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1. Introduction

The aim of this paper is twofold. On the one hand, we introduce the notion of a braided algebra
and further develop analysis on the Reflection Equation (RE) algebra, which is an example of such an
algebra. On the other hand, we exhibit certain applications of the RE algebras to U (u(2))-covariant
Noncommutative (NC) Geometry.

By braided algebras we mean a subclass of unital algebras related to braidings, whereas the term
braiding stands for an invertible operator R : V ⊗2 → V ⊗2 (V is a given finite dimensional linear
space) satisfying the so-called Quantum Yang–Baxter equation

R12 R23 R12 = R23 R12 R23, R12 = R ⊗ I, R23 = I ⊗ R.

Hereafter, I ∈ End(V ) is the identity operator and the lower indices indicate the factors of the tensor
product on which a given operator acts.

Below, we are dealing with braidings satisfying an additional condition

(R − qI)
(

R + q−1 I
) = 0, q ∈K,

where K is the ground field (C or R) and the parameter q is assumed to be generic. Such braid-
ings are called Hecke symmetries. For example, Hecke symmetries come from the quantum groups
Uq(sl(m)). These Hecke symmetries (and other objects related to Uq(sl(m))) will be referred to as
standard ones. Note, that quantum groups of the B , C and D series provide braidings of the Birman–
Murakami–Wenzl type.

Our definition of braided algebras is given in terms of objects and morphisms of the so-called
Schur–Weyl category SW(V ) generated by a given linear space V equipped with a skew-invertible
Hecke symmetry R : V ⊗2 → V ⊗2 (see Section 2). Typical examples of braided algebras are the R-sym-
metric, and the R-skew-symmetric algebras of the space V and the Reflection Equation (RE) algebra
associated with a given Hecke symmetry R . By contrast, the well-known RTT algebra (which in the
standard case is the restricted dual Hopf algebra to Uq(sl(m))) is not a braided algebra.

All aforementioned braided algebras have a good deformation property. For quadratic algebras this
means that for a generic q the dimensions of their homogeneous components equal those for q = 1.
As for the RE algebra, it has another important property: it admits a change of generators convert-
ing it into a quadratic-linear algebra (modified RE algebra) similar to an enveloping algebra. More
precisely, in the standard case the modified RE algebra tends to the enveloping algebra U (gl(m)) as
q → 1. Also, if a Hecke symmetry R is a deformation of the super-flip on the super-space Vm,n , the
corresponding modified RE algebra tends to the super-algebra U (gl(m|n)) as q → 1. Besides, the RE
algebra corresponding to a proper Hecke symmetry has a representation category looking like that of
the algebra U (gl(m)) (or U (gl(m|n))) and turns into the latter one as q → 1 (see [12]). Due to this
fact, generators of the RE algebra are good candidates for the role of vector fields. Such vector fields
were introduced in the framework of quantum differential calculus on a pseudogroup (in fact, on the
RTT algebra or on its compact version) in the series of papers [19,17,5].

In [14] we suggested a more general calculus in which the role of the function algebra Fun(GL(m))

is played by a quantum matrix algebra while the role of vector fields is always played by a (modified)
RE algebra. The most interesting particular case arises when the role of the algebra Fun(GL(m)) is
taken by another copy of the RE algebra. In this case we get a braided analog of the Heisenberg
double1 constructed from two copies of the RE algebra. In the paper [15] we used such a “braided
Heisenberg double” in order to define braided analogs of partial derivatives on the RE algebra playing
the role of Fun(GL(m)). Besides, by passing to the limit q → 1 in the standard case, we constructed
the partial derivatives on the NC algebras U (gl(m)).

1 The conventional Heisenberg double consists of two Hopf algebras dual to each other.
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These derivatives differ from the usual ones, defined on the commutative algebra Sym(gl(m)), by
a modification of the Leibniz rule. Below, we exhibit a form of this rule well adapted to algebras
U (gl(m)) and their generalized analogs associated with any skew-invertible involutive symmetry2 R .
Our construction includes the differential calculus (with the standard Leibniz rule) on the super-
algebras U (gl(m|n)). Thus, by making use of braided algebras we get some elements of NC Geometry
on algebras having no “braided ingredient” in their construction, the latter algebras are covariant with
respect to the usual groups (or their super-analogs).

In the particular case m = 2, n = 0 we get a version of the differential calculus on the algebra
U (u(2)).3 An amazing fact is that partial derivatives defined on the algebra U (u(2)h̄) commute with
each other. Consequently, any classical differential operator with constant coefficients can be easily
re-defined on this algebra. Thus, analogs of the Klein–Gordon, Maxwell and Dirac operators on the
algebra U (u(2)h̄)4 have forms just the same as the classical ones but with a new meaning of the
partial derivatives.

The situation is more complicated for operators with coefficients from Sym(u(2)). In order to
transfer such an operator to the algebra U (u(2)h̄) we have to use a “quantizing map” Sym(u(2)) →
U (u(2)h̄). Such a map enables us to quantize a differential operator with coefficients from Sym(u(2))

to an operator with coefficients from U (u(2)h̄) and acting on this algebra.
Nevertheless, many interesting (and physically meaningful) operators have coefficients belonging

to a larger algebra. As an example of such an algebra A we consider the product K(t, r) ⊗ Sym(u(2))

where K(t, r) is the algebra of rational functions in the time t and the radius r = √
x2 + y2 + z2

(hereafter x, y, z are spatial variables). In particular, the Laplace–Beltrami operator corresponding to
the Schwarzschild metric is of this form. We introduce a quantum counterpart Ah̄ of the algebra A
by defining a quantum analog r̂ of the radius r. It should be emphasized that the “quantum radius” r̂
is naturally extracted from the Cayley–Hamilton identity valid for the generating matrix of the algebra
U (u(2)h̄). (In a more general context, such an identity is valid for the generating matrices of the RE
algebras, see [10,11,13].) Then, we extend the quantizing map to a map α :A→Ah̄ .

Let D be a differential operator with coefficients from A. By applying the quantizing map α to its
coefficients we get the differential operator denoted α(D). Its coefficients belong to the algebra Ah̄
and the derivatives ∂t , . . . , ∂z appearing in this operator are assumed to act on the algebra U (u(2)h̄).
We show how to extend some operators of this form to the algebra Ah̄: in particular we do this for
the Laplace–Beltrami operator, corresponding to the Schwarzschild metric.

Note that the quantized operators we are dealing with, being expressed via the commutative vari-
ables t and r̂, become difference operators. Thus, in contrast with usual differential operators, we can
consider them on a lattice, i.e. on a discrete space–time. In a sense, its discreteness is a consequence
of its noncommutativity. Another “physical” observation is that the space components of the algebra
U (u(2)h̄) do not exist without the time. More precisely, it seems to be plausible that a Weyl algebra
similar to that defined on the algebra U (u(2)h̄) does not exist on the algebra U (su(2)h̄).

The paper is organized as follows. In the next section we introduce the notion of a braided algebra
and consider some basic examples. In particular, we go back to the question of the possible form
of a Hecke symmetry and prove the mountain property for the numerator and denominator of the
Poincaré–Hilbert series corresponding to the (skew-)symmetric algebra defined via a skew-invertible
Hecke symmetry. In Section 3 we introduce Weyl algebras defined on RE algebras and consider their
q → 1 limits. Here, our main objective is to give a version of the Leibniz rule useful for further
applications. In Section 4 we introduce Laplace and other rotationally invariant operators acting on
the RE algebras in question. We treat the case of the algebra U (u(2)h̄) (which is a limit of a standard
modified RE algebra) in detail. On this basis, in Section 5 we construct a NC analog of a model
describing the dynamics of a scalar massless field in a space equipped with a Schwarzschild-type
metric. We consider this example as the starting point for a study of higher dimensional (matrix)

2 We say that a braiding R is an involutive symmetry if R2 = I .
3 In fact, we deal with the algebra U (u(2)h̄) where the notation gh̄ means that a deformation multiplier h̄ is introduced in

the Lie bracket of a given Lie algebra g.
4 This algebra can be seen as a NC deformation of the Minkowski space algebra, though it does not admit any reasonable

analog of the Lorentz subgroup.
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models. Also note, that our approach is valid for the RE algebras (modified or not) but computations
become much more complicated.

2. Braided quadratic algebras: basic examples

Let R = R(q) : V ⊗2 → V ⊗2 be a Hecke symmetry analytically depending on the parameter q in
a neighborhood V (assumed to be connected) of 1. Note that the symmetry R(1) is involutive. Let
us associate with this Hecke symmetry two quotient algebras of the free tensor algebra T (V ) of the
space V : R-symmetric SymR(V ) and R-skew-symmetric algebra

∧
R(V ) defined as follows

SymR(V ) = T (V )
/〈

Im(qI − R)
〉
,

∧
R
(V ) = T (V )

/〈
Im

(
q−1 I + R

)〉
. (2.1)

Hereafter, the symbol 〈X〉 stands for the two-sided ideal generated by a subset X .
Though the complete classification of Hecke symmetries is an open problem, some information

concerning their possible forms can be drawn from the Poincaré–Hilbert (PH) series of the algebras
introduced above

P+(t) =
∑

k

dim Sym(k)
R (V )tk, P−(t) =

∑
k

dim
∧(k)

R
(V )tk,

where A(k) stands for the degree k homogeneous component of a graded algebra A.
Constructed in the paper [9], were two series of projectors P (k)

± which are q-analogs of the usual
symmetrization and skew-symmetrization operators:

P (k)
+ : V ⊗k → Sym(k)

R (V ), P (k)
− : V ⊗k →

∧(k)

R
(V ), k � 2.

