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1 Introduction

Schwinger’s pair creation [1] is a well studied phenomenon. However, in our recent paper [2]

we show that in QED on strong electric field backgrounds there are loop corrections to

propagators which grow with time. We use Schwinger-Keldysh diagrammatic technique

and consider a constant electric field, Ez = const, and electric pulse, Ez(t) ∝ 1
cosh2 (t/T )

.

We show that after a long enough evolution in a constant field background (or as T → ∞
for the case of the pulse), loop corrections become of the order of the tree-level contribution,

which substantially changes the picture of the particle production. That happens due to

the secular growth of the loop corrections to propagators. This effect cannot be seen in the

standard approaches to the subject (see e.g. [4] – [31, 32]), which are mostly applicable in

the background field approximation (we come back to this point below in this section).

Before discussing the loopholes in the standard approaches let us explain the physical

origin of the secular loop effects. The point is that secular growth of loop corrections

is quite a generic situation as is know in condensed matter theory [33, 34]. To see that

we start with the explanation of the reason why one has to apply the Schwinger-Keldysh

technique instead of the Feynman one in non-stationary situations. Suppose one would like

to find the time evolution of the expectation value of an operator O:

〈O〉 (t) ≡
〈

Ψ
∣

∣

∣
Te

i
∫ t
t0

dt′H(t′)O Te
−i

∫ t
t0

dt′H(t′)
∣

∣

∣
Ψ
〉

. (1.1)

Here H(t) = H0(t)+H int(t) is the full Hamiltonian of a theory, T denotes the time-ordering

and T is the reverse time-ordering; t0 is an initial moment of time and |Ψ〉 is an initial

state. We assume that the initial value 〈O〉 (t0) is given.
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After the transformation to the interaction picture, we get [33]:

〈O〉 (t) =
〈

Ψ
∣

∣S+(t, t0)O0(t)S(t, t0)
∣

∣Ψ
〉

=
〈

Ψ
∣

∣S+(t, t0)T [O0(t)S(t, t0)]
∣

∣Ψ
〉

=
〈

Ψ
∣

∣S+(t, t0)S
+(+∞, t)S(+∞, t)T [O0(t)S(t, t0)]

∣

∣Ψ
〉

=
〈

Ψ
∣

∣S+(+∞, t0)T [O0(t)S(+∞, t0)]
∣

∣Ψ
〉

, (1.2)

where S(t, t0) = Te
−i

∫ t
t0

dt′Hint
0 (t′)

; O0(t) and H int
0 (t) are the same operators as above, but

written in the interaction picture. To perform the first step in (1.2) we have used the

Baker-Hausdorff formula. To perform the step on the second line of (1.2) we had inserted

the following resolution of the unit operator: 1 = S+(+∞, t)S(+∞, t). That allows one

to extend the original evolution (from t0 to t, S and back, S+) to that which goes from

t0 to future infinity, S(+∞, t0), and back, S+(+∞, t0). We put the operator O0(t) on the

forward going part, S, of the time contour.

To convert (1.2) into a suitable form we assume that interactions, H int, are adiabat-

ically turned on after t0, i.e., |Ψ〉 does not evolve before t0. Then, one can rewrite the

expectation value (1.2) as follows:

〈O〉t0 (t) =
〈

Ψ
∣

∣S+
t0
(+∞,−∞)T [O0(t)St0(+∞,−∞)]

∣

∣Ψ
〉

. (1.3)

A good question is if one can take t0 to past infinity, t0 → −∞, i.e. to get rid of the

dependence of 〈O〉t0 (t) on t0. The seminal example when one can do so is as follows: the

free Hamiltonian, H0, does not depend on time and |Ψ〉 coincides with its ground state

|vac〉, H0 |vac〉 = 0. One also assumes that the interaction term is adiabatically switched

off at future infinity — long after the time t.

