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ABSTRACT 
The paper describes the approximate method of the shortest path finding between two points on a surface. This 

problem occurs when generating a cutting pattern after the form of the fabric tensile surface is found. The 

shortest path finding is reduced to the problem of finding the geodesic line on the surface. However, the 

numerical problem solution of the form finding of fabric tensile structure leads to the fact that the final surface is 

represented by an arbitrary polyhedron. There is no analytical problem solution of finding shortest paths in this 

case. The described method allows finding the shortest path on a surface of any regular polyhedron form. 

Keywords Tensile fabric structures, geodesic line, cutting pattern, shortest paths, polyhedral surface 

1. INTRODUCTION 

Over the past few decades, there has been a rapid 

growth in the use of fabric tension structures. The 

fabric tension or fabric tensile structures are 

architecturally innovative forms of construction art 

that have double curved shapes, and are aesthetically 

pleasing. However, the design of a fabric tension 

structure is a very complex task. Three steps are usually 

required in the design process of tension structure, 

namely, form finding, load analysis and cutting pattern 

generation. This paper is dedicated to the third design step, 

i.e. cutting pattern generation [1], [2]. 

Cutting pattern generation problem for tensile fabric 

structure can be generally defined as follows. It 

involves finding the strips that will have the 

minimum area difference with the sum area of a 

number of plane strips. Here, the seam line between 

strips is determined by the width of the membrane 

material. However, the reference configuration for 

cutting pattern generation of membrane structures is 

the geometric information attained from form 

finding, and it is represented by nodal coordinates of 

three-dimensional discontinuous points. [3] 

 

When cutting pattern generation is conducted on the 

basis of a connected line, the seam line of the strip 

reconstructed on a plane will have large curvature, 

and the quantity of membrane material consumption 

will also increase. For this reason, the economic 

method of generating cutting pattern is to use 

geodesic line in the process of patterning. Besides, 

cloths must be cut out from fabric rolls of relatively 

narrow width. For economic reasons it is desirable 

that each cloth should maximize the use of the 

available width. The use of geodesic seam lines is 

therefore particularly appropriate in almost all cases. 

It is sometimes economically advantageous for cloths 

to be patterned with one straight side. Seam lengths 

of adjacent cloths should be the same, and cloth 

distortion at structure borders must be avoided. 

The geodesic problem is the problem of finding the 

shortest distance between two points on arbitrary 

surfaces. In addition, geodesic generates directions 

on the surface as well. The shortest distance can be 

found by generalizing the equation for the length of a 

curve, and then by minimizing this length using the 

calculus of variations. This has some minor technical 

problems, because there are different ways to 

parameterize shortest paths. While the case of finding 

the shortest path between two points on a plane is a 

straight line, the shortest path between two points 

over a surface will be geodes ic. In many of the 

existing methods for making this generalization, such 

as using isometric maps to surfaces with known 

geodesics, one of the most useful methods is finding 
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analytical solution by using the Euler equation. A 

geodesic can be represented by the solution of a 

second-order ordinary differential equation [4] 

0,=BuAv+uvvu ''''''''    (1) 

where  

)( vu,  – parametric co-ordinate of a surface point; 

)(tvv

u(t)=u

 }, - a curve equation near a given point. 

Many researchers have studied the problem of 

finding the shortest path between two points on the 

surface. One of the interesting ways of doing this is 

presented in [5]. The authors of the work focus their 

attention on the problem of computing geodesics on 

smooth surfaces. First, the authors assume they are 

given an approximate path to start from when 

attempting to compute a geodesic between two 

points. Then they attempt to compute the geodesic 

between two points iteratively using the midpoints of 

an approximate path between them. Further the 

authors explore a similar method, gradient descent, to 

iteratively update the path approximating the 

geodesic.  

2. THE SHORTEST PATH ON A 

SURFACE 

In most cases the analytic solution of the equation (1) 

is impossible because of the lack of an analytic 

surface representation. However, it is well known 

that the geodesic line between two arbitrary points 

close enough to each other on a depressed shell is the 

shortest line between those points. Therefore, let us 

try to develop a more or less general approach for 

finding the shortest path between two points without 

equation (1) solution based on the mentioned fact. 

