=1 (then 0, 0˜ ( )a = ) expression (4.8) reproduces the definition
of the Belavinʼs NMat ,( ) R-matrix (1.6) R z NMat , ,12

2( ) ( ) Î Ä and similarly for N=1 we
have R MMat , .z

12
2( ) ( ) Î Ä

The analogues of the quasiperiodic properties (boundary conditions) on the lattice
 tÅ are of the form:

z Q z Q

z ı z

1, , ,

, exp 2 , 4.11

12,12 1
1

12,12 1

12,12 1
1

12,12 1

( ) ( )
( ) ( ) ( ) ( )

˜ ˜ ˜ ˜

˜ ˜ ˜ ˜

 

  t p

+ =

+ = - L L

-

-

R R

R R

and

z Q z Q

z ız z

, 1 , ,

, exp 2 , , 4.12

N N

N N

12,12 1 12,12 1

12,12 1 12,12 1

( ) ˜ ( ) ˜

( ) ( ) ˜ ( ) ˜ ( )

˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜

 

 t p

+ =

+ = - L L

-

-

R R

R R

where Q Q 1 1 1 ,N M M1
˜ ˜= Ä Ä Ä Q Q1 1 1 ,N N M1˜ ˜ ˜˜ = Ä Ä Ä and Q,˜ L̃ are the matrices of

form (A.14) but of size M×M.
It is important for us that functions z,, ( )˜ Fa a are periodic in both discrete variables—

indices , N N1 2( )  a a a= Î ´ and , ,M M1 2˜ ( ˜ ˜ )  a a a= Î ´ i.e. similarly to (4.7) we
have

9 The general case is not difficult but requires more additional notations. We consider special caseM=N in the next
section.
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z z z, , , 4.13N N, , , , , ,1 2 1 2 1 2
( ) ( ) ( ) ( )( ) ( )˜ ˜ ( ) ˜  F = F = Fa a a a a a a a a+ +

and

z z z, , , . 4.14M M, , , , , ,1 2 1 2 1 2
( ) ( ) ( ) ( )( ) ( )˜ ˜ ˜ ˜ ( ˜ ˜ )  F = F = Fa a a a a a a a a+ +

These properties allow to shift indices of summations in the same way as it was used in (4.6).
To verify (4.11)–(4.14) one needs (A.4).

In GLN case we had also quasiperiodic behavior (4.4) on the smaller elliptic curve with
periods N1 and N.t For the symmetric R-matrix (4.4) acquires the form:

z N
M

Q z Q

z N
M

ıN
M

z

1
, , ,

, exp 2 , 4.15

12,12 1
1

12,12 2

12,12 1
1

12,12 2

˜ ( ) ˜

˜ ( ) ˜ ( )

˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜

⎜ ⎟

⎜ ⎟⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

 





t

p

+ =

+ = - L L

-

-

R R

R R

and

z
N

Q Q z Q Q

z
N

ı
z

N
z

,
1

, ,

, exp 2 , . 4.16

12,12 1
1

1
1

12,12 1 2

12,12 1
1

1
1

12,12 1 2

˜ ( ) ˜

˜ ( ) ˜ ( )

˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

 

 
t

p

+ =

+ = - L L L L

- -

- -

R R

R R

The proof of (4.15) and (4.16) is similar to the one given for (4.7). For example, to get
(4.16) consider

T z T z T T T T, , .
1

1
12,12

2
,

N N M M

( ) ( )( ) ( ) ˜ ˜˜ ˜
˜

˜ ˜ ˜ 
   
å å= F Ä Ä Äg g

a a
a a a g g a a a

-

Î ´ Î ´
- - -R

Then, shift the summation index as a a g + and notice that

z ız z, exp 2 , ., ,
2

,( ) ( )( ) ˜˜ ˜ ˜ p w k wF = ¶ F +a g a t g g a a a g+

Plugging 1, 0( )g = (or 0, 1( )g = ) into the obtained expression one gets the upper (or the
lower) line of (4.16).

Quadratic relations. Let us prove that the symmetric R-matrix obeys the relations similar
to (1.1), (1.7) and (1.8).

