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Complex systems in biology have attracted much attention in recent decades. We investi-
gate the dynamics of a molecular evolution model related to the mutator gene phenomenon
in biology. Here mutation in one gene drastically changes the properties of the whole
genome. We investigated the Crow-Kimura version of the model, which can be mapped
into a Hamilton-Jacobi equation. For the symmetric fitness landscape, we calculated the
dynamics of the maximum of the total population distribution. We found two phases in the
dynamics: a simple one when the maximum of the distribution moves along a characteris-
tics, and a more involved one when the maximum jumps to another characteristic at some
turnout point 7'
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I. INTRODUCTION

The objective of statistical physics developed by Boltzmann (20 February 1844 — 5
September 1906) [1] and Gibbs (11 February 1839 — 28 April 1903 [2] is to understand
the properties of a macroscopic system from the interactions of the molecules or atoms of
that system. In the development of statistical physics, it has often been found that simple
model systems can be useful for understanding the collective or critical behavior [3, 4] of a
complicated system consisting of a large number of atoms or molecules, and universality and
scaling are important concepts in the study of phase transitions and critical phenomena |3,
4.

For example, in 1945 Guggenheim [5] reported that in the T'/T, versus p/ p. plane
(T, T, p, and p. are the temperature, critical temperature, density, and critical density of
the substance, respectively) the gas-liquid coexistence curves of Ng, A;, K;, X¢, Na, Oq,
CO, and CHy are very consistent with each other, and near the critical point the order
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parameter [3] |p — pe| ~ |1 — (T/T.)|?, with the critical exponent 3 = 1/3. In 1952, Yang
and Lee proposed that the critical behavior of the gas-liquid system can be represented
by a lattice-gas model [6], which is equivalent to the Ising model [7], in which each atom
or molecule on a lattice site is assigned a variable which can be either +1 or —1. The
Ising model has exact solutions when it is on one-dimensional, two-dimensional, and Bethe
lattices [3, 7, 8, 9], and has attracted much attention.

In 1995-1996, Blote and collaborators [10, 11] used Monte Carlo simulations to find
that the critical exponent (3 of the spontaneous magnetization and v of the correlation
length [3] of a three-dimensional (3D) Ising model are 0.3269(6) [11] and 0.6301(8) [10],
respectively. In 2009, Sengers and Shanks [12] reviewed the experimental data for gas-
liquid critical systems and reported that the order parameter and the correlation length
have critical exponents § = 0.3245 and v = 0.629 4 0.003, respectively. In 2012, Watanabe,
Ito, and Hu [13] used molecular dynamics simulations to find that 5 and v of a 3D Lennard-
Jones (L-J) model system [14, 15, 16] are 0.3285(7) and 0.63(4), respectively. The values
of  and v obtained for simple model systems reported in [10, 11, 13] are highly consistent
with the experimental data reported in [5, 12]. Using Monte Carlo methods [17, 18, 19, 20]
and analytical methods [21, 22], it has been found that many critical systems have very
nice universal and scaling behavior [23, 24, 25, 26, 27, 28, 29, 30, 31].

After the development of molecular biology, it is of interest to know whether one
can use the ideas and methods of statistical physics to understand some interesting bio-
logical problems from the molecular level or to find some universal behavior in biological
systems [32, 33]. It has been pointed out that slow relaxation of a spin glass model [34] at
low temperatures can be slower than the critical slowing down of the Ising model [35]; such
a result together with the glassy behavior of proteins [36] can be useful for understanding
why biological systems, e.g., ancient seeds [37, 38], can be maintained in a non-equilibrium
state for a very long time [39]. An all-atom protein model [40, 41] and an analytical
method [42, 43] have been used to find universal volume to surface ratios for proteins in
a Protein Data Bank (PDB) [44]. Statistical physics has been used to study molecular
models of biological evolution [45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57], the origin of
life [46, 47, 58, 59], and punctuated equilibrium [60], and some interesting results have been
obtained. Following such developments, in this paper we use statistical physics to study
the molecular evolution model with a mutator gene whose mutation is possibly related to
cancer.