Namely, if the parameter q is subject to the condition

nq = qn − q−n

q − q−1
�= 0, n ∈N (2.2)

then there are isomorphisms of vector spaces

Sym(k)
R (V ) ∼= Im P (k)

+ ,
∧(k)

R
(V ) ∼= Im P (k)

− .

Since dim Sym(k)
R (V ) and dim

∧(k)
R (V ) are lower semi-continuous functions in q while the func-

tions dim Im P (k)
± are upper semi-continuous, we conclude that these functions are constant on the

connected neighborhood V with the possible exception of the values of q violating the condition (2.2).
Moreover, as was shown in [9] for a generic q (i.e. for all q excepting a countable set not including 1)
the relation

P+(t)P−(−t) = 1

is valid. Hereafter, we consider the PH series P±(t) at generic values of the parameter q.
Let us recall, that a braiding R is called skew-invertible if there exists an endomorphism Ψ :

V ⊗2 → V ⊗2 such that

Tr(2) R12Ψ23 = P13 = Tr(2) Ψ12 R23. (2.3)
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Hereafter, P stands for the usual flip. Note that if a Hecke symmetry R(q) is skew-invertible for a
value of the parameter q, it is skew-invertible for all generic q.

A skew-invertible braiding R : V ⊗2 → V ⊗2 can be extended to a braiding

R : (V ⊕ V ∗)⊗2 → (
V ⊕ V ∗)⊗2

, (2.4)

where we keep for the extended braiding the same notation R . In the above formula the space V ∗
is dual to V , i.e. the spaces V and V ∗ are equipped with a nondegenerated R-invariant pairing 〈 , 〉 :
V ⊗ V ∗ → K. The pairing is R-invariant if the following property holds true (below the space W
stands for either V or V ∗)

R〈 , 〉23 = 〈 , 〉12 R23 R12 on W ⊗ V ⊗ V ∗,

R〈 , 〉12 = 〈 , 〉23 R12 R23 on V ⊗ V ∗ ⊗ W , (2.5)

where we assume that the ground field K commutes with V and V ∗ in the usual way:

R(w ⊗ k) = k ⊗ w, R(k ⊗ w) = w ⊗ k, ∀k ∈K, w ∈ W .

The prolongation (2.4) exists and is unique. In order to describe it explicitly, we fix dual bases {xi}
and {x j} in the spaces V and V ∗ respectively:

〈
xi, x j 〉 = δ

j
i .

Remark 1. Note that in the space V ∗ one can define right and left dual bases to a given basis of V .
We are dealing with the right dual basis.

Let {xi ⊗ x j} be the corresponding basis of the space V ⊗2. In this basis the skew-invertible Hecke
symmetry R : V ⊗2 → V ⊗2 is represented by a (dim V )2 × (dim V )2 matrix ‖Rkl

i j‖

R(xi ⊗ x j) = xk ⊗ xl R
kl
i j .

Hereafter, summation over repeated indices is always assumed.
Then the extension (2.4) can be represented by the following matrices on the components V ⊗2,

(V ∗)⊗2, V ⊗ V ∗ and V ∗ ⊗ V of the tensor square (V ⊕ V ∗)⊗2

R(xi ⊗ x j) = xk ⊗ xl R
kl
i j , R

(
xi ⊗ x j) = xk ⊗ xl R ji

lk ,

R
(
xi ⊗ x j) = xk ⊗ xl

(
R−1)l j

ki, R
(
x j ⊗ xi

) = xk ⊗ xlΨ
kj

li . (2.6)

It is easy to show that the embedding K → V ∗ ⊗ V generated by the correspondence

1 →
∑

i

xi ⊗ xi (2.7)

is R-invariant.
Let us introduce two endomorphisms B and C of the space V via the morphism Ψ (2.3) as B :=

Tr(1) Ψ , C := Tr(2) Ψ or, in coordinate form

B j
i = Ψ

kj
, C j

i = Ψ
jk
. (2.8)
ki ik
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Note that if R is a super-flip, the operators B and C are equal to each other and coincide with the
parity operator.

Proposition 2. (See [16,2,4].) The HP series P−(t) (and hence P+(t)) is a rational function:

P−(t) = N(t)

D(t)
= 1 + a1t + · · · + amtm

1 − b1t + · · · + (−1)nbntn
=

∏m
i=1(1 + xit)∏n
j=1(1 − y jt)

, (2.9)

where ai and bi are positive integers, the polynomials N(t) and D(t) are coprime, and all the numbers xi and
yi are real positive.

If, in addition, the Hecke symmetry is skew-invertible, then the polynomials N(t) and D(−t) are reciprocal.

Recall, that a polynomial p(t) = c0 + c1t +· · ·+ cntn is called reciprocal if p(t) = tn p(t−1) or, equiv-
alently, ci = cn−i , 0 � i � n. Note, that if a real number z �= 1 is a root of a reciprocal polynomial, the
number z−1 is a root as well with the same multiplicity. This entails that the polynomials N(t) and
D(−t) factorize into a product of terms of the form

(1 + t) and (1 + zt)
(
1 + z−1t

) = 1 + ct + t2 where c � 2. (2.10)

For such a polynomial the following claim is valid.

Proposition 3. Any polynomial which is a product of terms listed in (2.10) has the “mountain property”: its
coefficients strictly increase up to the middle (and, consequently, strictly decrease after it).

The proof of the above proposition can be easily obtained by induction on the number of the
factors in such a polynomial.

Proposition 3 provides new information on the possible form of a Hecke symmetry. In particular,
if a skew-invertible Hecke symmetry is even (see Definition 4 below) then its HP series P−(t) is a
polynomial possessing the mountain property.

However, we do not know whether the coefficients c in the multipliers (2.10) entering the factor-
ized form of N(t) and D(−t) must be integer: we do not know, for example, whether there exists a
Hecke symmetry such that its HP series P−(t) is equal to

1 + 10t + 12t2 + 10t3 + t4 = (
1 + (5 + √

15)t + t2)(1 + (5 − √
15)t + t2).

Nevertheless, if the monic polynomials N(t) and D(−t) are products of factors (2.10) with integer
middle coefficients c, then there exists a Hecke symmetry R(q) for which P−(t) = N(t)

D(t) . It can be
constructed by methods of [9].

Definition 4. Let R : V ⊗2 → V ⊗2 be a skew-invertible Hecke symmetry. Let m (respectively n) be
the degree of the numerator (respectively denominator) of the corresponding PH series P−(t). The
couple (m|n) is called the bi-rank of the space V or of the Hecke symmetry R . If the bi-rank is (m|0)

(respectively (0|n)) the corresponding Hecke symmetry is called even (respectively odd).

This notion is a generalization of the super-dimension for super-spaces and equals the latter pro-
vided R is a super-flip.

Now, consider the monoidal quasitensor rigid category introduced in the paper [12]. This category
is generated by the spaces V and V ∗ . Following [12] we call it the Schur–Weyl category and denote
by the symbol SW(V ). We briefly describe the category SW(V ) with minor modifications comparing
with [12].

Let

λ = (λ1, λ2, . . . , λk), λ1 � λ2 � · · ·� λk,
∑

λi = k
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be a partition of an integer k � 2. There is known a Schur functor V → Vλ which assigns a space
Vλ ⊂ V ⊗k to the basic space V . In [12] “braided analogs” of the spaces Vλ were introduced as images
of some projectors Pλ : V ⊗k → Vλ constructed via a given Hecke symmetry R . In general, there is
a family of equivalent projectors (and, consequently, isomorphic spaces Vλ) which differ from each
other by embeddings into the space V ⊗k . By Vλ we mean any of these spaces. In a similar manner
the subspaces V ∗

μ ⊂ (V ∗)⊗k can be introduced.
By definition, the class Ob(SW(V )) of objects of the category SW(V ) includes all spaces Vλ , V ∗

μ for

all possible partitions λ and μ as well as all their tensor products and direct sums of these products.5

Now, we want to describe the family Mor(SW(V )) of morphisms of this category. For this purpose,
we note that any object of the category can be given a comodule structure over the so-called RTT
algebra. This is an associative unital algebra generated by the elements t j

i , 1 � i, j � dim V , which are
subject to the quadratic relations

RT1T2 = T1T2 R, T1 = T ⊗ I, T2 = I ⊗ T , T = ∥∥t j
i

∥∥.