If |vac〉 is the true vacuum state of the free theory, then, by adiabatic turn-

ing on and then switching off the interactions, one cannot disturb such a state, i.e.,

〈vac |S+(+∞,−∞)| excited state〉 = 0, while |〈vac |S+(+∞,−∞)| vac〉| = 1. Then the

dependence on t0 disappears. Hence,

〈O〉 (t) =
∑

state

〈

vac
∣

∣S+(+∞,−∞)
∣

∣ state
〉

〈state |T [O0(t)S(+∞,−∞)]| vac〉

=
〈

vac
∣

∣S+(+∞,−∞)
∣

∣ vac
〉

〈vac |T [O0(t)S(+∞,−∞)]| vac〉

=
〈vac |T [O0(t)S(+∞,−∞)]| vac〉

〈vac |S(+∞,−∞)| vac〉 . (1.4)

To perform the first step in (1.4), we have inserted the resolution of unity 1 =
∑

state |state〉 〈state|, where the sum is going over the complete basis of eigen-states of

H0. To perform the second step, we have used that |vac〉 is the only state from the sum

which gives a non-zero contribution. Thus, we arrive at the expressions which contain only

T-ordering (and no any T-orderings), i.e., we obtain the standard Feynman diagrammatic

technique. In this case one can shift the moment after which interactions are adiabatically

turned on to past infinity, t0 → −∞.

However, if |Ψ〉 is not a ground state and/or H0 depends on time, one cannot use the

above machinery and has to deal directly with (1.3) or (1.2). In this case the efficient
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method is the so-called Schwinger-Keldysh technique, where one has to perturbatively

expand both S and S+ under the quantum average. Then each vertex in the expansion

comes either from S (and then assigned “+” sign) or — from S+ (and then assigned the

“−” sign).

As follows from these considerations Schwinger-Keldysh technique is causal, unlike the

Feynman one, and is used without any appeal to the notion of particle. In fact, with

this technique one calculates correlation functions rather than S-matrix elements, i.e. one

does not need to define what are asymptotic states. The latter ones are ambiguous if

a background field is not switched off, because the free Hamiltonian is never diagonal.

Finally note that one can also apply the Schwinger-Keldysh technique in the stationary

situation because then the T-ordered expressions just cancel out vacuum diagrams. Many

comparatively simple and interesting examples of the application of this technique are

presented in [34].

Now we are ready to explain the origin of the secularly growing loop corrections in

non-stationary situations. Basically in any propagator there is such an element as 〈a+a〉,
where a and a+ are annihilation and creation operators for a field under consideration.

In the standard Feynman technique the average is done with the use of the ground state,

hence, a|0〉 = 0 and this element is vanishing: if the background state is true vacuum then

〈a+a〉 is zero from the very beginning and remains zero at future infinity. If, however, the

background state is not a true vacuum, then the situation is drastically different. However,

even in a non-stationary situation at tree-level 〈a+a〉 remains constant, if all the time

dependence is absorbed into exact harmonics. (This is the case in the interacting picture.)

But if one turns on interactions then 〈a+a〉 starts to depend on time. It starts to run

immediately right after t0 — the moment after which the interactions are adiabatically

turned on. In a generic situation one finds that 〈a+a〉 ∝ (t − t0), where the coefficient

of proportionality is the collision integral, which is not zero because the situation is not

stationary. The linear growth appears, if the collision integral is constant in time. That

is the reason why in such a case one cannot take t0 to the past infinity, if he keeps the

population numbers fixed in the loop corrections — in the calculation of the collision

integral (see e.g. [33]).

Such a growth of the loop corrections to the two-point correlation functions has bright

physical consequences. In particular in [2], we observe that particle number density,

〈α+
µpα

µ
p 〉, which is an element of the photon’s Keldysh propagator, grows with time even

if at the initial state it was zero. Thus, there is photon production together with charged

particles from the background electric field. (If interactions between quantum charged and

gauge fields are turned on, photons are produced by the background field together with the

charged particles rather than by accelerating products of the pair creation, i.e. photons are

produced even if the density of the charged pairs is zero.) This is true for the both types

of electric backgrounds under consideration — constant and pulse.

Note that these observations explain the following controversy in the constant electric

field background. It happens that in this case the decay rate is not zero, but the current

of the created particles does vanish [36, 37], due to the symmetries of the problem. The

dependence of the correlation functions on t0 brakes the time-reversal invariance of the
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QED on the constant field background and allows to have a non-zero current in the loops,

which explains this puzzle. We present the details of this explanation at the end of the

present paper.