The mutator gene phenomenon [61] (the change of one gene type creates strong
instability in the whole genome) plays an important role in the evolution of cancer [62, 63,
64]. The mutation rate of healthy cells is too low to explain the large number of mutations
present in cancer cells, and it has been proposed that there is a special mechanism of genome
instability to create a large number of mutations. Technically this can be accomplished via
the mutation of genes responsible for the genome stability, and as a result there is substantial
increase in a mutation rate of the genome. The cancer can be described as a clonal (asexual)
evolution of the cells citeno76,pe06. The phenomenon has been investigated using the
methods of statistical physics, and several approximate results [67, 68] have been derived,
as well some aspects of the model with linear fitness have been solved [69]. In [70] we give
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the general solution of the statics, mapping the model into the Hamilton-Jacobi equation
(HJE) [71, 72, 73, 74, 75]. For biological applications the dynamics of the phenomenon is
especially important [76, 77], and it has been investigated approximately in [67, 68]. In the
current article we solve exactly the dynamics for the model presented in [70].

II. MODEL SYSTEM AND CALCULATED RESULTS

We consider the evolutionary process on the symmetric fitness landscape. The genome
consists of (IV 4 1) genes with 2 alleles each, represented by s, = +1, 7=0,...,N. The
first gene so defines the mutation rate for the genome: it is either a normal allele (so = 1)
or a mutator (sp = —1). Thus we have 2V*! different genotypes S; = (so, 51,...,5N),1 =
1,...,2N*1 We can use the Hamming distance | = dy; = (N — % ;5,)/2 to denote the
number of mutations of S; = (£1,s1,...,sy) from the reference sequence, which can be
taken to be (+1,1,...,1) without loss of generality. For symmetric fitness landscapes, we
consider N Hamming classes, labeled by [ = 1,..., N; all sequences in the same class have
the same Hamming distance from the reference sequence, and the replicators (viruses or
cells) with the genomes from the same Hamming class have the same fitness. We use the
notation z = Zi\[:l s;/N by analogy with magnetization of the spin system, and it leads
to the equality = 1 — 2I/N. We denote the relative frequencies of the replicators in the
[-th Hamming class with normal genotype as P;, and for the mutator types as Q.

The relative frequencies P, and @Q; correspond to the state of the system. We can
write the evolutionary dynamics as a kinetic process with the system state defined at nodes
of two chains, and there are transitions both within the same chain as well as transitions
between chains, as shown in Fig. 1 [78].

1 11
Pl -1 4—_“| 1 Zl [+1 |
g || oy
H2 2
o [ - = == |

FIG. 1: The scheme of available transitions for the system states (arrows denote transitions). The
upper chain corresponds to the genome without a mutator allele; the lower chain corresponds to the
genome with a mutator allele.

The C ... O denotes the possible system state. The upper chain corresponds to the
genome without a mutator allele; the lower chain corresponds to the genome with a mutator
allele. A similar scheme has been used to study evolutionary games with randomly changing
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payoff matrices [78]. We have the following system of equations:

dlzt(t) = B(Nf(z) = N(pm + 1)) + p1(P—a(N =1+ 1) + Pl + 1)) + 2@ N,
d%lt(t) = Qi(Ng(xz) — N(p2 + a2)) + p2(Qi—1(N =1+ 1)+ Qi11(1+ 1)) + ey P,N.

(1)

Here p11 and po are the mutation rates for the genome configuration of the upper and the
lower chains, respectively. Transition rates from the upper chain to the lower chain, and
from the lower chain to the upper chain are given by «y and «s, respectively. The functions
f(z) and g(z) are the fitness functions for the genomes of the upper and the lower chains,
respectively.

When a7 = 0 and ap = 0, Eq. (1) describes the system of two decoupled Crow-Kimura
models, the first one with the fitness function f(z) and mutation rate 1, the second one
with the fitness function g(z) and mutation rate po. The term P_j(N — 1+ 1) describes
the mutation from the (I —1)-th Hamming class to the I-th Hammimg class, and P11 (14 1)
describes the mutation process from the (I + 1)-th Hamming class to the I-th class. We
have these non-trivial coefficients because we formulated the evolutionary dynamics for the
Hammimg class probabilities [49].