Assume that there is a straight line between two 
points 1 and 2 on an arbitrary surface (see Fig.1) 

 

Figure 1. Straight-line normal projection 

Further let us form line  1A2 on the surface 

according to the following rule: the normal vector to 
the surface at each point of line  1A2 intersects the 

straight line 12 (see Fig.1). It means that each point 

of line  1A2 is the normal projection of the 

corresponding point of the straight line 12 onto the 

surface. On this basis, we can enunciate the 

following theorem: 

Theorem 

If each point of a curved line between two points on a 

surface is formed by the orthogonal projection of the 

corresponding point of a straight line between those 

two points along normal vector to a surface, then, this 

curved line is the shortest path between two points. 

Proof 

Let us suppose there are two points 1 and 2 on a 

surface close enough to each other as it is shown in 
Fig.2. Let us bind the points by the straight line 12. 

Assume that this line has dimensionless parameter t 

(see Fig.2). Let us further form line  1A2 on the 

surface according to the rule illustrated on Fig.1. 

Then we can write the following equations for an 
arbitrary point p on the straight line and point k 

relative to p on line  1A2 

),()()()()()( ttdtttt ppkpk nrrrr     (2) 

where )(tpr  – radius-vector to the point p; 

)(tkr  – radius-vector to the point k; 

)(tpkr  –vector between the points p and k; 

)(tn  – normal vector to the surface at the point k; 

)(td  – distance between the points p and k; 

Now let us assume there is another line  1B2 on 

the surface between points 1 and 2. The equation for 

point f on this line relative to the given point p can 

have the following form 

),()()()()()( tttttt kfpkppfpf rrrrrr 

 (3) 

where )(tpfr  –vector between the points p and f; 

Note that obviously vector )(tpfr is always longer 

than vector )(tpkr  because the last is the shortest 

distance between point p and the surface. Moreover, 

if we take into consideration that the set of vectors 

similar to vector )(tpkr  form the ruled surface 

bounded by lines 12 and  1A2 in total one can 

notice that this surface is a surface of minimum area. 

It can be shown in the following way. One can 



calculate the area of the surface bounded by lines 12 

and  1A2 by the following obvious expression 

,)(

1

0

12211 dttLS pkA  r   (4) 

where 
12L - the length of the straight line 12. 

 

Figure 2. To the Theorem proof 

On the other hand, the area of the surface bounded by 
line 12 and an arbitrary line  1B2 is equal to 

.)(

1

0

12211 dttLS pfB  r   (5) 

Since inequality pfpk t rr )( is always, true 

inequality 
211211 BA SS   is always true as well. 

Hence, the surface bounded by lines 12 and  1A2 

is the minimum surface. 

In its turn the length of line  1A2 can be expressed 

by the following integral 

,)(

1

0

21 dttL kA  r   (6) 

where derivation is done on the parameter t. 
Similarly, the length of line  1B2 is equal to 

.)(

1

0

21 dttL fB  r   (7) 

If we transform the expressions (6) and (7) taking 

into account equations (2) and (3) 

)()()( ttt pkpk rrr    

)()()( ttt pfpf rrr    

we can indicate that if pfpk t rr )(  it means that 

)(tpkr  cannot exceed )(tpfr  as well because of 

the derivation on the same parameter t. Moreover, 

the derivative )(tpkr  can only always be less than 

)(tpfr . 

It means that 
2121 AB LL   and  1A2 is the shortest 

path between two points 1 and 2 on the surface 

because line  1B2 was arbitrary. 

That establishes the Theorem. 

3. THE SHORTEST PATH ON A 

POLYHEDRON 

Unfortunately, the majority of numerical methods of 

fabric tensile structures form finding allow obtaining 

a surface only approximately. Usually a surface is 

represented by a facet model as it is shown in Fig. 3 

where the triangle mesh of surface is shown. A 

surface given by a triangular mesh is not, in general, 

differentiable at triangle vertices or at points on the 

triangle edges. At these points, a curve on the surface 

is not differentiable, therefore its curvature is 

undefined and form (1) is not applicable in this case. 

