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INTRODUCTION

The theory of inertial manifolds is an extreme implementation of the concept, going back to
Hopf [1], of the finite-dimensional large-time behavior of solutions of distributed evolution systems with
dissipation. This means that the eventual dynamics of a dissipative system with infinitely many degrees
of freedom can, in a sense, be controlled by finitely many parameters. The main object of study is the class
of semilinear parabolic equations with Hilbert state space. Paradoxically, although the existence of an
inertial manifold has been proved only for a narrow class of such problems, all known examples in which
the absence of an inertial manifold is guaranteed are sophisticated and look rather artificial. Anyway, no
such examples for real problems of mathematical physics have been found so far. The present paper is a
step in this direction; namely, we present a family of integro-differential equations of parabolic type with
nonlocal diffusion on the circle which have no smooth inertial manifold.

1. PRELIMINARIES

We consider evolution equations of the form

∂tu = −Au+ F (u) (1.1)

with linear part A and nonlinear part F in a real separable Hilbert space X with norm ‖ · ‖. The general
theory of such equations is presented in the book [2]. A closed linear operator A on X with dense domain
D(A) is said to be sectorial if the semigroup {e−At}t>0 generated by A is analytic; in this case, the
spectrum σ(A) lies in a half-plane Reλ > δ. The property of being sectorial is stable with respect to
bounded perturbations. We assume without loss of generality that δ > 0 and denote the one-sided scale
of Hilbert spaces corresponding to A by {Xα}α≥0, where Xα = D(Aα) and ‖u‖α = ‖Aαu‖ for u ∈ Xα.
We have

X0 = X, X1 = D(A), Xβ ⊂ Xα for β > α.

We make the following basic assumptions about Eq. (1.1).

Condition (H1). The linear operator A is sectorial, its resolvent is compact, and the spectrum σ(A) lies
in a half-plane Reλ > δ > 0.
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Condition (H2). For some θ ∈ [0, 1), the nonlinear functionF maps Xθ to X and satisfies the condition

‖F (u) − F (v)‖ ≤ L(r)‖u− v‖θ for ‖u‖θ ≤ r, ‖v‖θ ≤ r.

Condition (H3). Equation (1.1) generates a continuous dissipative semiflow {Φt}t≥0 in Xθ .

The dissipativity of the solution semiflow means that

sup lim
t→+∞

‖Φtu‖θ ≤ a

uniformly in u on bounded subsets of Xθ . We denote the closed ball ‖u‖θ ≤ r in the state space Xθ by
Br and say that the ball Ba is absorbing. We refer to the number θ as the nonlinearity exponent of
Eq. (1.1). The embeddings Xβ ⊂ Xα with 0 ≤ α < β are dense and compact; in particular,

‖u‖α ≤ C(α, β)‖u‖β for u ∈ Xβ .

It is easy to prove by using the construction in [2, Theorem 3.3.6] that, under Conditions (H1)–(H3),
the evolution operators Φt with t > 0 are compact.

In real problems, the operator A often turns out to be self-adjoint, and the compactness of its resolvent
is characteristic of parabolic partial differential equations in bounded domains Ω ⊂ R

m.

A set U ⊂ Xθ is said to be invariant if

ΦtU = U for t > 0.

The global attractor A of a semiflow {Φt}t≥0 was defined in [3], [4] as the union of all entire (existing
for t ∈ (−∞,+∞)) bounded trajectories of the infinite-dimensional dynamical system (1.1) in the state
space Xθ. The global attractor (which we call simply attractor in what follows) is a connected compact
(by virtue of the compactness of the evolution operators Φt) invariant set in Xθ and uniformly attracts
all balls in Xθ as t → +∞. In particular, A contains all possible limit modes (such as equilibrium
points, cycles, invariant tori, etc.) of the solution semiflow. By virtue of the smoothing property of
the parabolic equation, we have ΦtX

θ ⊂ X1 for t > 0; therefore, any invariant set (in particular, any
attractor) lies in X1.