For arbitrary R this is a bialgebra, but for the standard R the RTT algebra is a Hopf algebra6 restricted
dual to the quantum universal enveloping algebra Uq(gl(m)) m = dim V (see [6] for detail).

In general, if R is an even Hecke symmetry, this bialgebra structure can be also extended up to
the Hopf one (see [12] for detail). Then the comodule structure on the basis space V , on its dual V ∗
and on V ⊗ V ∗ ∼= End(V ) reads

xi → tk
i ⊗ xk, x j → s j

k ⊗ xk, xi x
j → tk

i s j
p ⊗ xkxp, (2.11)

where s j
k are entries of the “inverse matrix” S(T ). Here S is the antipode. The comodule structure on

an arbitrary U ∈ Ob(SW(V )) is now easily defined since the above coaction can be naturally extended
up to any tensor products of V and V ∗ and it commutes with the projectors Pλ .

By definition, a linear map β : U1 → U2, U1, U2 ∈ Ob(SW(V )) belongs to Mor(SW(V )) iff it com-
mutes with the coaction of the RTT algebra on the spaces U1 and U2. In the standard case the RTT
coaction can be changed for the action of the quantum group Uq(gl(m)). So, in this case a morphism
is, by definition, a linear map commuting with the action of the quantum group.

For instance, it turns out that the initial skew-invertible braiding R can be naturally extended up
to a family of linear maps

RU1,U2 : U1 ⊗ U2 → U2 ⊗ U1, ∀U1, U2 ∈ Ob
(
SW(V )

)
.

All these maps commute with the RTT coaction and form the family of permutation morphisms of the
Schur–Weyl category.

There exists another way of introducing the set Mor(SW(V )) (see [12]) but that given above is
technically more useful.

Definition 5. Algebras of the form

T (U )
/〈

β(W )
〉
, U , W ∈ Ob

(
SW(V )

)
,

where W is a subspace of the free tensor algebra T (U ) and β : W → W is an element of Mor(SW(V ))

are called braided. The relations of the form β(W ) = 0 are called admissible.

5 Note that for any given Hecke symmetry R with a bi-rank (m|n) some of the projectors Pλ are zero operators (and, conse-
quently, spaces Vλ and V ∗

λ vanish). If the Hecke symmetry R is even or odd, the category SW(V ) can be introduced with the
use of the only space V (see [9] for detail).

6 To introduce the Hopf structure one needs an antipodal map in the bialgebra. For this purpose, the RTT bialgebra should be
extended by the element (detR T )−1, where detR T is the so-called quantum determinant.
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It is clear that the algebra SymR(V ) (respectively
∧

R(V )) is braided. To show this we set U = V ,
W = V ⊗2 and β = qI − R (respectively β = q−1 I + R).

Remark 6. If U ∈ Ob(SW(V )) is an object, then the direct sum U ⊕ U is an object as well. In order
to distinguish these two copies of the object U we denote one of them by U ′ . Let W ⊂ T (U ⊕ U ′)
be a subspace of the form (U ⊗ U ) ⊕ (U ′ ⊗ U ′) ⊕ (U ⊗ U ′ ⊕ U ′ ⊗ U ). Let β be a map such that its
restrictions to each of the three above components are morphisms. Then it is a morphism and the
corresponding braided algebra is defined by three sets of relations:

β(U ⊗ U ) = 0, β
(
U ′ ⊗ U ′) = 0, β

(
U ⊗ U ′ ⊕ U ′ ⊗ U

) = 0.

Below, we consider such algebras constructed from two copies of an object and a morphism β of the
indicated form. The third set of relations plays the role of permutation relations between the algebras
T (U )/〈β(U ⊗ U )〉 and T (U ′)/〈β(U ′ ⊗ U ′)〉.

Now, we consider the object End(V ) ∼= V ⊗ V ∗ ∈ Ob(SW(V )) and exhibit some admissible relations
on the object End(V )⊗2. Below, L = ‖l j

i ‖ is a matrix and each of the entries l j
i is identified with the

element xi ⊗ x j ∈ V ⊗ V ∗ .

Proposition 7. The relations

Rε1 L1 Rε2 L1 − L1 Rε3 L1 Rε4 = 0, (2.12)

where R is a Hecke symmetry and εi ∈ {1,−1}, i = 1,2,3,4 are admissible.

Proof. In virtue of the identification l j
i = xi ⊗ x j ∈ V ⊗ V ∗ , the coaction (2.11) leads to the following

transformation for elements of the matrix L: l j
i → tk

i s j
p ⊗ lp

k . This coaction can be symbolically written
in the matrix form

L → T L S, (2.13)

where we assume that the entries of the matrix L commute with those of S and T .
According to Definition 5 we have to verify, that the linear span, generated by the left hand side7

of (2.12) is an invariant subcomodule in End(V )⊗2 with respect to the coaction (2.13). This can easily
be done with the use of the following direct consequence of the RTT relations

S1 RεT1 = T2 Rε S2, ε ∈ {1,−1}.

Note that the RTT-type relations on the elements l j
i

R12L1L2 − L1L2 R12 = 0

are not admissible since the corresponding linear span is not invariant comodule with respect to the
coaction (2.13). So, the RTT algebra is not braided (according to the definition above). �

7 With the use of endomorphism Ψ (see definition (2.3)) or its analog ΨR−1 for the inverse matrix R−1 (see (4.1) below) we
can write this linear span as the image of the map β = I − γ , where γ : End(V )⊗2 → End(V )⊗2 reads

γ (L1 L2) = Tr(0)

(
R−ε1

10 L0 Rε3
10 L0 Rε4

10(ΨRε2 )02
)

P12.
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Definition 8. The algebra L(R) generated by matrix element of the matrix L = ‖l j
i ‖ subject to a

particular case of the relations (2.12)

RL1 RL1 − L1 RL1 R = 0 (2.14)

is called the Reflection Equation (RE) algebra. The matrix L is called the generating matrix of the
algebra L(R).

Remark 9. The relation (2.12) with ε1 = ε4 and ε2 = ε3 is equivalent to (2.14) up to a possible change
of R for R−1. Note that R−1 is a braiding. Besides, R−1 is a Hecke symmetry if and only if R is also.

It was discovered by S. Majid that any RE algebra has a braided bialgebra structure (see [18]). This
structure is defined via a braiding REnd(V ) : End(V )⊗2 → End(V )⊗2 extended to the whole RE algebra.
Note that in the standard case this braiding is the image of the Uq(sl(m)) universal R-matrix in the
space End(V )⊗2.

The relation REnd(V )(L ⊗ L) − L ⊗ L = 0 is admissible since it can be rewritten as a particular case
of (2.12)

RL1 R−1L1 = L1 RL1 R−1.

However, in contrast with the RE algebra, the algebra defined by this system of relations does not in
general possess the good deformation property in the sense of [10].

In this connection we would like to mention the paper [1] where another way was suggested of
defining analogs of symmetric and skew-symmetric algebras of irreducible modules over the quantum
groups. Note that except for the case m = 2 the “R-symmetric algebra” of the adjoint Uq(sl(m))-
module as defined in [1] does not possesses the good deformation property.

By completing this section, observe that the term “braided” has usually a categorical meaning. We
employ this term for algebras constructed via objects and morphisms of the braided category SW(V ).
However, we are mainly interested in braided algebras which have good deformation property. This
is one of motivation of our strong interest in the RE algebras related to Hecke symmetries. It can be
shown that the RE algebras corresponding to braiding of the Birman–Murakami–Wenzl type do not
have this nice property.

3. Braided Weyl algebras and their q → 1 limits

Let R = R(q) be a skew-invertible Hecke symmetry and L(R) the corresponding RE algebra defined
by relations (2.14) on their generators. We perform the following linear change of the generators

L = h̄ I − (
q − q−1)L̃, L̃ = ∥∥l̃ j

i

∥∥. (3.1)

Then the system (2.14) being rewritten via the matrix L̃ becomes

RL̃1 RL̃1 − L̃1 RL̃1 R = h̄(RL̃1 − L̃1 R). (3.2)

We call the algebra defined by generators l̂ j
i subject to (3.2) the modified Reflection Equation algebra.

In fact, it is nothing but another form of the RE algebra.
Now, passing to the limit q → 1 we get just the system (3.2) but with an involutive braiding

R(1). Assuming R(1) to be the usual flip P we get the defining relations of the algebra U (gl(m)h̄).
If a Hecke symmetry R is a deformation of the super-flip acting on the space V ⊗2

m,n where Vm,n =
V 0 ⊕ V 1, dim V 0 = m, V 1 = n, we get the enveloping algebra U (gl(m|n)h̄) as q → 1. Thus, though the
algebras Sym(gl(m|n)) and U (gl(m|n)h̄) are not isomorphic to each other, their q-deformations (2.14)
and (3.2) are. Otherwise stated, though the algebra U (gl(m|n)h̄) is a non-trivial deformation of that
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Sym(gl(m|n)) for their q-analogs (2.14) and (3.2) it is not so: the latter is a trivial deformation of the
former one.