 

Figure 3. Typical triangle mesh of a fabric 

structure 

The problem of finding the shortest path between two 

points lying on the surface of а polyhedron is a basic 

problem in computational geometry and is studied for 

instance in [6], [7], [8], [9]. Especially [8] presents a 

method for building a subdivision of the surface 

which can be used for finding shortest paths from a 

fixed source to a given query point efficiently. 

Several forms of the problem solution can be defined 

when we change the properties of the polyhedron 

(e.g. considering faces to have weights, being non-

convex etc.) or constrain the path with different 

restrictions. An example of the constrained versions 

is the problem of finding the shortest path, which 

does not go above some given height as studied in 

[10]. 

In work [11] the authors developed the algorithm that 

used a technique based on the continuous Dijskstra 

method. This simulates the continuous propagation of 



a wave front of points equidistant from the starting 

point across the surface, updating the wave front at 

discrete events.  

In work [12] the authors describe algorithms to 

compute edge sequences, the shortest path map, and 

the Fréchet distance for a convex polyhedral surface. 

The length of a Euclidean shortest path measures 

distances on the surface. Their approach uses 

persistent trees, star unfoldings, and kinetic Voronoi 

diagrams. An implementation of the exact "single 

source, all destination" algorithm presented by 

Mitchell, Mount, and Papadimitriou (MMP) was 

described in [13]. The authors extend the algorithm 

with a merging operation to obtain computationally 

efficient and accurate approximations with bounded 

error. To compute the shortest path between two 

given points, they use a lower-bound property of 

their approximate geodesic algorithm to efficiently 

prune the frontier of the MMP algorithm, thereby 

obtaining an exact solution even more quickly. An 

efficient O(n) (where n is the number of points on the 

surface) numerical algorithm for first-order 

approximation of geodesic distances on geometry 

images is presented in [14]. The structure of this 

algorithm allows efficient implementation on parallel 

architectures. 

In [15] a new algorithm for detecting self-collisions 

on highly discretized moving polygonal surfaces is 

presented. It is based on geometrical shape regularity 

properties that permit avoiding many useless 

collision tests. Nevertheless, it should be recognized 

that nowadays there is no universal method of 

finding the shortest path on the smooth surface 

represented by а polyhedron. 

Here we present the algorithm for finding the 

approximate shortest path on (convex and non-

convex) polyhedral surface based on a straight-line 

normal projection onto a surface. The algorithm 

computes a pseudo-geodesic line between every pair 

of points. 

Let P be a (non-convex in general case) polyhedron 

in 3D space. We consider P to be specified by a set 

of faces, edges and vertices. Without loss of 

generality, we assume that all faces are triangles. We 
are given two special points on the surface, namely 1 

and 2. The problem is to find the shortest path  12 

between 1 and 2 lying on P (see Fig.4). As soon as 

the surface is represented by a faced model we can 

find the length of a path in R3
 by approximating it 

with piecewise linear path. 

To find the shortest path on a polyhedral surface we 

will use the Theorem from the previous Section. 

However, the main problem in this case arises at 

once, e.g. a polyhedral surface has no continuous 

normal vector. Therefore, it is necessary to define the 

approximate normal vectors at vertices and edges.  

To resolve this problem we present a simple Phong 

normal interpolation (see work [16]) that is used in 

computer graphics to shade polygonal models and 

create an appearance of a smooth surface. The basic 

principle behind the method is as follows: The 

estimation of the surface normal of each vertex in a 

3D model is found by averaging the surface normal 

vectors of polygons, which meet at each vertex. Let 

us define some notation and formally describe Phong 

normal interpolation. 

 

Figure 4. The line between two points on a 

polyhedron surface 

Phong normal interpolation conceptually requires the 

following steps (see Fig.5): 

1. For each vertex, compute the vertex normal vector. 

This normal is often computed by averaging the 

adjacent face normal vectors, but the algorithm does 

not have any dependence on how the normal is 

computed. Suppose that equation of plane polygonal 

faces are given, and then a normal to their common 

vertex can be defined by sum value of the normal 

vector to all polygons joining at this vertex.  