We consider a simple generalization of the Crow-Kimura model [45, 49, 51, 74]. To
obtain Eq. (1), we have used a standard transformation to remove the nonlinear term
proportional to the mean fitness in the original Crow-Kimura model [49, 51, 74].

Our goal is to calculate the dynamics of the model. The investigation of evolutionary
dynamics attracted a lot of interest recently. Two main methods here are the specific
mean-field approach in case of single-peak fitness [51, 79, 80, 81, 82, 82] and the HJE
method [71, 72, 73, 74, 75]. The HJE result has been confirmed via an alternative approach
by the methods of quantum field theory in [83].

To investigate the system (1) using the HJE method, we introduce the following
ansatz [84] considering the notation x = 1 — 2//N mentioned above:

P(t) = P(x,t) = vy exp[Nu(z,t)]; Qi(t) = Q(z,t) = vy exp[Nu(x,t)]. (2)
We get:
ou(z,t) Ltz 5, 1-z U9
= —_ —_— 1 _
5 f(x) 041—1-#1( 5 € T —|—v1a2,
ou(zx,t) Ltz 5, 1-z U1
daiCEL7 - 1)+ Zan. 3
5 9(x) a2+u2( 5 ¢ e +o,o (3)
Here p is the derivative of u(z,t) with respect to x:a % = p. The derivative of u(x,t)
u(x,t

with respect to the time variable is denoted by ¢ = —;
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FIG. 2: The dynamics of maximum s = x* versus the time ¢, for the case of identical mutation rates
p1 = p2 = p =1, and different fitness functions f(z) = 32%/2 and g(x) = 222 for two chains with
N =100 and s(0) = 1. We have z. ~ 0.96. The direct solution (smooth line) versus the analytical
results (points) by Eq. (10). The effect of the variance to the dynamics is stronger than the effect
of fitness steepness and s decreases monotonically with time, see Eq. (7).
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FIG. 3: The dynamics of the maximum s = x* versus the time ¢, for the case of identical mutation
rates 1 = 2 = p = 1 and different fitness functions f(z) = 32?/2 and g(x) = 222 for two chains
with N = 100 and s(0) = 0.5. The direct solution (smooth line) versus the analytical results (points)
by Egs. (10) and (12). We have T ~ 0.2 and s(7T') ~ 0.417154, corresponding to the minimum of
the curve. The mean fitness R(t) equals f(s(t)). The effect of the variance on the dynamics is not
always stronger than the effect of fitness steepness, and thus s is not a monotonic function of time
t, see Eq. (7).

II-1. Chains with the same mutation rate

Let us suppose that uy = po = 1, a; = as = a. Removing the variables vy, vy
from the system of equations in (3), we derive the Hamilton-Jacobi equation (HJE) with
an expression for the Hamiltonian H4:

ou(z,t)
Yooy —
ot + i(‘r’p) 0’
1 1-—
CHy = Fi(a)+—Zew LT g (4)

2 2
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where

Puwy = T 0

V(f(z) — g(2))? + 4a?
5 )
F (z) is the effective fitness function. When f(z) = g(x), Fi(z) = f(x) = g(z).
Consider now the dynamics of the maximum of the distribution. Let as assume the
following ansatz in the vicinity of the maximum z*(t):

(5)

ok 2
RPN
O*u(t, z*(t))
K(t)= ————% 6
where 1/(K(t)N) is the variance of the distribution. We get from Eq. (4) the following
equation:

de*(t)  —2xK(t) + FL(v)
dt K(t) == ()

We take f(z) as a monotonic function in the region 0 < x < 1. The first term —2zK(t)
is related to the variance. When the variance is small (K (t) is large), the z*(t) decreases
monotonically (the same with the mean fitness). After some critical value of variance,
related to the steepness of the fitness, F'|(x), the mean fitness and average magnetization
x*(t) begin to rise.