In general, as q → 1 we get an algebra which can be considered as the enveloping algebra of a
generalized Lie algebra. Such algebras have been introduced by one of the authors in [8] (also see [9]).

Now, we consider an associative unital algebra W(N ) generated by entries n j
i and d j

i of two

dim V × dim V matrices N = ‖n j
i ‖ and D = ‖d j

i ‖ satisfying the following relations

RN1 RN1 − N1 RN1 R = h̄(RN1 − N1 R),

R−1 D1 R−1 D1 = D1 R−1 D1 R−1,

D1 RN1 R − RN1 R−1 D1 = R + h̄D1 R. (3.3)

We call the algebra W(N ) the braided Weyl algebra. Our terminology is motivated by the fact
that in the case q → 1 and h̄ → 0 (provided R is the standard Hecke symmetry) the algebra W(N )

is isomorphic to the usual Weyl algebra generated by commutative indeterminates n j
i and the partial

derivatives ∂/∂n j
i (see (3.12)–(3.14)). Note that the algebra W(N ) was introduced in [15]. It is just the

braided Heisenberg double mentioned in the Introduction. By definition, the term “braided Heisenberg
double” stands for two copies of the RE algebras, modified or not, equipped with an admissible (in
the sense of Definition 5) permutation relations.

The algebra W(N ) possesses two subalgebras. The modified RE subalgebra N , generated by the
matrix N = ‖n j

i ‖, plays the role of a function algebra. The other subalgebra D, generated by the

matrix D = ‖d j
i ‖, is an RE algebra corresponding to the Hecke symmetry R−1. The matrix elements

d j
i are braided analogs of the partial derivatives on the algebra N . The third set of relations in the

system (3.3) (the permutation relations) plays the role of the Leibniz rule.
In order to show that the algebra defined by (3.3) is a braided algebra indeed, we identify entries

of the matrices N and D with elements of End(V ) as above. Consequently, the coaction of the RTT
algebra is given by the same formula (2.13) on the both matrices. We leave to the reader checking
that the relations (3.3) are admissible (see Remark 6).

We define the action of the generators d j
i on the unit 1N of the subalgebra N by setting8 d j

i �
1N = 0. Now, the result of action d j

i � n ≡ d j
i � (n · 1N ) on an arbitrary element n ∈ N can be found

by permuting d j
i with n and then evaluating it on the unit element 1N according to the above rule.

Equivalently, the latter operation can be presented in terms of the counit map ε : D → K defined
by the following rule

ε(1D) = 1, ε
(
d j

i

) = 0, ε(d1d2) = ε(d1)ε(d2), d1,d2 ∈ D. (3.4)

Checking that the operation � is well defined on the algebra N (i.e. the set of defining relations of
the algebra N is invariant with respect to this action) follows from the results of [14].

Proposition 10. The action of generators d j
i on the subalgebra N completed with the natural action of the

unit 1D � n = n can be extended up to the action of the whole subalgebra D on N : D ⊗N �→N . This action
gives a representation of the algebra D in N .

This proposition also follows from [14]. We want only to note that a proof of this fact consists
in a checking that the system of defining relations of the algebra D is preserved by the permutation
relations from the third line of (3.3).

8 Hereafter, we denote the action of an operator A on an element x in two ways: either A � x or A(x) depending on our
convenience.
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Let now R be an involutive symmetry. Using the permutation relations among D and N we derive
a form of the Leibniz rule convenient for our subsequent considerations.

We introduce the following chains of R-matrices:

Rkp = R p−1 R p−2 . . . Rk+1 Rk Rk+1 . . . R p−2 R p−1, 1 � k < p.

The Yang–Baxter equation for R allows us to rewrite the above definition in an equivalent form

Rkp = Rk Rk+1 . . . R p−2 R p−1 R p−2 . . . Rk+1 Rk, 1 � k < p.

Besides, we assume that Rkp =Rpk by definition.
For any i, j, k we have the following “index exchange rules”, well known for the usual flip opera-

tors:

Ri jRik = R jkRi j = RikRkj.

For any braiding R : V ⊗2 → V ⊗2 and any dim V × dim V matrix N we introduce a convenient
notation:

Nk = Rk−1 . . . R1N1 R−1
1 . . . R−1

k−1. (3.5)

Then, the following relations are valid

Rpk Nk = NpRpk, k > p,

Rkp Nk = NpRkp, k < p,

Rpk Ns = NsRpk, ∀s /∈ {p,k}. (3.6)

For an involutive symmetry R the relation (3.5) can be presented as

Nk = Rk−1 . . . R1N1 R1 . . . Rk−1.

Now, we rewrite the permutation relations of D and N (the third line in (3.3)) in the form

D1N2 = N2 D1 + h̄D1 R1 + R1. (3.7)

It is convenient to modify the generating matrix D as follows

D̃ = h̄−1Id + D. (3.8)

Then, the permutation rules (3.7) take the form

D̃1N2 = N2 D̃1 + h̄D̃1R12.

The above relation can be easily generalized to

D̃1Nk = Nk D̃1 + h̄ D̃1R1k, ∀k � 2. (3.9)

The action of D̃ on any element of N can be obtained from the same scheme as above with the only
modification: ε(D̃) = h̄−1.
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Now, with the use of (3.9) we get the commutation of D̃ with some low degree polynomials in N

D̃1N2N3 = N2N3 D̃1 + h̄(N2 D̃1R13 + N3 D̃1R12) + h̄2 D̃1R12R23,

D̃1N2N3N4 = N2N3N4 D̃1 + h̄(N2N3 D̃1R14 + N2N4 D̃1R13 + N3N4 D̃1R12)

+ h̄2(N2 D̃1R13R34 + N3 D̃1R12R24 + N4 D̃1R12R23) + h̄3 D̃1R12R23R34.

These relations immediately give us the action of the matrix D on the same polynomials:

D1 � N2 = R12,

D1 � N2N3 = N2R13 + N3R12 + h̄R12R23,

D1 � N2N3N4 = N2N3R14 + N2N4R13 + N3N4R12

+ h̄(N2R13R34 + N3R12R24 + N4R12R23) + h̄2R12R23R34.

To write down the general result we introduce some more notation. First, for any set of integers
2 � k1 < k2 < · · · < ks � p we denote

R(1k1...ks) = R1k1Rk1k2 . . .Rks−1ks ,

an analog of the cycle permutation (1k1k2 . . .ks) in the permutation group S p . Second, for the same
set of integers we denote

(N2 . . . Np)(k1...ks) = N2 . . . Nk1−1Nk1+1 . . . Nks−1Nks+1 . . . Np,

that is the product N2 . . . N p where the multipliers Nk1
, Nk2

, . . . , Nks
are omitted.

Then, the following result can be proved by induction in p � 2

D̃1N2 . . . Np = N2 . . . Np D̃1 +
p−1∑
s=1

h̄s
∑

2�k1<···<ks�p

(N2 . . . Np)(k1...ks) D̃1R(1k1...ks). (3.10)

Finally, we get the following formula for the action of the matrix D:

D1 � N2 . . . Np =
p−1∑
s=1

h̄s−1
∑

2�k1<···<ks�p

(N2 . . . Np)(k1...ks)R(1k1...ks). (3.11)

Now, we consider the particular case R = P , where P is the usual flip. Then, for the first order
monomials formula (3.11) gives

D1 � N2 = P12 or d j
i � nl

k = P jl
ik = δl

iδ
j

k . (3.12)

First, note that if h̄ = 0 (and, therefore, N ∼= Sym(gl(m))) formula (3.11) assumes that the action
(3.12) is extended to an arbitrary order monomial via the classical Leibniz rule. This allows us to
identify d j

i = ∂/∂ni
j .

Second, for h̄ �= 0 we consider the GL(m)-covariant product

n j
i ◦ nl

k = h̄δ
jnl

i, (3.13)
k
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well defined in the algebra gl(m)h̄ . The Lie bracket in gl(m)h̄ is related to this product in the usual
way

[
n j

i ,nl
k

] = n j
i ◦ nl

k − nl
k ◦ n j

i . (3.14)

Now, in the case R = P formula (3.11) can be obtained by a sequence of several steps. At the first

step we apply an element d j
i to a given monomial n j1

i1
n j2

i2
. . .n

jp

ip
in accordance with the rule (3.12)

and the classical Leibniz rule. This gives us the sum of p − 1 terms corresponding to the value s = 1
of the summation index in (3.11).

At the second step we choose an arbitrary pair of elements n js
is

and n jt
it

, 1 � s < t � p, in the initial
monomial and calculate their product (3.13) preserving the order of the elements. After that we apply
d j

i to the result of this product:

d j
i � (

n js
is

◦ n jt
it

) = h̄δ
jt
i δ

js
it

δ
j
is

or D1 � (Ns ◦ Nt) = h̄P1s P st .

This gives us (p − 1)(p − 2)/2 terms proportional to the first order of the parameter h̄.
In order to get the h̄2-order terms we apply the same procedure to all triples of the factors in the

given monomial. Thus, any triple of chosen elements n js
is

, n jt
it

, n jr
ir

is replaced by the numerical factor

h̄2δ
jr
i δ

jt
ir

δ
js
it

δ
j
is

or h̄2 P1s P st Ptr . And so on: at the k-th step we obtain the terms proportional to h̄k−1.