 

Figure 5. Phong normal interpolation 

For example, in Fig.5 the approximate direction of 

the normal at point 1 is equal to 

.1615141312111 nnnnnna   (8) 

where 161514131211 ;;;;; nnnnnn  - normal vectors at 

vertex 1 of adjacent planes. 



2. Normalize this vector to obtain the unit-length 

normal as follows 

.
1

1
1

a

a
n     (9) 

3. Linearly interpolate the vertex normal for any 

point along the edges by the following equation 

.

)(

11

1112

nn

nnnn





k

kk

t

t
 (10) 

where 
kt1

 - dimensionless parameter of 12 edge (see 

Fig.5) at point k (see Fig.5). 

Another problem is to find the set of points belonging 

to the shortest path and to the polyhedral surface at 

the same time. We will find such points as the normal 
projection of the initial straight line between points 1 

and 2 to the polyhedral edges  according to the 

scheme described below. 

Let P be the polyhedron mentioned in Fig.4. Firstly, 

we define the straight line between points 1 and 2 

(see Fig.6) and apply dimensionless parameter t1 to it 

that runs from 0 at point 1 to 1.0 at point 2. 

Thereby the Cartesian co-ordinates of an arbitrary 

point on line 12 can be calculated by the following 

system 

;)(

;)(

;)(

111112

111112

111112

ZtZZtZZZ

YtYYtYYY

XtXXtXXX







(11) 

where 
212121 ;;;;; ZZYYXX  - the Cartesian co-

ordinates of points 1 and 2. 

 

 

Figure 6. Initial straight line between two points 

The next step is to sort out the set of all model edges 

with the aim to obtain the point on the edge, which 

corresponds to the point on the straight line. Let us 
consider an arbitrary edge 1’2’ of the polyhedron 

(see Fig.7). We apply dimensionless parameter t2 to it 

that also runs from 0 at point 1’ to 1.0 at point 2’. 

Assume that we have already obtained the desirable 

point k’ on the edge 1’2’ (see Fig.7). Further, we can 

define new co-ordinate axis ξ collinear to the normal 

vector n calculated by form (10) (see also Fig.7). 

Obviously, axis ξ intersects straight line 12 at point k 

due to the proved Theorem because point k’ is a 

normal projection of point k to edge 1’2’. Then we 

can calculate Cartesian co-ordinates of point k using 

the following expression 

.][
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where 
21;xx  - the Cartesian co-ordinates of points 

1’ and 2’; 

t2k - the t2 parameter value at point k’; 

ξ k – the value of ξ parameter at point k. 

If parameter t1 = t1k one can indicate the following 

obvious equality  

kk Xx  ,   (13) 

where vector kX  is the Cartesian co-ordinates of 

point k calculated by form (11). 

 

Figure 7. Normal projection of point k to the edge 

Equating the left-hand parts of expressions (11) and 

(12) we can obtain the following expression 

12111][ XXxnxn  kkkk tt  ,   (14) 

where ξk t1k and t2k are the values of respective 
parameters at points k and k’. 

Further, we can transform expn (14) to the form 

presented below that can be used for finding the triad 

of parameters ξk t1k t2k 

.112111 xXtXntxtn kkxkkkx  

(15) 



In practice, expn (15) has the form of a basic non-

linear system of algebraic equations (see expn (16)) 

and can be resolved by any appropriate method. 
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The solution of system (16) is used for calculating 

the Cartesian co-ordinates of point k’ that is the point 

of normal projection of point k onto the edge 1’2’ 
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  (17) 

4. “SLIDING LASER RAY” METHOD 

It stands to reason that the described approach is 

most efficient in application to depressive surfaces 

with weak curvature. The critical criterion of the 

approach applicability is the ratio of lines 12 and kk’ 

length is more or equal to 5 (e.g. d12 / dkk’ > 5). It 
means that near ending points 1 and 2 the shortest 

path nodes are found with the best precision. But 

nodes near the middle of the shortest path in some 

cases may not be found at all because of high 

curvature deflection. However, when designing real 

structures the problems in tracing the shortest path 

may occur very often. Therefore, the less the surface 

curvature is, the more precise the shortest path is. 