To solve the partial differential equation (4), we can use ordinary differential equa-
tions: the Hamilton equations [85, 86]. The lines described by these equations are the
characteristics of Eq. (4).

The Hamiltonian does not depend on time, therefore the ¢ = %ﬂf’ﬂ is a constant
along the characteristics, defined via the Hamilton equations. We write the Hamiltonian

equation for z and determine the equations for the characteristics [85, 86]:

dH
b= =0 = (L) — (1= a)e . (8)
Then using an equation ¢ = —H, we rewrite Eq. (8) as:
& =£2\/(q - Fr +1)% — (1 - a?); (9)

Taking into account all possible combinations of signs in Eq. (9), we obtain 4 different
characteristics. The solution of the characteristics allows us to calculate the whole distri-
bution analytically, which is a rather complicated task and lies beyond the scope of this
investigation. Since in this paper we are interested only in the position of the maximum,
we can solve an easier problem.

At the maximum point (z*,t*) we have p = 0. Therefore, while calculating the
dynamics of the maximum, we take ¢ = F according to Eq. (4). Integrating Eq. (9), we
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obtain the time required for the maximum to reach the point z* starting from the initial
point g

L 1
2z (Fy(z) = Fi(€) +1)2 = (1-€2)

t= de| . (10)

The solution of Eq. (10) gives s = x* as a function of ¢. The calculated results are shown
in Fig. 2 as dots, which are consistent very well with the solid line obtained from direct
numerical simulation of Eq. (1).

The alternative solution can take place as well. While integrating Eq. (9) along the
characteristic we can arrive at some point x; where dz/dt = 0. In this case we use the “—”
sign in the right hand part of Eq. (9) after the turning point ;. Hence we denote by x;
the solution of the equation

(Fy (%) = Fiw1) + 1+ a)? — (1 —a2) = 0. (11)
Concerning the possibility of this sign change, we rewrite (10) as

1 /™ 1
5/aco V(F(2*) = FL(€) +1)? - (1 - &)
L 1
2 ey V(Fy(2*) = FL( +1)2 - (1 - &%)

The solution of Eq. (10) is valid for ¢ < 7. Here T is given by Eq. (10) on the
assumption that the turning point x; = xg

t =

df‘

+

df‘ . (12)

(Fi (") = Fy(wo) +1)° = (1—a3) = 0. (13)

The transition between two solutions takes place at the point zg = x., where the
latter is the argument value that maximizes the following expression

max[F («) + V(1 — 22) — 1] = Fy () + /1~ (@)?) - 1. (14)

Thus for z > 2z, we should take the solution (10), while for z < z, the solutions (10) and
(12). In Fig. 3 we provide an example of the latter case.

I1I-2. Chains with different mutation rates
In this subsection we investigate the system with the same fitness functions f(z) =
g(z) and transition rates «, but different mutation rates. Let us take up = 1 and g = p.
The Hamiltonian has the form

—Hy = f(x)—a+1+T“(—1+

+

1 1—
; e 2 xe%)

1 1 1-— 2
:|:§\/(1—,u)2<—1+ —'2—:6621’—1— 2x€_2p) + 4a2. (15)
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FIG. 4: The dynamics of the maximum s versus time ¢, for the case u1 = 1, f(z) = g(x) = 32%/2,
p2 = 0.5 with N = 200 and s(0) = 1. The analytical results (points) by Eq. (25) are very well
consistent with the direct numerical solution of Eq. (1). The effect of the variance on the dynamics
is stronger than the effect of fitness steepness, and thus s decreases monotonically with the time t.
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FIG. 5: The dynamics of the maximum s versus time ¢, for the case u; = 1, f(z) = g(z) = 322/2,
w2 = 0.5 with N = 200 and s(0) = 1. The analytical results (points) by Eqs. (25) and (28) are
very well consistent with the direct numerical solution of Eq. (1). The effect of the variance on the
dynamics is not always stronger than the effect of fitness steepness, and thus z is not a monotonic
function of the time ¢.