Let us modify the function F (u) (without the loss of Lip or Ck regularity, 1 ≤ k ≤ ∞) outside the
absorbing ball Ba so that the new function ˜F (u) identically vanishes outside the ball Ba+1. Such a
“truncation” procedure, described in detail in [4], allows us to pass to the equation ut = −Au+ ˜F (u)

with globally Lipschitz function ˜F (u), dissipative phase semiflow inXθ, and the same eventual dynamics
as Eq. (1.1). Assuming that this passage has already been made, we return to the initial notation F (u)
and impose the condition

‖F (u)− F (v)‖ ≤ L‖u− v‖θ (1.2)

on the nonlinear component of Eq. (1.1). Note that [2] the phase semiflow {Φt} inherits the smoothness
of the function F (u).

Conditions (H1) and (H2) ensure the local (in t > 0) solvability of Eq. (1.1) in Xθ. The dissipativity
of the corresponding dynamical system is a technical but important point.

Lemma 1.1. If Conditions (H1) and (H2) hold and ‖F (u)‖ ≤ M for u ∈ Xθ, then Eq. (1.1) is
dissipative in Xθ.

Proof. Let us write (1.1) in the form of a Duhamel integral equation as

u(t) = e−Atu(0) +

ˆ t

0
e−A(t−τ)F (u(τ)) dτ.

Since Re σ(A) > δ > 0, it follows from the well-known estimates

‖e−Atu‖θ ≤ Ce−δt‖u‖θ, ‖e−Atu‖θ ≤ Ct−θe−δt‖u‖ for u ∈ Xθ
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that

‖u(t)‖θ ≤ Ce−δt‖u(0)‖θ +CM

ˆ t

0
e−δ(t−τ)(t− τ)−θ dτ.

We see that the norm ‖u(t)‖θ remains bounded on the existence domain of the solution u(t); hence,
according to [2, Theorem 3.3.4], the solution can be extended to [0,∞). Thus, the initial equation has
absorbing ball Ba ⊂ Xθ of radius

a = CM

ˆ ∞

0
e−δss−θ ds,

which proves the lemma.

2. INERTIAL MANIFOLDS

We shall consider semilinear parabolic equations of the form (1.1) with self-adjoint linear operator A,
nonlinear function F ∈ C1(Xθ,X), 0 ≤ θ < 1, and solution semiflow {Φt}t≥0 in the state space Xθ . An
inertial manifold is a smooth or Lipschitz finite-dimensional invariant surface M ⊂ Xθ containing the
attractor A and exponentially attracting all solutions u(t) at large times.

Most of the known methods for constructing an n-dimensional inertial manifold (beginning with
those proposed in the fundamental papers [5], [6]) require the spectral jump condition

λn+1 − λn > kL(λθ
n+1 + λθ

n), (2.1)

where L is the constant in inequality (1.2), the λn are the eigenvalues of A in nondecreasing order (with
multiplicities taken into account), and k is an absolute constant.

As is known [7], [8], in the case M ∈ Lip, we can take k = 1, and this value cannot be decreased [8].
The construction of a C1-smooth inertial manifold usually employs slightly larger values of k, but there
are reasons to believe (see [9, p. 17]) that k = 1 is the optimal constant in this case, too.

As shown in [8], estimate (2.1) with k = 1 makes it possible to construct an n-dimensional Lipschitz
inertial manifold of Eq. (1.1) in the form

M = {u ∈ Xθ : u = y + h(y), y ∈ PnX
θ};

here Pn is the spectral projection of A corresponding to the part {λ1 ≤ λ2 ≤ · · · ≤ λn} of the spectrum,
h : PnX

θ → (I − Pn)X
θ , where I = id, and

‖h(y)− h(y′)‖θ ≤ d‖y − y′‖θ for y, y′ ∈ PnX
θ.

In this situation, to each u ∈ Xθ there corresponds u ∈ M such that

‖Φtu− Φtu‖θ ≤ C‖u− u‖θe−γt for t > 0, where γ = λn+1 − λθ
n+1L > 0.

The constant C does not depend on u and u. Since the manifold M is invariant, it follows that M ⊂ X1.