Table 1 

The illustration of “Sliding Laser Ray” method 

 

 

 

 

 

 

To avoid any problems related to large surface 

curvature a new method was developed in this work. 
It was called “Sliding Laser Ray” method due to its 

specifics. The main idea of this method consists in 

the mobility of one of the initial straight line ending 

point. The illustration of the method is presented in 

Table 1. Initially we should find the point on the 

polyhedral surface that is the nearest point to ending 
point 1 (the First point in Table 1) by the method 

described in the previous Section. Further, we shift 

the starting point of the straight line (point 1 in Table 

1) to the First point and find the Second point (see 

Table 1) that is nearest to the First point. Then we 

find the Third point that is nearest to the Second 

point and do the same each time while the nearest 

point exists. The process stops when the nearest point 

is 2 of the initial straight line. Finally, all the found 

points are joined by the piecewise polyline that is the 

desirable shortest path on the polyhedral surface. 

One can indicate that the process is very similar to 
laser ray sliding from point 2 to the point on the 

surface, tracing the shortest path on it. As it is shown 

in the following Sections, the “Sliding Laser Ray” 

method is very efficient and works very well for very 

complex polyhedral surfaces with large curvature. 



5. THE GENERAL ALGORITHM 

To sum up we can formulate the general algorithm of 

the shortest path finding on a polyhedral surface by 

taking the following steps: 

Step 1. Define two ending points 1 and 2 on a surface 

and join them by a straight line. 

Step 2. Define the set of polyhedron edges. 

Step 3. Select the first edge from the set of edges and 

resolve system (14) in the first approximation 

with 01  kk tn . If t1k or t2k do not satisfy, 

the inequalities 10 1  kt  or 10 2  kt  we 

repeat Step 3 for the next edge. 

Step 4. Add the values of kk t1 n  calculated 

with the previously defined parameters  ξk t1k and 
t2k to the right-hand side of the system (14) and 

resolve it once again. Do Step 4 as many times as 

necessary to make parameters ξk t1k and t2k 

invariable according to some predefined 

tolerance. Calculate by expn (15) the Cartesian 

co-ordinates of the found point and add it to the 

intermediate set of points. If the set of edges is 

not exhausted, repeat Step 3 for the next edge. 

Note: The current edge should be deleted from 

the set of edges. 

Step 5. Sort the intermediate set of the found points 

by bubble sorting and select the nearest one to the 

first straight line point. Add this point to the set of 

the shortest line points . Shift the first straight line 

point to this point and repeat the process from 

Step 3 if the set of edges is not empty. If the set of 

edges is empty then do Step 6. 

Step 6. Trace the shortest path by piecewise polyline . 

6. THE ALGORITHM APPLICATION 

We already know how to efficiently handle the 

problem of the shortest path finding. We will now 

see how the developed algorithm can be checked. In 

order to test this algorithm the simplest and the best 

known sample is used. The sample concerns the 

shortest path on a spherical surface. 

The shortest path on a spherical surface problem was 

well studied by Leonard Euler in the XVIII century. 

As it was written by him in [17] “On a spherical 

surface, on which it is not possible to draw straight 

lines, it has been established by the geometers that 

the shortest path between two given points is the 

[shorter arc of the] great circle joining them.” 

Therefore, we should compare the numerically 

developed great circle on a spherical surface with 

exact great circle to be convinced that our algorithm 

works well. In Fig. 8 the result of testing in the form 

of two arcs of the great circle namely  1A2 (red 

line) and  1A (blue line) is shown. The spherical 

semi-surface was created by the Stretched grid 

method described in work [18]. The red arc  1A2 is 

the exact arc of the great circle. The blue arc  1A is 

the line traced by the algorithm described in this 

work. Another thin red line crossing two previous 

lines plays a supplementary role. 

The test has shown that both arcs  1A2 and  1A 

between points 1 and A are quite identical. The 

relative residual here between lengths of two lines 

does not exceed 0.5%. 