Proposition 4.1. The symmetric R-matrix (4.8) satisfies the following set of properties:

(1) Skew-symmetry:

z z, , . 4.1721,21 12,12( ) ( ) ( )˜ ˜ ˜ ˜ - - = -R R

(2) Associative Yang–Baxter equation:

, 4.1812,12 23,32 13,32 12,13 23,31 13,12 ( )˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜= +R R R R R R

where z z , .ab ab ab ab a b a b, , ( )˜ ˜ ˜ ˜ ˜ ˜ = - -R R
(3) Unitarity:

N M N Mz1 1 1 1 . 4.19N N M M12,12 21,12
2 2˜ ˜ ( ( ) ( )) ( )˜ ˜ ˜ ˜ = Ä Ä Ä Ã - ÃR R

or
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N M Mz N1 1 1 1 . 4.20N N M M12,12 12,21
2 2˜ ˜ ( ( ) ( )) ( )˜ ˜ ˜ ˜ = Ä Ä Ä Ã - ÃR R

Proof. The first property simply follows from the definition (4.8) and (4.9):

z z T T T T, ,21,21 ,

N N M M

( ) ( ) ˜ ˜˜ ˜
˜

˜ ˜ ˜ 
   
å å- - = F - - Ä Ä Ä

a a
a a a a a a

Î ´ Î ´
- -R

Changing summation indices as a a - , ˜ ˜a a - and using
z z, ,, ,( ) ( )˜ ˜ F - - = -Fa a a a- - we get (4.17).

The second property follows from (A.19) (for both κ and k̃) and the Fay identity (A.5)
written in terms functions (4.9) as

z w

z w z w z w

, ,

, , , , 4.21
, ,

, , , ,

( ) ( )
( ) ( ) ( ) ( ) ( )

˜ ˜

˜ ˜ ˜ ˜ ˜ ˜


  

h
h h h

F F
= F + F - + F - F +

a a b b

b a b a b a b a b a a b+ - - +

with z z z ,1 2= - w z z ,2 3= - 1 2˜ ˜  = - and .3 2˜ ˜ h = -
To prove the unitarity (4.19) let us write its lhs explicitly

z z z z

T T T T

, , , ,12,12 21,12
, , ,

, ,

,
2

,
2

( ) ( ) ( ) ( )

˜ ˜ ˜

˜ ˜ ˜ ˜
˜ ˜

˜ ˜

˜ ˜ ˜ ˜ ˜ ˜

   å

k k

- = F F -

´ Ä Ä Ä
a b a b

a a b b

a b a b a b b a a b a b- - - + - -

R R

and subdivide this sum into four parts as

.
, , , , , , ,˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜
å å å å å= + + +

a b a b a b a b a b a b a b a b a b a b= =- ¹ =- = ¹- ¹ ¹-

The first sum reproduces the answer due to (A.7) and (A.11)10:

z z z N

N M N Mz

, ,

.
,

, ,

2 2

( ) ( )( ) ( ) ˜

( ( ) ( ))
˜ ˜

˜ ˜
˜

  



å åå w wF F - = Ã + - Ã +

= Ã - Ã
a b a b

a a b b
a a

a a
= =-

Each of three other sums equals zero. The vanishing of the second and the third sum is proved
in the same way as it is made for unitarity of R z( ) in the appendix. Consider the fourth sum.
Denote ,g a b= - .˜ ˜ ˜g a b= + Then, using (4.21)

T T T T
, 0, 0

˜ ˜
˜ ˜ ˜

˜ ˜å å= Ä Ä Ä
a b a b g g

g g g g
¹ ¹- ¹ ¹

- -

z z0, , 0 0, , 0 .
,

,
2

,
2

, ,
,

,
2

,
2

, ,˜ ( ) ( ) ˜ ( ) ( )
˜

˜ ˜ ˜ ˜
˜ ˜ ˜ ˜ ˜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ å åk k k k´ F F + F F -

b a
b g a g b g g a

a b
a g g b a g g b-

The latter two terms cancel each other after changing notation ,≔a b ˜ ≔ ˜b a- in the last
term. This finishes the proof of (4.19). At last, (4.20) follows from (4.19) and (4.17). ,