The limit dynamics of the dynamical system {Φt}t≥0 with state space Xθ is completely described by
the inertial form

yt = −Ay + PnF (y + h(y)), y ∈ PnX
θ,

which is an ordinary differential equation in PnX
θ � R

n. In this case, we say that the initial equa-
tion (1.1) is asymptotically n-dimensional.

The spectral jump condition (2.1) makes it possible to prove the existence of an inertial manifold
for the dissipative equation (1.1) with fixed linear part A and any nonlinear function F satisfying the
Lipschitz condition (1.2) under the “spectrum scatteredness” assumption

sup
n≥1

λn+1 − λn

λθ
n+1 + λθ

n

= ∞. (2.2)
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In the case where the linear part −A of the parabolic equation (1.1) is the Laplace operator Δ with
standard boundary conditions in L2(Ω), Ω ⊆ R

m, this assumption becomes restrictive because of
the well-known asymptotics λn ∼ cn2/m of the eigenvalues λn ∈ σ(−Δ). The attempts to avoid
assumption (2.2) have been successful only in isolated special cases (see, e.g., [10], [11]). So far,
asymptotic finite-dimensionality has not been proved even for simple problems, such as a parabolic
equation of the form

ut = uxx + f(x, u, ux)

on the circle or the reaction-diffusion equation

ut = uxx + f(x, u)

with standard boundary conditions in the disk.
On the other hand, very little is known about examples of evolution equations of the form (1.1) with

no inertial manifold. In [12], a system of two coupled one-dimensional parabolic pseudodifferential
equations without a smooth inertial manifold was constructed from the following considerations. Let
F ′(u) denote the Fréchet derivative of the smooth map F : Xθ → X at a point u ∈ Xθ . The linear
operators F ′(u) are continuous operators from Xθ to X, i.e., F ′(u) ∈ End(Xθ,X), and the Lipschitz
condition (1.2) is equivalent to the inequality

‖F ′(u)‖op ≤ L for u ∈ Xθ.

Let σ(T (u)) be the spectrum of the unbounded linear operator T (u) = F ′(u)−A on X with domain X1.
Since

F ′(u) = F ′(u)A−θAθ with θ < 1,

where F ′(u)A−θ ∈ EndX, it follows that the operator −T (u) inherits sectoriality and the property of
having compact resolvent from A (see [2, Sec. 1.4]). Thus, σ(T (u)) consists of eigenvalues of finite
multiplicity. The number l(u) of positive eigenvalues in σ(T (u)) (counting algebraic multiplicities) is
finite. Finally, let E be the set of stationary points u ∈ Xθ of Eq. (1.1) for which the spectrum σ(T (u))
contains no real eigenvalues λ ≤ 0.

Lemma 2.1 (see [12]). If the attractor A of Eq. (1.1) with nonlinear function F ∈ C1(Xθ,X)

is contained in a smooth invariant finite-dimensional manifold M ⊂ Xθ, then the number
l(u1)− l(u2) is even for any u1, u2 ∈ E.

Note that the condition that the stationary points u ∈ E are hyperbolic, which was imposed in [12],
turns out to be redundant. A modification of Lemma 2.1 was used in the recent papers [9] and [13]
to obtain a general construction of an abstract equation (1.1) with nonlinear function F ∈ C∞ and
nonlinearity exponent θ = 0 for which there is no smooth inertial manifold. In the same papers, by using
a different (more delicate) argument, an equation of the form (1.1) with F ∈ C∞ which does not have
even a Lipschitz inertial manifold was constructed . Apparently, these results can be extended to the
general case of a nonlinearity exponent θ ∈ [0, 1). The counterexamples constructed in [9], [12], and [13]
are rather unnatural; it is desirable to find a physically meaningful semilinear parabolic equation without
the property of asymptotic finite-dimensionality. This problem is solved in this paper. The example
presented below was announced by the author (in a less perfect form) in [14].