In this case from the Hamilton equation we obtain

dH 1 1—

Cdp 2 2
(1= D=2+ (1 + ) + (1 = 2)e~ )
(p+1)+ 2 2 —2p)2 2 -(16)
\/(1—u) (=24+ (1 +z)e?r + (1 —x)e=?P)2 + 16«
We introduce two functions:
1+ 1—2x _
Ky(gm) = — —e + 5 e, (17)
1 1-—
K_(q,z) = +xe2p — T2,

2 2
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With these notations Eq. (16) transforms into

. (b= 1)*(K4(g,2) — 1)
= K-{g,2) x ((M T Vip—1)2(Ky(g,z) —1)2 + 4a2> ' (18)

From (17) we can derive

)= £/K2(q.2) — (1 - a2). (19)

Substituting the above in Eq. (15) we get the following equation for K :

0= f(a) ~ o+ TE (K (g 0) ~ 1) = o /T (R (gn) — 12 + a2 (20)

It leads to a quadratic equation for (K4 (q,z) — 1):

(K (q,2) = 1) + (¢ — f(z) =) —a® = (¢ — f(x) + a)(1 + p)(K (g, x) — 1) = 0.

(21)
We get the solution
Ki(a) = 14 5-((a+a— F(@) (1 + ) £ VD) (22)
here D is a discriminant of Eq. (21):
D= (q+a—f(2)*(1—p)?+4pa’. (23)

We obtain two different expressions for the dynamics of the maximum. We can associate ¢
with the maximum point z*:

q=f(z"). (24)

For the simple case when the maximum trajectory is along the single characteristics, see
Fig. 4, we use Eq. (24) and derive

*

= "
w0 K_(f(x*),y) (u+ 14 —2LE G a)) 1) )

VMK (f(2*),2) 1) +4a?

(25)

where we denoted M = p — 1.
This solution is valid for xg > x., where z. is defined as a maximum point of

max [f( ) — +— —1+V1—22)+ \/ u)z(—1+\/1—x2)2+4a2. .(26)

For xg < x., see Fig. 5, we should use the latter expression for ¢t < T', where T is given by
Eq. (25) with z* given by

K_(f(z"), z0) = 0. (27)
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For t > T we should use

(28)

= l
- « M2(K4(f(x*),y)—1
w0 K (fa)y)(p 1+ A ) )

*

o
« M2(K4(f(z*),y)—1
o K (fa),y) (n+ 1+ \/M2<K(+&§x£>,;ﬁ)1>z)+4a2)

Here z1 is the solution of the following equation:
K_(f(a*),a1) = 0. (29)

We obtain the turnout time ¢ looking at the solution of dx*/dt = 0, where z*(¢) is given by
Eq. (28).

I1I. DISCUSSION

In this paper, we investigated the dynamics of a mutator model. The dynamics of
evolution models is a rather hot subject [51, 71, 72, 74, 75, 79, 80, 81, 82]. We solved the
exact dynamics of the mutator model [70].

We solved the model of evolving population for the symmetric fitness case; the model
is equivalent to two chains of equations with vertical connections between them. Such
models were intensively investigated recently [84, 87]. They are related to cross diffusion
models, applied in molecular ratchets. We used the Hamilton-Jacobi equation to study
the dynamics of the maximum. Our Hamiltonian has two branches and there are 4 classes
of characteristics. In this work we considered the case when there are back and forward
transitions between chains of equations, and we worked with one branch of the Hamiltonian
and two classes of characteristics. We performed numerics, confirming well our analytical
results. It will be interesting to look for the situations when all the branches of the Hamil-
tonian and classes of the characteristics are involved in the dynamics. Perhaps this is the
situation when oo = 0 and a7 > 0.

In this paper we solved exactly the dynamics of a rather involved evolution model
with a mutator gene. The dynamics of simpler evolution models [88, 89] had been applied
to the mathematical modeling of cancer progression and tumor growth. As we have chosen
our model just from cancer biology, we hope that our results also can be applied to the
modeling of cancer.
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