Cubic relations. The next step is to derive cubic relations of (2.1)–(2.4) type. Recall that
(2.3) is the most general in that list. In a similar way one can obtain its analogue for the
symmetric R-matrix (4.8). First, multiply (4.18) by 23,13˜ ˜R from the left:

.23,13 12,12 23,32 23,13 13,32 12,13 23,13 23,31 13,12˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜= +R R R R R R R R R

10 We also use here that z N( ˜ )˜å wÃ +a a = z( ˜ )˜å wÃ +a a for coprime N and M.
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Second, change indices 2 3« in (4.18) and multiply it by 23,32˜ ˜R from the right:

.13,12 32,32 23,32 12,32 13,13 23,32 32,31 12,12 23,32˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜= +R R R R R R R R R

Combining these two equations and using the properties of skew-symmetry (4.17) and
unitarity (4.19) and (4.20) we get

N M N N , 4.2212,32 13,13 23,32 23,13 13,32 12,13
2 2

13,12 32 13( )( ) ( ) ( )˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ = + Ã - ÃR R R R R R R

where .ab a b˜ ˜ ˜ ˜  = - When M=1 (4.22) coincides with (2.3), where 1 3˜ ˜  = -
and .3 2˜ ˜ h = -

In particular case of 23 1 2( )˜ ˜ ˜  = + we get Yang–Baxter like equation

z z z z z z, , , , , ,

4.23

12,32 12 13,13 13 23,32 23 23,13 23 13,32 13 12,13 12( ) ( ) ( ) ( ) ( ) ( )
( )

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜     =R R R R R R

with .13 32
˜ ˜˜ ˜ ˜ ˜  = =

Another particular case 1 2
˜ ˜˜ ˜ = in (4.22) leads to analogue of (2.2):

z z z z z z

P N M N

, , , , , ,

1 1 .

4.24
N N

21,23 21 13,13 13 32,23 32 23,13 23 31,23 31 12,13 12

13
3 2

( ) ( ) ( ) ( ) ( ) ( )
˜ ( )

( )

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜

     



+

= - Ä Ä Ã¢

R R R R R R

A similar derivation leads to the cubic equation of (4.22) type with  and z variables
interchanged:

N M Mz Mz , 4.2532,12 13,13 32,23 13,23 32,13 13,12
2 2

12,13 23 13( )( ) ( ) ( )˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜= + Ã - ÃR R R R R R R

where z z z .ab a b= -
Now we can easily obtain the cubic Yang–Baxter like equations of (2.4) type. It is based

on the skew-symmetry of N N32 13( ) ( )˜ ˜ ˜ ˜ Ã - Ã with respect to interchanging of the arguments
only. Therefore, from (4.22) we have:

z z z

z z z

z z z

z z z

, , ,

, , ,

, , ,

, , , .

12,32 12 32 13,13 13 13 23,32 23 32

12,32 12 13 13,13 13 32 23,32 23 13

23,13 23 13 13,32 13 32 12,13 12 13

23,13 23 32 13,32 13 13 12,13 12 32

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

  

  

  

  

+

=

+

R R R

R R R

R R R

R R R

In the same manner from (4.25) we get:

z z z

z z z

z z z

z z z

, , ,

, , ,

, , ,

, , , .

32,12 32 12 13,13 13 13 32,23 32 23

32,12 13 12 32,13 13 13 32,23 13 23

13,23 13 23 32,13 32 13 13,12 13 12

13,23 32 23 32,13 13 13 13,12 32 12

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜

  

  

  

  

+

=

+

R R R

R R R

R R R

R R R

Relation to Baxter–BelavinGLNM R-matrix. Multiply the symmetric R-matrix by
NP 1 1 :M M12

˜ ˜Ä Ä

z NP z T T T T T T, 1 1 ,M M12,12 12
,

,

N N M M

( ) ˜ ˜ ( ) ˜ ˜˜ ˜
˜

˜ ˜ ˜ 
   
å åÄ Ä = F Ä Ä Ä

a b a
a a a b a b a a

Î ´ Î ´
- - -R
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N z N T T T Texp ,
A

, ,
,

2 .13( ) ( )˜ ˜ ˜ ˜
˜

˜ ˜ ˜ ˜
( )

 å k w j w w= ¶ + + Ä Ä Ä =
a g a

a g t a a a a g g a a- -

N N
z

N
T T T T, .