3. MAIN RESULT

Let Hν , ν ≥ 0, denote the generalized L2 Sobolev spaces [15] of real functions on the unit circle Γ; in
particular, H0 = H = L2(Γ). The differentiation ∂xu = ux is a continuous operator from Hν+1 to Hν ,
and ∂x : H

1 → H0, where H0 is the subspace functions in L2(Γ) with zero mean over Γ. For ν > 1/2,
we have continuous embeddings

Hν ⊂ C(Γ), Hν+1 ⊂ C1(Γ).

MATHEMATICAL NOTES Vol. 96 No. 4 2014



552 ROMANOV

Consider the integro-differential parabolic equation

ut = ((I +B)ux)x + f(x, u, ux), (3.1)

where x ∈ Γ, I = id and B = B∗ are bounded linear operators on the Hilbert space H with norm ‖ · ‖,
and f(x, s, p) is a function on Γ× R

2, which is assumed to be infinitely differentiable but not analytic.
The operator I +B plays the role of a nonlocal diffusion coefficient. To be more precise, let

(Bh)(x) =
1

π

ˆ π

−π
ln

∣

∣

∣

∣

sin
x+ y

2

∣

∣

∣

∣

h(y) dy,

and let

(Jh)(x) =
1

2π

ˆ π

−π
cot

x+ y

2
h(y) dy

for h ∈ H . The operator J is related to the Hilbert singular integral operator

(G h)(x) =
1

2π

ˆ π

−π
cot

y − x

2
h(y) dy

by (Jh)(x) = (G h)(−x), h ∈ H . As is known [16, Chap. 6], G 1 = 0 and

G : cosnx → − sinnx, G : sinnx → cosnx

for integer n ≥ 1; hence J1 = 0 and

J : cosnx → sinnx, J : sinnx → cosnx (3.2)

for such n.
The integral operators J and B have the following properties:

(a) J ∈ EndH and J2 = I on H0;

(b) B ∈ End(H,H1) and ∂xB = J on H .

Clearly, J∗ = J , B∗ = B, the operator B is compact on H , and

B : cosnx → − 1

n
cosnx, B : sinnx → 1

n
sinnx

for n ≥ 1. We see that the subspace H0 is invariant under B, and the least eigenvalue of the restriction
of B to H0 equals −1. Thus, the self-adjoint operator I +B is nonnegative on H0 and can be interpreted
as a degenerate nonlocal “diffusion coefficient” in the evolution equation (3.1).

To write Eq. (3.1) in the standard form (1.1), we set

Au = u− uxx, D(A) = H2,

and

F (u) = u+ (Bux)x + f(x, u, ux). (3.3)

Let X = H , and let Xα = D(Aα) for α > 0. The self-adjoint positive linear operator A on X has
compact resolvent, and Xα = H2α. Note that A has the simple eigenvalue λ0 = 1 and the double
eigenvalues λn = n2 + 1, n ≥ 1; therefore, the spectrum scatteredness assumption (2.2) does not hold
even for the least possible (in this situation) nonlinearity exponent θ = 1/2.

The main result of this paper is as follows.

Theorem. Under an appropriate choice of the function f(x, s, p) ∈ C∞, Eq. (3.1) generates
a smooth dissipative semiflow in Xθ, θ ∈ (3/4, 1), and the attractor of this equation is not
contained in any invariant finite-dimensional C1 manifold M ⊂ Xθ.
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Proof. We begin by constructing the function f(x, s, p) and deriving the announced properties of the
solution semiflow. Take any θ ∈ (3/4, 1). The embeddings Xθ ⊂ C1(Γ) ⊂ C(Γ) ⊂ X are continuous;
therefore, for any function f ∈ C∞(Γ×R

2), the map u → f(x, u, ux) and, thereby, the nonlinear
component F (u) in (3.3) belong to the class C∞(Xθ,X). Moreover, the function F : Xθ → X

satisfies the Lipschitz condition on bounded subsets of Xθ. Thus, the evolution equation (3.1) satisfies
Conditions (H1) and (H2) with nonlinearity exponent θ. We ensure the dissipativity of this equation by
choosing a function f of special structure.