 

Figure 8. The arc of great circle of sphere 

 

Figure 9. The shortest paths on cathenoid 

The next sample is of the shortest lines on the 

cathenoidal surface. The solution is given for the case 

with two rings of radii equal to 1 and the distance 

equal to 1 between them. The length of two arcs 
ABC and  BE (see Fig.9) were compared with 

their analytic values. The numerical length of arc 

ABC is 1.085081 (analytic value 1.087601) and 

arc BE 1.303446 (analytic value 1,332569). The 

tolerance between numerical and analytic arc lengths 

here is also acceptable. It is between 0.3% - 2.1%. 



The running CPU (AMD Phenom II N 930 Quad-

Core Processor) time was 1.1 sec to compute 40 
intermediate points for BE arc. It is acceptable in 

the majority of cases. 

Another test was made on the basis of the surface of 

real fabric structure. Two arbitrary shortest paths 
have been traced between points 1 – 2 and 3 – 4 

respectively (see Fig. 10). The test has shown that the 

developed algorithm allows tracing the shortest lines 

of very complex form. 

It should be noted that the shortest path between two 

points sometimes can be ambiguous. For example, in 
Fig. 11 we can see the shortest path between points B 

and E that has the so called ‘branch point’. The path 

has two equipollent branches in section between 
branch point and point E. However, we call one of 

them Real branch and the other one – Imaginary 

branch. 

 

Figure 10. The testing shortest paths on cone tent 

 

Figure 11. The shortest path with two branches 

When a branch point is detected, the algorithm finds 

the next two points of both branches , selects one of 
them and traces the whole Real branch of the 

shortest path. The Imaginary branch is ignored by 

the algorithm. The branch point detection is made by 

topology specifics of triangle mesh. If all three edges 

of a triangle have only two points that belong to the 

shortest path crossing this triangle then there is no 
branch point inside this triangle and vice versa. It is 

obvious that the choice of the Real branch in this 

case is largely random. 

Cutting out the cloth surface is the basic and most 

important stage of tensile structures design. It is a 

process of the cloth surface subdivision into separate 

patches and further unfolding them onto a plane to 

prepare a pattern. 

 

Figure 12. Cutting pattern of cone tent 

 

Figure 13. Cutting pattern of twin-peak tent 

The designer traces the mark and cutting lines 

(prospective seams) on the modeled 3D tent surface. 

There are various algorithms of tracing lines on the 

cloth surface including the algorithm of tracing the 

shortest line between two arbitrary points described 

in this work. 

As an example, in Fig. 12, the cutting pattern of a 

typical cone tent made by the set of shortest lines is 

presented and in Fig. 13, the cutting pattern of the so-

called twin-peak tent is shown. 

 

Figure 14. The seams on the cone tent 



In Fig. 14 one can see the seams on the surface of the 

cone tent traced by the algorithm described in this 

paper. The outer view of the cone tent is represented 

in Fig. 15. 

 

Figure 15. The outer view of the cone tent 

7. CONCLUSION 

In this paper the following contributions  have been 

made:  

1. The concept of straight line normal projection on 

a surface has been introduced and the theorem 

concerning the shortest distance between two 

points on a surface has been proved. 

2. The algorithm of the point projection onto edges 

of triangular meshes where the vertices are 

equipped with a normal has been proposed. 

3. The algorithm has been introduced for computing 

the shortest path along a manifold polyhedral 

surface based on a triangular mesh. 

4. The “Sliding Laser Ray” method has been also 

proposed to avoid any problems concerning large 

surface curvature. 

5. It has been shown that using the described 

approach to cut out architectural membrane 

structures automatically, the resulting program 

tool is very convenient, powerful and flexible. It 

is also applicable to other membrane design fields 

as diverse as clothing and sails.  

The flexible line generation capability of geodesic 

seam lines is extremely comprehensive, and capable 

of dealing with problems of much greater complexity 

than conventional architectural membranes. It should 

be accentuated that the geodesic lines generation in 

the form of shortest paths on polyhedral surfaces is 

also in great demand in shipbuilding.  
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