,

˜ ˜ ˜
˜

˜ ˜ ˜ ˜⎜ ⎟
⎛
⎝

⎞
⎠åj w w= + + Ä Ä Ä

g a
g a g a g g a a+ - -

Since M and N are coprime the summation over ˜ ˜w w+g a is equivalent to the summation over
,aw where a .MN MN Î ´ Therefore, we get the expression which is the GLNM Baxter–

Belavinʼs R-matrix written in special basis.
Particular case M=N. In this particular case the function z,, ( )˜ Fa a (4.9) is simplified.

Using (A.4) it is easy to get that

z ı
N

z z, exp 2 , , .,
1 2 2 1

,
2( ) ( )( ) ˜ ˜

˜ ˜⎜ ⎟
⎛
⎝

⎞
⎠  p

a a a a
j w k j wF =

-
+ = +a a a a a a a a
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Appendix

A.1. Elliptic functions

We deal with the following elliptic functions:

z u
z u

z u
,

0
, A.1( ) ( ) ( )

( ) ( )
( )f

J J
J J

=
¢ +

E z
z

z
E z E z z,

1

3

0

0
, A.2z1 2 1( ) ( )

( )
( ) ( ) ( ) ( )

( )
( )J

J
J
J

=
¢

= -¶ = Ã -
¢¢¢
¢

where z( )J is the Riemann theta-function

z z ı k ı z kexp
1

2
2

1

2

1

2
A.3

k

2

( ) ( ∣ ) ( )⎜ ⎟ ⎜ ⎟⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎞
⎠⎟

åJ J t p t p= = + + + +
Î

which has simple zero at z=0, and z( )Ã in (A.2) is the Weierstrass Ã-function.
The function x y y x, ,( ) ( )f f= has the quasiperiodic properties

x y x y x y ıy x y1, , , , exp 2 , A.4( ) ( ) ( ) ( ) ( ) ( )f f f t p f+ = + = -

and satisfies the Fay type identities:

x u y w x y u y u w y x w x u w, , , , , , , A.5( ) ( ) ( ) ( ) ( ) ( ) ( )f f f f f f= - + + - +

x z x w x z w E x E z E w E x z w, , , , A.61 1 1 1( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f f f= + + + - + +

z u z u z u E z E u, , . A.72 2( ) ( ) ( ) ( ) ( ) ( ) ( )f f - = Ã - Ã = -
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These relations lead to

z u v w u v z w v

z u v w u v z w u u v

z u w u E v E u u v E u v E u v

, , ,
, , ,

, , A.8

1 2

2 1 1 2

1 2 1 1 1 2 1 1 1 2( )

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

f f f
f f f

f f

- + -
- + - - - -

= - - - + - - +

and

z u v w v z w v z v w u v z w u v
z u v u v

, , , , , ,
, . A.9

( ) ( ) ( ) ( ) ( ) ( )
( )( ( ) ( )) ( )

f f f f f f
f
- - - - - -

= Ã - Ã -

We also need the following set of functions:

z ı
N

z z, exp 2 , , . A.102 2( ) ( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠  j w p

a
f w a+ = + Îa a a

´

These functions satisfy the set of identities (A.5)–(A.9) because the exponential factors are
canceled.

Averaging Ã-function:

N N . A.112

N N

( ) ( ) ( ) 
 
å wÃ + = Ã

a
a

Î ´

The following formulae (of finite Fourier transformation type) are also useful in deri-
vation of R-matrix identities (see [13]):

N
N

z

N
z

1
, , , A.12,

2 2

N N

( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠  

 
å k j w j w g+ = + " Î

a
a g a a g g

Î ´

´

or (exchanging the arguments)

N
z N

z

N

1
, , , , A.13,

2 2

N N

( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠  

 
å k j w j w g+ = + " Î

a
a g a a g g

Î ´

´

where ,ka b is from (A.18).