We set

f(x, s, p) = g(x, s, p)− 2εp cos x+ εs sinx,

g(x, s, p) = (κ+ 2ε cos x)ω(s)w(p) + εγ(s) + εη(s)(1 − sinx) + ξ(s),
(3.4)

where ε, κ ∈ R, ε > 0, and |κ| > 1. We assume that the functions ω, γ, η, and ξ belong to C∞(R) and
satisfy the conditions

ω(z) = z, γ(z) = 2z3 − 3z2, η(z) = 2z2 − z3, ξ(z) = 0, |z| ≤ 1,

ω(z) = 0, γ(z) = 0, η(z) = 0, ξ(z) = −z, |z| ≥ 2.
(3.5)

Note that ∂xB ∂x = J ∂x on X1/2 and J ∂x ∈ End(X1/2,X).

For a while, we represent the right-hand side of (3.1) in the form F1(u)−Aεu, where

Aε = A− J ∂x − εD, D = −2 cos x ∂x + sinx, D(Aε) = D(A) = X1,

and F1(u) = u+ g(x, u, ux). We regard the non-self-adjoint operator Aε as a perturbation of the self-
adjoint operator A0 = A− J ∂x with D(A0) = X1.

For u ∈ X1, we have the inequality

‖Du‖ ≤ 29

3
‖u‖+ 2

3
‖A0u‖, (3.6)

which is easy to obtain from the evident estimates

‖ux‖2 ≤ 9‖u‖2 + 1

16
‖uxx‖2, ‖ux‖ ≤ 3‖u‖+ 1

4
‖uxx‖, ‖uxx‖ ≤ ‖u‖+ ‖Au‖,

‖Au‖ ≤ ‖A0u‖+ ‖Jux‖, ‖Du‖ ≤ 2‖ux‖+ ‖u‖

and the relation ‖Jux‖ = ‖ux‖. In the terminology of [17], inequality (3.6) means the A0-boundedness
of D and (for small ε) ensures the closedness of Aε.

Since A01 = 1, it follows from the relations (3.2)

A0 : cosnx → (1 + n+ n2) cosnx, A0 : sinnx → (1− n+ n2) sinnx (3.7)

for n ≥ 1 that the spectrum of A0 consists of the double eigenvalues λ(0)
n = 1+ n+ n2 with eigenspaces

Xn = {cos nx, sin(n+ 1)x}, n ≥ 0,

which form an orthogonal basis inX. Let Qn be the corresponding two-dimensional spectral projections
on X. The operator A0 has compact resolvent Rλ(A0). It follows from Theorem 3.17 in [17, Chap. 4]
that inequality (3.6) ensures the compactness of the resolvent Rλ(Aε) and the continuity of the resolvent
set ρ(Aε) as ε → 0. Moreover, standard estimates for the resolvents of closed operators ensure the
convergence in norm

Rλ(Aε)
ε→0−−−→ Rλ(A0)

uniform on compact sets in ρ(A0). According to formulas of perturbation theory [17, Chap. 8,
Theorem 2.6], the eigenvalues of the operator Aε = A0 − εD have the form

λ±
n = λ(0)

n + εμ±
n + o(ε), ε → 0,
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where the μ±
n are the eigenvalues of the two-dimensional operators QnDQn. Straightforward calcula-

tions yield the matrix representations (in the bases of the subspaces Xn specified above)

Q0DQ0 =

⎛

⎜

⎝

0 1

−1

2
0

⎞

⎟

⎠
, QnDQn =

⎛

⎜

⎝

0
2n+ 1

2

−2n+ 1

2
0

⎞

⎟

⎠
, n ≥ 1,

whence

λ±
0 = 1± i

ε√
2
+ o(ε), λ±

n = (1 + n+ n2)± iε
2n + 1

2
+ o(ε). (3.8)

For small ε, the spectrum of Aε lies in the half-plane Reλ > δ > 0, and (A−Aε)A
−1/2 ∈ EndX. It

follows [2, Sec. 1.4] from the last property that Aε is sectorial in X and D(Aα
ε ) = Xα for all α ≥ 0.