Note, that in [15] the above procedure of calculating the action of an element d j
i on a monomial

in n (the “h̄-Leibniz rule”) was defined in a different but equivalent way via a coproduct 
(d j
i ) =

d j
i ⊗ 1 + 1 ⊗ d j

i + h̄d j
k ⊗ dk

i which was found by S. Meljanac and Z. Škoda.

Remark 11. Note, that the method of computing the action of an element d j
i on monomials can

be readily generalized to super-algebras U (gl(m|n)h̄). The only difference is that all transpositions
of factors in monomials (we have to put them aside in order to apply the product ◦) and their
transpositions with elements d j

i must be done with taking into account the parity of elements.
A similar version of the Leibniz rule is valid for any “generalized Lie algebra” corresponding to a

skew-invertible involutive symmetry R (see [12]). In this case all aforementioned transpositions must
be performed in terms of the involutive symmetry coming in the definition of such a generalized Lie
algebra. In general, i.e. if R is not involutive, the corresponding Leibniz rule has a more complicated
form.

Our scheme of defining partial derivatives can be also generalized to the enveloping algebras of
current Lie algebra ĝl(m) (and their super-analogs) since the Lie brackets in these Lie algebras can
be realized via a product ◦ analogous to (3.13). Note that on the Lie algebra sl(m) such a product
does not exists. Nevertheless, a weak version of the calculus above can be constructed on the algebra
U (sl(m)h̄) (see Remark 15 below).

4. Invariant differential operators, an example

Let R be a skew-invertible Hecke symmetry. It is well known that the elements TrR Lk = Tr(C Lk)

(the matrix C is defined in (2.8)), are central in the algebra L(R) for any k. Note, that a similar
statement is valid for a modified RE algebra, in particular, for the algebra N coming in the definition
(3.3) of the Weyl algebra W(N ). Namely, the elements TrR Nk are central in this algebra. We call the
map Lk → TrR Lk braided trace.

The subalgebra D ⊂ W(N ) is also an RE algebra with R replaced by R−1. For any Hecke symme-
try R with the bi-rank (m|n) we have R−1 = R − (q − q−1)I and (see [12])

Tr B = Tr C = (m − n)q
m−n

.

q



D. Gurevich, P. Saponov / Advances in Applied Mathematics 51 (2013) 228–253 241
Emphasize that the braiding R−1 is also skew-invertible since the corresponding endomorphism
ΨR−1 exists and can be expressed via Ψ (see (2.3)) by the relation

ΨR−1 = Ψ12 + (
q − q−1)q2(m−n)C1 B2. (4.1)

This formula enables us to compute the endomorphisms B R−1 and C R−1 . Namely, we have

B R−1 = Tr(1) ΨR−1 = q2(m−n)B, C R−1 = Tr(2) ΨR−1 = q2(m−n)C .

Thus, the matrices B R−1 and C R−1 are proportional to these B and C respectively and the ele-
ments TrR Dk differ from central elements TrR−1 Dk = Tr(C R−1 Dk) of the subalgebra D by the factor
q−2(m−n) �= 0. So, we associate “braided differential operators” with these elements by treating matrix
elements d j

i of the matrix D to be derivations on the algebra N as was described in the previous
section. We call TrR Dk Laplace operators.

Our terminology is motivated by the fact that if R is a standard Hecke symmetry then at the limit
q → 1, h̄ → 0 we get the usual Laplace operator (up to a factor) and its higher counterparts on the
space Rm2

(after a passage to the compact form U (u(m)h̄) of the algebra U (gl(m)h̄), see below).
In the same way, we define sl-type Laplace operators associated with the elements TrR D̃k where

D̃ = D − TrR D

TrR I
I (4.2)

is the R-traceless part of the matrix D . Since

TrR I = Tr C = qn−m(m − n)q,

the operator D̃ is well defined provided m �= n and q is subject to the condition (2.2). Note, that the
families of the operators Dk and D̃k can be expressed via each other.

Also, we need the operators TrR(Nl Dk), TrR(Nl D̃k) and TrR(Ñl D̃k) which are called invariant. In
the standard case they are invariant with respect to the action of the quantum group Uq(sl(m)). In
general, they are invariant with respect to the coaction of the corresponding RTT algebra.

We are interested in the action of the Laplace operators on the algebra N , in particular, on its
center Z(N ).

Conjecture 12. All the Laplace operators TrR Dk map the center Z(N ) into itself.

Below, we consider invariant differential operators in a particular case R = P , m = 2, n = 0. Also we
assume K = R. The case K = C can be treated as the complexification of the objects and morphisms
over the real field.

Let us recall some results and notations from [15]. Consider the algebra U (u(2)h̄) with the follow-
ing defining relations between generators

[x, y] = h̄z, [y, z] = h̄x, [z, x] = h̄ y, [t, x] = [t, y] = [t, z] = 0.

These generators are connected with the generators a, b, c and d of the algebra U (gl(2)h̄) in the
standard way

a = t − iz, b = −ix − y, c = −ix + y, d = t + iz. (4.3)

The center Z(U (u(2)h̄)) is generated by t and the Casimir element

Cas = x2 + y2 + z2.
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First, we consider the algebra U (su(2)h̄) which is known to be flat over its center (see [3]). More
precisely, as an su(2)-module it is isomorphic to the following direct sum of su(2)-modules

U
(
su(2)h̄

) ∼=
∞⊕

k=0

(
Z
(
U

(
su(2)h̄

)) ⊗ V k), (4.4)

where V k is the su(2)-module of the highest weight k. We fix its highest weight vector in the com-
plexification of the algebra U (su(2)h̄) to be bk = (−ix − y)k .

Remark 13. In fact, the module V k contains the elements Re(bk) and Im(bk).

Definition 14. The component Z(U (su(2)h̄)) ⊗ V k is called isotypic.

The algebra U (u(2)h̄) is the first ingredient of the Weyl algebra we are going to construct. The
second ingredient is the algebra D generated by the partial derivatives ∂x , ∂y , ∂z and ∂̃t = ∂t + 2

h̄ I .
This shift of the t-derivative is convenient for technical reasons.

The properties of the partial derivatives follow from the defining relations (3.3). Namely, one can
show (see [15] for detail) that the partial derivatives commute with each other, while their permuta-
tion relations with the generators x, y, z and t read

∂̃tt − t∂̃t = h̄

2
∂̃t, ∂̃t x − x∂̃t = − h̄

2
∂x, ∂̃t y − y∂̃t = − h̄

2
∂y, ∂̃t z − z∂̃t = − h̄

2
∂z,

∂xt − t∂x = h̄

2
∂x, ∂xx − x∂x = h̄

2
∂̃t, ∂x y − y∂x = h̄

2
∂z, ∂xz − z∂x = − h̄

2
∂y,

∂yt − t∂y = h̄

2
∂y, ∂yx − x∂y = − h̄

2
∂z, ∂y y − y∂y = h̄

2
∂̃t, ∂y z − z∂y = h̄

2
∂x,

∂zt − t∂z = h̄

2
∂z, ∂zx − x∂z = h̄

2
∂y, ∂z y − y∂z = − h̄

2
∂x, ∂zz − z∂z = h̄

2
∂̃t . (4.5)

Remark 15. Although the permutation relations (4.5) cannot be restricted to the subalgebra U (su(2)h̄),
the result of applying any of the derivatives ∂x , ∂y , ∂z to a polynomial in x, y, z is also a polynomial
of this type (i.e. it does not depend of t). Consequently, a similar claim is valid for the de Rham
operator d on the algebra U (u(2)h̄) constructed in [15]. Thus, our differential calculus on the algebra
U (u(2)h̄) can be restricted to a differential calculus on U (su(2)h̄). This claim can be generalized to
the enveloping algebras U (sl(m)h) and their super-analogs. Nevertheless, it seems to be plausible that
a Weyl algebra similar to that W(N ) does not exist on the algebra U (sl(m)h). In the low dimensional
case in question this means that “the NC space does not exist without the time”.

In this connection we want to mention a noncommutative differential calculus from [7]. This
calculus is introduced on a special class of noncommutative algebras which differ drastically from
commutative ones. For them the question of deformation properties of this calculus makes no sense.

Our next aim is to compute the action of the invariant operators ∂̃t and TrR D̃2 on elements tk and
f bk , ∀ f ∈ Z(U (su(2)h̄)) from the complexification of the algebra U (u(2)h̄). Since the action of these
operators is SU(2)-invariant (or SL(2)-invariant if we consider the complexification), we easily extend
this action up to the isotypic components Z(U (su(2)h̄))⊗ V k and, consequently, on the whole algebra
U (u(2)h̄) due to the isomorphism (4.4). Note, that on the algebra U (su(2)h̄) the Laplace operator
TrR D̃2 coincides (up to a numerical factor) with the invariant differential operator


 = ∂2
x + ∂2

y + ∂2
z .