A.2. Baxter–Belavin R-matrix

Finite-dimensional representation of the Heisenberg group. Consider the following N×N
matrices:

Q N Q
ı

N
k k l N, Mat , : exp

2
, , , 1, , ,

A.14

kl kl kl k l N1 0 mod( )

( )

⎜ ⎟⎛
⎝

⎞
⎠ d

p
dL Î = L = = ¼- + =

Q 1, A.15N N ( )= L =

ı
N

Q Qexp 2 , , . A.161 2
1 21 2 2 1 ( )⎜ ⎟

⎛
⎝

⎞
⎠ p

g g
g gL = L Îg g g g

Introduce

T T ı
N

Qexp , , . A.171 2
1 2

2
1 2

1 2≔ ( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠ p

g g
g g g= L = Îg g g

g g ´

The subset of Tg with N, 0, , 11 2g g = ¼ - is the basis in NMat , .( ) From (A.16) we
have
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T T T
ı

N
, exp , A.18, , 1 2 2 1( ) ( )⎜ ⎟

⎛
⎝

⎞
⎠k k

p
b a b a= = -a b a b a b a b+

where , .1 1 2 2( )a b a b a b+ = + + Obviously

1, , . A.19, , , , , , , , ( )k k k k k k k k= = = = =a b b a a b a b b a a b a b b a b a- - + +

Notice also that

N , A.20,
2 2

,0 ( )åk d=
a

a g g

where 0 0, 0 .( )=
For N=2 the basis (A.17) in 2×2 matrices coincides (up to signs) with the Pauli

matrices basis js endowed with 1 .0 2 2s = ´ In this case (A.18) can be re-written as
ıj k jk jkn n0s s s d e s= + together with j j j0 0s s s s s= = and .0

2
0s s=

R-matrix is defined as11

R u u T T N, Mat , , A.2112
2

N N

( )( ) ( ) ( ) 
 
å j w= + Ä Î

a
a a a a

Î ´
-

Ä

where

u ı
N

u u
N

, exp 2 , , . A.222 1 2( ) ( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠ j w p

a
f w w

a a t
+ = + =

+
a a a a

Writing R zab ( ) we mean that T TÄa a- in (A.21) is replaces by
T T1 ... 1 1 ... 1 1 ... 1Ä Ä Ä Ä Ä Äa a- in such a way that Ta and T a- acts in the ath and

bth components of NMat , .n 3( ) Ä If the number of components equals n then
R NMat , .ab

n( ) Î With the above definition we get the correct relation

R z P R z P , A.23ba ab ab ab( ) ( ) ( ) = -

where P12 is the permutation operator in NMat , .2( ) Ä Notice also that P12 has the following
form in the basis (A.17):

T T NP . A.2412 ( )å Ä =
a

a a-

The classical limit 0  is defined as

R z r z m z O1 1 . A.2512
1

12 12
2( )( ) ( ) ( ) ( )   = Ä + + +-

Then the quantum Yang–Baxter equation (1.3) provides the classical one

r r r r r r r r z z, , , 0, . A.26ab ac ac bc ab bc ab ab a b[ ] [ ] [ ] ( ) ( )+ + = = -

Condition (1.7) leads to

r r m m, , A.27ab ba ab ba ( )= - =

while (1.8) gives expresses mab in terms of rab:

m z r z N z2 1 1 . A.2812 12
2 2( ) ( ) ( ) ( )= - Ä Ã

11 Let us mention that original definition [5] differs from (A.21). It was defined in terms of theta functions with
characteristics N1 and normalized as R R 1 1.12 21

  = Ä Its representation in the standard basis of
NMat ,( ) Eij kl ik jl( ){ }d d= was suggested in [18].
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The answer is similar to 1 term in the local expansion of the Kronecker function near 0: =

z E z E z z O, 2 .1
1 1

2 2( ) ( )( ) ( ) ( ) ( )   f = + + - Ã +-

At the same time the Fay identity for R-matrix (1.2) gives

r r r r r r m m m . A.29ab ac bc ab ac bc ab bc ac ( )- + = + +

Plugging mab from (A.28) into (A.29) one gets the non-abelian analogue of

E z z E z z E z z z z z z z z .a b b c c a a b b c c a1 1 1
2( )( ) ( ) ( ) ( ) ( ) ( )- + - + - = Ã - + Ã - + Ã -