Since |s+ g(x, s, p)| ≤ const on Γ× R
2, it follows that F1 : X

1/2 → X and ‖F1(u)‖ ≤ const

on X1/2. The construction of g(x, s, p) chosen above ensures that |gs| ≤ const and |gp| ≤ const on
Γ× R

2 and, therefore, the fulfillment of the global Lipschitz condition

‖F1(u)− F1(v)‖ ≤ L‖u− v‖1/2 for u, v ∈ X1/2.

Since θ > 1/2 and the embedding Xθ ⊂ X1/2 is continuous, it follows that ‖F1(u)‖ ≤ const on Xθ

and F1 ∈ Lip(Xθ,X). Lemma 1.1 guarantees the dissipativity of Eq. (3.1) in the state space Xθ, so that
this equation satisfies assumptions (H1)–(H3) with nonlinearity exponent θ.

We proceed to write Eq. (3.1) in which the nonlinear component F (x) is of the form (3.3) and
the function f(x, s, p) has structure (3.4), (3.5). The linear operator J ∂x + εD is continuous as an
operator from X1/2 to X and, hence, as an operator from Xθ to X; therefore, F ∈ Lip(X1/2,X)

and F ∈ Lip(Xθ,X).

Let us prove the second part of the theorem. The linearization T (u) = F ′(u)−A of the vector field
F (u)−Au of Eq. (3.1) at a point u ∈ Xθ is a closed unbounded linear operator on the Hilbert space X
with compact resolvent and dense domain X1 (see Sec. 2 above). This operator acts on functionsh ∈ X1

by the rule

T (u)h = hxx + Jhx + gs(x, u, ux)h+ gp(x, u, ux)hx + εDh.

Relations (3.5) imply

g(x, 0, 0) = 0, g(x, 1, 0) = −ε sinx, gs(x, 0, 0) = gp(x, 0, 0) = 0,

gs(x, 1, 0) = ε(1− sinx), gp(x, 1, 0) = κ+ 2ε cos x.

Since D1 = sinx, it follows that u0 = 0 and u1 = 1 are stationary solutions of Eq. (3.1). Moreover,

T (u0) = ∂xx + J ∂x + εD, T (u1) = ∂xx + J ∂x + κ∂x + ε.

Relations T (u0) = I −Aε and (3.8) imply that the spectrum σ(T (u0)) is purely nonreal. On the
other hand, as seen from (3.7), the operator T (u1) = I −A0 + κ∂x + ε leaves invariant the mutually
orthogonal subspaces

Yn = {cosnx, sinnx}, n ≥ 1,

in X; on each of these subspaces, it is described by a matrix of the form
⎛

⎝

−n2 − n+ ε −κn

κn −n2 + n+ ε

⎞

⎠ ,

with eigenvalues

−n2 + ε± i dn, d = (κ2 − 1)1/2 > 0.
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Since T (u1) = ε, it follows that the real part of the spectrum σ(T (u1)) consists of a single simple
eigenvalue ε > 0.

Thus, for a function f(x, s, p) of the form (3.4), (3.5) and sufficiently small ε, the spectra σ0 and σ1
of the linearizations T (u) of the vector field F (u)−Au of Eq. (3.1) at the stationary points u0, u1 ∈ Xθ

have the properties

σ0 ∩R = ∅, σ1 ∩ R = {ε},
where ε is a simple positive eigenvalue. Let l(u) be the number of positive eigenvalues (with multi-
plicities taken into account) in the spectrum of T (u) for u ∈ Xθ; then l(u0) = 0 and l(u1) = 1. Thus,
according to Lemma 2.1, the attractor of the semilinear parabolic equation (3.1) is not contained in any
smooth invariant finite-dimensional manifold M ⊂ Xθ . This completes the proof of the theorem.

The theorem remains valid under the replacement of the state space Xθ , θ ∈ (3/4, 1), by X1/2 = H1,
provided that the weakened version of the notion of differentiability of nonlinear maps given in [10, p. 813]
(see also [12, Definition 1.1]) is used.
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