Below we deal with 
 instead of TrR D̃2.
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In contrast with the classical case h̄ = 0, when the function algebra is Sym(u(2)), the computation
of the action of an invariant operator on U (u(2)h̄) involves other invariant operators. Bellow, we will
deal with two invariant first order differential operators

∂̃t and Q = x∂x + y∂y + z∂z (4.6)

and with four invariant second order differential operators


0 = ∂̃2
t , 
1 = 
 = ∂2

x + ∂2
y + ∂2

z , 
2 = Q ∂̃t, 
3 = Q 2. (4.7)

It is evident, that any polynomial in the above operators with coefficients from Z(U (u(2)h̄)) is also
an invariant operator.

First, we find the permutation relations of the operators (4.6) and (4.7) with the central ele-
ments tk , k ∈ N:

∂̃tt
k =

(
t + h̄

2

)k

∂̃t, Q tk =
(

t + h̄

2

)k

Q , 
it
k = (t + h̄)k
i, ∀i = 0,1,2,3. (4.8)

Second, the permutation relations of the first order operators (4.6) with the Casimir element Cas
are as follows

∂̃t Cas =
(

Cas−3

4
h̄2

)
∂̃t − h̄Q ,

Q Cas = h̄ Cas ∂̃t +
(

Cas+ h̄2

4

)
Q ,

or in the matrix form

(
∂̃t

Q

)
Cas =

(
Cas− 3h̄2

4 −h̄

h̄ Cas Cas+ h̄2

4

)(
∂̃t

Q

)
. (4.9)

We denote Φ = Φ(Cas) the 2 × 2 matrix coming in this formula. Then the permutation relations of
the operators (4.6) with the central element Casp , p ∈ N can be expressed via the p-th power of the
matrix Φ .

Now, recall that the generating matrix

N =
(

t − iz −ix − y

−ix + y t + iz

)
(4.10)

of the algebra U (u(2)h̄) satisfies the Cayley–Hamilton (CH) identity of the form

N2 − (2t + h̄)N + (
t2 + x2 + y2 + z2 + h̄t

)
I = 0.

Let μ1 and μ2 obey the relations

μ1 + μ2 = 2t + h̄, μ1μ2 = t2 + x2 + y2 + z2 + h̄t.

This means that the variables μ1 and μ2 belong to an algebraic extension of the center Z(U (u(2)h̄)).
We call them the eigenvalues of the matrix N . Note, that our ordering of the eigenvalues is arbitrary.
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These eigenvalues are useful for parameterizing all central elements. In particular, for the Casimir
element Cas we get

Cas = h̄2 − μ2

4
, μ = μ1 − μ2. (4.11)

Also, we need the eigenvalues λ1 and λ2 of the matrix Φ(Cas)

λ1 = μ

4
(2h̄ − μ), λ2 = −μ

4
(2h̄ + μ).

The matrix Φ(Cas) has the following spectral decomposition

Φ(Cas) = λ1 · Φ − λ2

λ1 − λ2
+ λ2 · Φ − λ1

λ2 − λ1
= λ1 P1(Φ) + λ2 P2(Φ),

where the explicit form of the matrices Pi(Φ) is as follows

P1(Φ) = 1

μ

( μ−h̄
2 −1

h̄2−μ2

4
μ+h̄

2

)
, P2(Φ) = 1

μ

( μ+h̄
2 1

μ2−h̄2

4
μ−h̄

2

)
.

The matrices Pi(Φ), i = 1,2, are complementary projectors, i.e. they satisfy the relations

Pi(Φ)P j(Φ) = δi j P i(Φ), P1(Φ) + P2(Φ) = I.

The spectral decomposition enables us to compute the matrix Φ p(Cas) explicitly:

Φ p = λ
p
1 P1(Φ) + λ

p
2 P2(Φ)

= λ
p
1

μ

( μ−h̄
2 −1

h̄2−μ2

4
μ+h̄

2

)
+ λ

p
2

μ

( μ+h̄
2 1

μ2−h̄2

4
μ−h̄

2

)
. (4.12)

Now, we are able to compute the action of the operators (4.6) on the elements Casp bk p,k ∈ N.
To this end we first apply these operators to the elements bk .

Proposition 16. The following relations hold true

∂̃t
(
bk) = 2

h̄
bk, Q

(
bk) = kbk (4.13)

and, consequently, ∂t(bk) = 0.

Proof. To prove formulae (4.13) it is sufficient to use the h̄-Leibniz rule, described at the end of the
previous section. Namely, since b◦b = 0 (see (3.13)), the action of derivatives on b is, actually, classical
(the terms proportional to h̄ are absent). This immediately involves the result (4.13). �

Thus, in order to compute the action of ∂̃t and Q on Casp bk we transpose these operators with the
element Casp with the help of (4.9) and then apply them to the element bk in accordance with (4.13).
Finally, we get
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(
∂̃t

Q

)(
Casp bk) = Φ p

( 2
h̄

k

)
bk = bk

⎛
⎝ 1

h̄ (λ
p
1 + λ

p
2 ) − (λ

p
1 −λ

p
2 )

μ (k + 1)

(λ
p
1 + λ

p
2 ) k

2 + (λ
p
1 −λ

p
2 )

μ (
h̄(k+1)

2 − μ2

2h̄ )

⎞
⎠

or, in more detail,

∂t
(
Casp bk) = bk

(
1

h̄

(
λ

p
1 + λ

p
2 − 2 Casp) − (λ

p
1 − λ

p
2 )

μ
(k + 1)

)
,

Q
(
Casp bk) = bk

((
λ

p
1 + λ

p
2

)k

2
+ (λ

p
1 − λ

p
2 )

μ

(
h̄(k + 1)

2
− μ2

2h̄

))
. (4.14)

These formulae enable us to compute the action of the operators (4.6) on an element f (Cas)bk

where f (u) is a polynomial or a formal series in one variable. This action is defined by formula (4.14)
where λ

p
1 and λ

p
2 are respectively replaced by f (λ1) and f (λ2).

However, we are interested in the action of the operators (4.6) on μ and its integer powers. To

find this action, we take into account that μ =
√

h̄2 − 4 Cas and choose f (u) = (
√

h̄2 − 4u)p , where
p ∈ Z is an integer (may be negative). Then we get

f (λ1) = (√
(μ − h̄)2

)p = (μ − h̄)p, f (λ2) = (√
(μ + h̄)2

)p = (μ + h̄)p .

Our choice of the roots in these formulae is motivated by the classical limit h̄ → 0. Finally, we get the
following proposition.

Proposition 17. The following relations take place (here k ∈ N and p ∈ Z)

∂t
(
μpbk) = bk

(
1

h̄

(
(μ + h̄)p + (μ − h̄)p − 2μp) + (μ + h̄)p − (μ − h̄)p

μ
(k + 1)

)
,

Q
(
μpbk) = bk

((
(μ + h̄)p + (μ − h̄)p)k

2
+ (μ + h̄)p − (μ − h̄)p

μ

(
μ2

2h̄
− h̄(k + 1)

2

))
.

For any rational function f (u) the action of the operators ∂t and Q on elements f (μ)bk can be
generalized in the obvious way: we replace (μ− h̄)p and (μ+ h̄)p in the right hand side of the above
formulae by f (μ − h̄) and f (μ + h̄) respectively. Consequently, by assuming f (t,μ) to be a rational
function in two variables we define the action of the operators ∂t and Q on elements f (t,μ)bk by
similar formulae but with t in the right hand side replaced by t + h̄

2 .

Remark 18. As follows from Proposition 17, the operators b−k∂tbk and b−k Q bk (gauge equivalent to
∂t and Q respectively) are well defined on the space of polynomials (series) in μ. Also, observe that
the factor bk in all formulae above can be replaced by any element from the module V k .

Now, we turn to computing the action of the second order operators (4.7) on the elements Casp bk .
To this end we reproduce the permutation relations of these operators with the Casimir element Cas.

Proposition 19. (See [15].) The following permutation relations hold true:


i Cas =
3∑

j=0

Πi j
 j, 0 � i � 3, (4.15)
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where the matrix Π = Π(Cas) reads

Π =

⎛
⎜⎜⎜⎜⎜⎝

Cas− 3
2 h̄2 h̄2

2 −2h̄ 0

3
2 h̄2 Cas− h̄2

2 2h̄ 0

h̄ Cas 0 Cas− h̄2

2 −h̄

h̄2 Cas − h̄2

2 Cas h̄(2 Cas+ h̄2

4 ) Cas+ h̄2

2

⎞
⎟⎟⎟⎟⎟⎠ .

The matrix Π plays the same role for the operators (4.7) as Φ plays for the operators (4.6). Thus,
we get


i Casp =
3∑

j=0

(
Π p)

i j
 j, p ∈ N.

By a direct calculation one can verify that the matrix Π is semisimple:

Π ∼ diag(λ0, λ0, λ+, λ−),

where (recall that μ = μ1 − μ2)

λ0 = 1

4

(
h̄2 − μ2), λ± = 1

4

(
h̄2 − (μ ± 2h̄)2).