In the end let us prove the unitarity property (1.8) (this proof was skipped in [12, 13]).
Unitarity. proof of (1.8). It is convenient to rewrite (1.8) using (1.7) as

R z R z N N z 1 1.12 12
2( ) ( ) ( ( ) ( ))  = - Ã - Ã Ä-

The proof is achieved by direct calculation:

R z R z T T T T z z, , .12 12
, 0 0

( )( )( ) ( )    å å åj w j w= Ä + - = +
a b

a b a b a a b b
a b a b

-
- -

+ = + ¹

The first term reproduces the answer due to (A.7) and N N .2( ) ( ) å wÃ + = Ãa a So we
need to prove that the second term (where 0a b+ ¹ ) equals 0:

T T z

E z E E E z

,

.

A A

0

.18 , .6

0
,

2

1 1 1 1( )( )( )

( )

( ) ( )

( ) ( )

 

å å å k j w

w w w

= Ä

´ + + + - - +

a b g a b g
g g a b g g

a b g

+ ¹ ¹ + =
-

The first and the last terms in the brackets are independent of , .a b Each of them gives 0 since
, , ,k k k= =a b a a b a g+ and N,

2 2
,0å k d=a a g g but the sum does not contain 0g = term.

Finally, we are left with

E E E E 0,
2

1 1 ,
2

1 1( )( ) ( )( )( ) ( )   å åk w w k w w w+ + - = + + - - =
a b g

a b a b
a

a g a g a
+ =

because the summation index of the second term can be shifted as ,a a g + and due
to E x E x .1 1( ) ( )= - -

More details and properties can be found in [11, 13, 18].

A.3. GLN Sklyanin algebra

The Sklyanin algebra [20] has extension to GL .N One possible approach is given in [16]. The
most natural way is to use the exchange relations (as in [20]).

Proposition A.1. Consider the Lax operator (3.2) and R-matrix (1.6). The quantum
exchange relations

R z w L z L w L w L z R z w12 1 2 2 1 12( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ( )     - = -

are equivalent to N N2 2´ relations numbered by , N
2a b Î ´ (for the component T TÄa b):

S S f 0, A.30, , ,
ˆ ˆ ( )åk =

g
g a b a g b g a b g- - +
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where the structure constants f , ,

a b g are given by

f E E

E E

f

for 0 :

,

for 0 : . A.31

, , 1 1

1 1

,0,

( ) ( )
( ) ( )

( ) ( ) ( )

 

 

 





b w w

w w

b w w

¹ = + - +

+ + - +

= =Ã + - Ã +

a b g g a b g

a g b g

a g g a g

- -

- +

-

For N=2 relations (A.30) reproduce GL2 Sklyanin algebra in its original form [20].
Indeed, for , 0a b ¹ and a b¹ the structure constants are related:
f f f, , , , , ,0
  = = -a b a b a b b a b- - and f f ., , , ,0

 =a b a a b Therefore,

S S S S, , . A.32, 0
ˆ ˆ ˆ ˆ ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦k=a b a b a b

-
+

+

Here we also used that for , 0a b ¹ and a b¹ ı,,k = a b i.e. ., ,k k= -a b b a To get the
second commutation relation introduce

A.33( ) ( ) ( )  wÃ = Ã + - Ãa a

and notice that f f ,,0, ,0,0
 = -a a a f f .,0, ,0,

 = -a b a a b- Then

S S S S, , . A.340 , ( )ˆ ˆ ˆ ˆ ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦  kÃ = - Ã - Ãa a b a b a b a b+
- +

for some , 0.b a¹ Notice also that the same commutation relation appears from
0,a = 0b ¹ component of (A.30) but in a different form:

K S S K K S S, , ,0 , ( )ˆ ˆ ˆ ˆ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦  k= -a b a b a b a b a b+ +
- +

where K E E E .1 1 1( ) ( ) ( )  w w= + - -a a a The latter is the same as (A.34) due to

K K

K

 



 



-
= -

Ã - Ã

Ã
a b

a b

a b

a b+ +

in GL2 case.
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