It is worth pointing out now that secular growth of loop corrections is observed also

in the case of other strong background fields: see [38–45] for the same kind of effects in de

Sitter space and [46] for a review.

Let us continue our discussion with the critique of the standard approaches and ex-

plaining the reason why one cannot see the secular growth of the correlation function, if

one applies them. The original calculation goes as follows: one looks for the ground states

of the free Hamiltonian in the background electric field at past and future infinity — |in〉
and |out〉, correspondingly. In this case one finds that, unlike the case of empty space

quantum field theory, |〈in|out〉| 6= 1. Namely, it happens that 〈in|out〉 = e−ΓV , where

V is the four-volume. Here Γ is interpreted as a probability rate per unit four-volume

for the decay of the ground state. Furthermore, in the Feynman loop calculations within

this context one finds peculiarities (such as imaginary contributions) of the effective ac-

tions in the strong electric field backgrounds. In all such calculations photon field is kept

non-dynamical background field. Some of these effects one can grasp via the analytical

continuation from the Euclidian space instantons.

But one can ask the following questions: does the ground state indeed decay only via

pair creation? Is it really true that all other kinds of processes do not appear during the

whole period of evolution of the system under consideration from past to future infinity?

Perhaps the ground state does indeed decay only via the pair creation if one considers

the pulse background and takes the limit when electric change is tending to zero, e → 0,

background field is tending to infinity, E → ∞, while their product is kept finite, eE =

const. But then how one can calculate corrections to this picture beyond the latter limit?

How one can go beyond the background field approximation?

In principle one can calculate rates of other types of more complicated creation pro-

cesses with the use of Feynman technique. In fact, it seems that one just has to consider

more complicated amplitudes rather than just the simplest one 〈in|out〉. But what about

loop corrections to these amplitudes? The problem is that due to the use of exact harmon-

ics instead of plane waves there is no energy conservation in the vertexes in the diagrams.

Because of that IR loop corrections do not factor out and the standard cancelation of the

IR divergences does not work [3]. Apart from that the standard cancelation of IR diver-

gencies goes via a redefinition of the asymptotic states. But how should one redefine the

states, if at the past infinity harmonic functions behave as e−i ω(p) t, while at the future

— as the linear combinations αe−iω(p)t + βeiω(p)t? As the result of these IR divergencies

all cross sections are either zero or infinite and the calculation of the standard S-matrix

elements is just meaningless.

This is not so surprising if one realizes that the system under consideration is not

closed, as should be the case in strong background fields. Note that all the above obser-

vations are in effect only at the non-perturbative level in the background field and cannot

be seen at any finite order in the expansion over the field: we use the exact harmonics

and propagators.
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Finally note that in [35] they calculate photon’s self-energy using time-ordered in-in

propagators. To see the effects that we are after in this note one has to calculate correction

to the photon’s propagator rather than just the photon’s self-energy. Moreover, the time-

ordered contributions of [35] bring only one (++) correction, in the Schwinger’s notations.

While the complete correction to the propagator includes the sum of all (++), (−−), (+−)

and (−+) contributions.

The purpose of this note is as follows. In [2] we have shown that, unlike the case of the

Keldysh propagator, the photon’s retarded and advanced propagators and all propagator’s

of the charged particles do not receive such secularly growing corrections at the first loop.

Also vertexes do not receive corrections that grow with time. These observations allowed

us to simplify the system of the Dyson-Schwinger equations to take into account leading

corrections. Along these lines we derive in [2] the kinetic equation for the photon production

in the strong field backgrounds. The solution of this equation allows one to sum up leading

secularly growing corrections from all loops.

All these observations in [2] have been made in the Aµ = (0, 0, 0, A3 = Et) gauge in

the case of the constant field background. One of the goals of the present paper is to show

that our result is gauge independent, i.e. we would like to repeat the calculation in the

Aµ = (A0 = −Ez, 0, 0, 0) gauge. The point is that the observations of [2] are based on

the fact that there is no energy conservation in time dependent backgrounds. Hence, it

may seem unclear what the reason for the same phenomenon in the static gauge under

consideration is, once there is energy conservation for the single particle problem. In this

note we clarify this point.