Similarly to (4.12) we get

Π p =
∑

a=0,±
λ

p
a

∏
b=0,±

b �=a

(Π − λb I)

(λa − λb)
= λ

p
0 P0(Π) + λ

p
+ P+(Π) + λ

p
− P−(Π). (4.16)

Here Pa(Π), a ∈ {0,+,−}, are complementary projectors:

Pa(Π)Pb(Π) = δab Pa(Π), P0(Π) + P+(Π) + P−(Π) = I.

Their explicit form reads:

P0(Π) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
2 0 h̄

h̄2−μ2
2

h̄2−μ2

1
2 1 −h̄

h̄2−μ2
−2

h̄2−μ2

−h̄
4

h̄
4

−h̄2

h̄2−μ2
−2h̄

h̄2−μ2

2h̄2−μ2

8
−h̄2

8
h̄(3h̄2−μ2)

4(h̄2−μ2)

3h̄2−μ2

2(h̄2−μ2)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

P+(Π) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2h̄+μ
4μ

−h̄
4μ

3
2 h̄+μ

μ(h̄+μ)
1

μ(h̄+μ)

− 2h̄+μ
4μ

h̄
4μ − 3

2 h̄+μ

μ(h̄+μ)
−1

μ(h̄+μ)

−2h̄2+h̄μ+μ2

8μ
h̄(h̄−μ)

8μ
−3h̄2+h̄μ+2μ2

4μ(h̄+μ)
−h̄+μ

2μ(h̄+μ)

−2h̄2+h̄μ+μ2 h̄(h̄−μ) −3h̄2+h̄μ+2μ2 −h̄+μ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

16 16 8(h̄+μ) 4(h̄+μ)



D. Gurevich, P. Saponov / Advances in Applied Mathematics 51 (2013) 228–253 247
P−(Π) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2h̄+μ
4μ

h̄
4μ

3
2 h̄−μ

μ(μ−h̄)
1

μ(μ−h̄)

2h̄−μ
4μ

−h̄
4μ

− 3
2 h̄+μ

μ(μ−h̄)
−1

μ(μ−h̄)

2h̄2+h̄μ−μ2

8μ
−h̄(h̄+μ)

8μ
3h̄2+h̄μ−2μ2

4μ(h̄−μ)
h̄+μ

2μ(h̄−μ)

−2h̄2−h̄μ+μ2

16
h̄(h̄+μ)

16
−3h̄2−h̄μ+2μ2

8(h̄−μ)
− h̄+μ

4(h̄−μ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, compute the action of the operators 
i on the elements bk . Applying the same reasoning as
in Proposition 16, we get that the h̄-Leibniz rule reduces to the classical one. Thus, we come to the
proposition below.

Proposition 20. The following action holds true


0
(
bk) = 4

h̄2
bk, 
1

(
bk) = 0, 
2

(
bk) = 2k

h̄
bk, 
3

(
bk) = k2bk.

Thus, the action of the operators ∂t , Q , 
 on the elements bk and, consequently, on the whole
modules V k are given by the same formulae as in the classical case. Therefore, the elements from V k

are harmonic in the usual sense of the words: whey are killed by the operators ∂̃t and 
.
Using the same method as above, we can compute the action of the operators (4.7) on elements

Casp bk . Namely, we have

⎛
⎜⎜⎜⎝


0


1


2


3

⎞
⎟⎟⎟⎠(

Casp bk) = bk(λp
0 P0(Π) + λ

p
+ P+(Π) + λ

p
− P−(Π)

)
⎛
⎜⎜⎜⎝

4
h̄2

0
2k
h̄

k2

⎞
⎟⎟⎟⎠ .

Now, we want to extend this formula to elements μpbk , p ∈ Z, k ∈ N. Since

√
h̄2 − 4λ0 = μ,

√
h̄2 − 4λ± = μ ± 2h̄

(as above the signs are motivated by the classical limit) we have

⎛
⎜⎜⎜⎝


0


1


2


3

⎞
⎟⎟⎟⎠(

μpbk) = bk(μp P0(Π) + (μ + 2h̄)p P+(Π) + (μ − 2h̄)p P−(Π)
)
⎛
⎜⎜⎜⎝

4
h̄2

0
2k
h̄

k2

⎞
⎟⎟⎟⎠ . (4.17)

This enables us to compute the action of the operators in question on elements f (μ)bk where
f (u) is a rational function. For example, the action of the operator 
1 = 
 in the case k = 0 is as
follows:



(

f (μ)
) = 1

h̄2

(
2 f (μ) − f (μ − 2h̄) − f (μ + 2h̄)

) + 2

μh̄

(
f (μ − 2h̄) − f (μ + 2h̄)

)
. (4.18)

This formula together with (4.8) entails that if f is a rational function in two variables then
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(

f (t,μ)
) = 1

h̄2

(
2 f (t + h̄,μ) − f (t + h̄,μ − 2h̄) − f (t + h̄,μ + 2h̄)

)

+ 2

μh̄

(
f (t + h̄,μ − 2h̄) − f (t + h̄,μ + 2h̄)

)
. (4.19)

Remark 21. Formula (4.18) (expressed via (μ1 − μ2)
2) has been found in [15]. The currently used

element μ = μ1 − μ2 is much more convenient since the expression
√

h̄2 − 4u, u ∈ {λ1, λ2, λ0, λ±} is
a first order polynomial in μ. This property considerably simplifies all calculations.

Other formulae expressing the action of the operators (4.7) on elements f (μ)bk (and consequently,
on elements f (μ)u with any u ∈ V k) can be deduced from relation (4.17) in the same way. However,
they are too cumbersome and we do not exhibit their explicit form. Finally, the following proposition
takes place.

Proposition 22. Each of the operators (4.6) and (4.7), maps elements of the form f (μ)u, where f (μ) is a
rational function and u ∈ V k, into elements of the same form, namely, g(μ)u with a rational g. The same
claim is valid if f (t,μ) is a ration function in two variables.

5. Quantization of differential operators and dynamical models

In this section we use different notation for classical and quantum objects. Namely, for elements of
the algebra U (u(2)h̄), as well as for derivatives on this algebra, we use the Latin letters with hats (for
instance, x̂, ∂̂x etc.), while for elements of the commutative algebra Sym(u(2)) and the corresponding
derivatives we keep the previous notation (x, ∂x etc.).

Given a differential operator D on the algebra Sym(u(2)), we shall associate with it an operator
acting on the algebra U (u(2)h̄). (We are mainly interested in operators describing dynamical models.)

If such an operator has constant (i.e., numerical) coefficients, we define its analog on U (u(2)h̄) by
the same formula but with a new meaning of the derivatives (i.e. all partial derivatives are assumed
to act on the algebra U (u(2)h̄) and to be subject to (4.5)). Thus, the d’Alembert operator

�̂ = ∂̂2
t − ∂̂2

x − ∂̂2
y − ∂̂2

z

is well defined on the algebra U (u(2)h̄).
In a similar manner we can define quantum analogs of the Dirac and Maxwell operators. We

introduce the quantum analog of the Dirac operator by the classical formula employing the usual
Dirac matrices:

D̂ = γ 0∂̂t − γ 1∂̂x − γ 2∂̂y − γ 3∂̂z.

As usual, the Dirac matrices γ μ realize a representation of the Clifford algebra

γ μγ ν + γ νγ μ = 2gμν I, μ,ν ∈ {0,1,2,3}

with the standard Minkowski metric gμν = diag(1,−1,−1,−1). Since the quantum partial derivatives
∂̂t , . . . , ∂̂x commute with each other, the relation between the quantum d’Alembert and Dirac opera-
tors does not change compared with the classical case

D̂2 = �̂I.
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For defining the quantum analog of the Maxwell operator we first identify a differential 1-form9

ω = α dt + β dx + γ dy + δ dz, α,β,γ , δ ∈ Sym
(
u(2)

)
with the vector-function (α,β,γ , δ)t (here, the upper script t stands for the transposing) and realize
the classical Maxwell operator Mw as follows

Mw

⎛
⎜⎜⎜⎝

α

β

γ

δ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝
�(α)

�(β)

�(γ )

�(δ)

⎞
⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎝

∂t

∂x

∂y

∂z

⎞
⎟⎟⎟⎠ (∂t − ∂x,−∂y,−∂z)

⎛
⎜⎜⎜⎝

α

β

γ

δ

⎞
⎟⎟⎟⎠ .

Its quantum analog acts on a vector-function (α̂, β̂, γ̂ , δ̂)t , where α̂, β̂ , γ̂ , δ̂ are some elements of
U (u(2)h), by the same formula with the change of the classical partial derivatives for the quantum
ones: ∂ → ∂̂ , �→ �̂.

If the coefficients of a given differential operator D are some non-numerical elements of Sym(u(2))

the problem of its quantization becomes more subtle since it involves a quantization of the func-
tion algebra Sym(u(2)). Namely, we need an SU(2)-isomorphism of linear spaces α : Sym(u(2)) →
U (u(2)h̄) satisfying the following properties.

The induced product

f �h̄ g = α−1(α( f ) ∗ α(g)
)
, f , g ∈ Sym

(
u(2)

)
in the algebra Sym(u(2)) should smoothly depend on the parameter h̄ (here ∗ stands for the product
in the algebra U (u(2)h̄)) so that

lim
h̄→0

f �h g = f · g and lim
h̄→0

f �h̄ g − g �h̄ f

h̄
= { f , g}u(2).

Here f · g is the product in the algebra Sym(u(2)) and the notation { , }u(2) stands for the linear
Poisson–Lie bracket on the algebra Sym(u(2)).

Besides, we want the restriction of α to the Poisson center10 Z(Sym(u(2))) of the algebra
Sym(u(2)), to be an algebraic isomorphism between Z(Sym(u(2))) and Z(U (u(2)h̄)). Such a map α
can be constructed via the Harish-Chandra isomorphism. We introduce it on a larger algebra and by
using another method.

Namely, we consider the following algebra

A = (
K(t, r) ⊗ Sym

(
su(2)

))/〈
x2 + y2 + z2 − r2〉,

where r is a new central generator and K(t, r) is the algebra of rational functions in t and r. Thus,
r has the meaning of the length of the radius vector of a point (x, y, z).

9 In Electrodynamics the components of this form are those of the four-potential Aμ , μ ∈ {0,1,2,3}. The Maxwell operator
comes in the left hand side of the well-known differential equation �Aμ − ∂μ(∂ · A) = 0.
10 By the Poisson center we mean the set of elements from Sym(u(2)) central with respect to the Poisson–Lie brackets

{x, y}u(2) = z, {y, z}u(2) = x, {z, x}u(2) = y, {t, g}u(2) = 0, g ∈ {x, y, z}.

This center is generated by the elements t and cas = x2 + y2 + z2.
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Now, introduce the “quantum radius” by setting

r̂ = μ̂

2i
=

√
h̄2 − 4 Cas

2i
, (5.1)

where μ̂ is a new notation for the element introduced in (4.11). Note that r̂ coincides with the usual
radius provided h̄ = 0.

This motivates the following quantum analog of the algebra A

Ah̄ = (
K(t̂, r̂) ⊗ U

(
su(2)h̄

))/〈
x̂2 + ŷ2 + ẑ2 + h2 − r̂2〉

where we put h̄ = 2ih. Besides, if we assume h to be real we get that h̄ is purely imaginary and the
generators x̂, ŷ, ẑ can be represented as self-adjoint operators in a Hilbert space or a Verma module.

Now, define the quantizing map α :A→Ah̄ by the following relation

α
(

f (t, r)u
) = f (t̂, r̂)û, (5.2)

where û is any element of the module V k above (see (4.4)) and u is its classical counterpart. Con-
sidering the complexification of these modules and taking into account that α is SU(2)-invariant, it
suffices to put

u = bk, û = b̂k, where b = −(y + ix) ∈ Sym
(
sl(2)

)
, b̂ = −( ŷ + ix̂) ∈ U

(
sl(2)h̄

)
.

Now, extend the quantizing map on differential operators. With any given differential operators
D = ∑

β aβ∂β where β is a multi-index, the sum is finite, and aβ ∈A, we associate the operator

α(D) :=
∑
β

α(aβ)∂̂β (5.3)

with coefficients from Ah̄ .

Definition 23. The map D → α(D) is called the quantization of differential operators.

The operator α(D) is acting on the algebra U (u(2)h̄). However, we want it to be defined on the
algebra Ah̄ . The results of the previous section enable us to define such an action for the invariant
operators (4.6) and (4.7) and consequently for any their combination with coefficients from Ah̄ . (Note
that defining an action of the partial derivatives on the whole algebra Ah̄ is a more subtle deal and
we leave it for subsequent publications.)

Similarly to formula (4.4) we present the algebra Ah̄ as follows

Ah̄
∼=

∞⊕
k=0

(
K(t̂, r̂) ⊗ V k).

The components K(t̂, r̂) ⊗ V k are also called isotypic.
According to Proposition 22 each of the operators (4.6) and (4.7) maps such an isotypic compo-

nent to itself. Consequently, the same claim is valid for any linear combination of these operators
with coefficients from Ah̄ . Below, we consider an example of such an operator, namely, the Laplace–
Beltrami operator corresponding to some rotationally symmetric metrics. However, first, we construct
the quantization of some invariant operators.
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Consider the quantization of the operators Q = x∂x + y∂y + z∂z and Q 2. First, we present the
operator Q 2 in the ordered form, moving all the partial derivatives to the right hand side position:

Q 2 = Q + 2(xy∂x∂y + yz∂y∂z + zx∂z∂x) + x2∂2
x + y2∂2

y + z2∂2
z .

Then, we have to find the quantum images of the coefficients at the derivatives (see (5.3)). The defi-
nition (5.2) of the quantizing map α gives

α(x) = x̂, α
(
x2) = x̂2 + h̄2

12
, α(xy) = x̂ ŷ + ŷx̂

2
.

The answer for other coefficients of Q 2 can be obtained from the above formulae by the cyclic sub-
stitution x → y → z. Finally, we get the answer

Q̂ =: α(Q ) = x̂∂̂x + ŷ∂̂y + ẑ∂̂z,

α
(

Q 2) = Q̂ 2 + h̄2

12

̂ − h̄

2
Q̂ ∂̂t,

where 
̂ = ∂̂2
x + ∂̂2

y + ∂̂2
z . Emphasize that α(Q 2) �= Q̂ 2.

Now, we consider the quantization of a free massless scalar field in the space equipped with a
Schwarzschild-type metric

ϕ(r)dt2 − ϕ(r)−1 dr2 − r2 dΩ2.

Here dΩ2 is the area form of the unit sphere and ϕ(r) is a rational function. It is just Schwarzschild
metric provided ϕ(r) = 1 − rg

r .
The corresponding Laplace–Beltrami (LB) operator describing the dynamics reads

�LB = ϕ(r)−1∂2
t − ϕ(r)∂2

r − 1

r2

(
X2 + Y 2 + Z 2) − 1

r2
∂r

(
ϕ(r)r2)∂r,

where X = y∂z − z∂y , Y = z∂x − x∂z , Z = x∂y − y∂x . By using the relation

1

r2

(
X2 + Y 2 + Z 2) = 
 − ∂2

r − 2

r
∂r,

we rewrite �LB in the form

�LB = ϕ(r)−1∂2
t − (

ϕ(r) − 1
)
∂2

r −
(

2

r

(
ϕ(r) − 1

) + ∂rϕ(r)

)
∂r − 
. (5.4)

In order to quantize this operator we have to find quantum analogs of the operators ∂r and ∂2
r .

Note, that in the classical setting

∂r = 1

r
(x∂x + y∂y + z∂z) = 1

r
Q .

As for the operator ∂2
r , we have

∂2
r = 1

2

(
x2∂2

x + y2∂2
y + z2∂2

z + 2xy∂x∂y + 2yz∂y∂z + 2zx∂z∂x
) = 1

2

(
Q 2 − Q

)
.

r r
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Finally, formula (5.4) can be presented as

�LB = ϕ(r)−1∂2
t − ϕ(r) − 1

r2
Q 2 − 1

r

(
ϕ(r) − 1

r
+ ∂rϕ(r)

)
Q − 
. (5.5)

So, according to our scheme, the quantum counterpart �̂LB = α(�LB) of the operator �LB is

�̂LB = ϕ(r̂)−1∂̂2
t − ϕ(r̂) − 1

r̂2
Q̂ 2 −

(
ϕ(r̂) − 1

r̂2
+ (∂rϕ)(r̂)

r̂

)
Q̂

+ h̄

2

ϕ(r̂) − 1

r̂2
Q̂ ∂̂t −

(
1 + h̄2

12

ϕ(r̂) − 1

r̂2

)

̂.

The operator �̂LB is well defined on the whole algebra Ah̄ and maps each isotypic component
to itself. More precisely, the result of the action �̂LB( f (t̂, r̂)û), where f is a rational function in two
variables and û ∈ V k , is an element of the form gk(t̂, r̂)û, where gk(t̂, r̂) is also a rational function.
Thus, the action of the operator �̂LB can be described by a series of the maps

K(t̂, r̂) →K(t̂, r̂) : f (t̂, r̂) → gk(t̂, r̂), ∀k ∈N.

In conclusion, we want to emphasize that the variables t̂ and r̂, coming in the final version of the
above model, are commutative. So, this model can be treated by means of the commutative algebra
and analysis. Thus, it would be interesting to find the spectrum of the operator �̂LB . However, in
contrast with the classical case our model is based on difference (not differential) operators. Also,
note that our method is hopefully valid on the RE and modified RE algebras. The only problem in
this case consists in a reasonable introducing a quantum radius and extending the action of invariant
operators to rational functions. We plan to exhibit this construction in our subsequent publications.
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