Another goal of this note is to solve the aforementioned kinetic equation for photons.

And finally we would like to see the impact of these effects on the current of the produced

charged particles. The point is that at tree-level this current is zero in the constant electric

field background [36, 37], because of the invariance of QED under the time translational

and reversal invariance on the eternally and everywhere constant field background. We

show that at the loop order these symmetries are broken and the current receives non-zero

contributions that grow with time.

2 Setup of the problem

We consider, here, a massive scalar field coupled to an electromagnetic field in (3 + 1)

dimensions:

S =

∫

d4x

[

|Dµφ|2 −m2|φ|2 − 1

4
F 2
µν − jclµA

µ

]

,

where Dµ = ∂µ − ieAµ. We divide the full gauge potential into two pieces Aµ = Acl
µ + aµ

— classical, Acl
µ , and quantum, aµ, parts. Throughout this paper, we denote the external

gauge-potential Acl
µ as Aµ. If not otherwise stated, in this note we study the constant field

background in static gauge, where A0(z) = −Ez and ~A = 0.

The quantization of the gauge field is straightforward. One just has to choose a conve-

nient gauge for aµ. Below we choose Feynman gauge. For the charged scalars the situation

– 5 –
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is not so transparent because we use exact harmonics in the background field rather than

plane waves. So we give here a few comments on how to quantize the theory in such

a situation.

Introducing the following notations k̄ = (k0, k1, k2), ~k⊥ = (k1, k2) and d3k̄ = dk0d
2~k⊥,

we expand the charged scalar fields in harmonics as follows:

φ(x, t) =

∫

d3k̄

(2π)3

{

ak̄fk⊥

(

z − k0
eE

)

e−ik0t+i~k⊥·~x⊥ + b†
k̄
f∗
k⊥

(

−z − k0
eE

)

eik0t−i~k⊥·~x⊥

}

.

(2.1)

The function fk⊥

(

z − k0
eE

)

satisfies the following differential equation:

−
[

(∂t + ieEz)2 − ~∂2
⊥ − ∂2

z +m2
]

fk⊥

(

z − k0
eE

)

e−ik0t+i~k⊥·~x⊥ =

[

∂2
z + (k0 − eEz)2 − k2⊥ −m2

]

fk⊥

(

z − k0
eE

)

e−ik0t+i~k⊥·~x⊥ = 0. (2.2)

Solutions of (2.2) are related via a Fourier transformation, which we give below, to those of:

[

∂2
t + (k3 + eEt)2 + k2⊥ +m2

]

fk⊥

(

t+
k3
eE

)

= 0. (2.3)

This equation defines harmonic functions in the temporal, A3 = Et, gauge (see e.g. [2]).

The Fourier relation in question can be seen after the change of variables k0−eEz = −eEZ

and eET = k3 + eEt. Then the solutions of (2.2) and (2.3) are related as follows:

∫ +∞

−∞
dT fk⊥ (T ) e−ieETZ = fk⊥ (Z) . (2.4)

We use this Fourier relation throughout the paper and we give the explicit form of fk⊥ below.

From the commutation relations
[

ak̄, a
†

k̄′

]

=
[

bk̄, b
†

k̄′

]

= (2π)3 δ(3)(k̄ − k̄′) the com-

mutation relations between φ and its conjugate momentum π = (∂t − ieEz)φ∗ takes the

standard form:

[φ (t, ~x1) , π (t, ~x2)] = i

∫

d3k̄

(2π)3
(k0−eEz2) e

i~k⊥·(~x1⊥−~x2⊥)×

×
[

fk⊥

(

z1−
k0
eE

)

f∗
k⊥

(

z2−
k0
eE

)

−f∗
k⊥

(

−z1+
k0
eE

)

fk⊥

(

−z2+
k0
eE

)]

= iδ(3) (~x1−~x2) .

The last equality follows from the Fourier transformation (2.4). Also one has to use the

conservation of the Wronskian for the solutions of (2.3).

The free Hamiltonian for the charged scalars is diagonal:

H0 =

∫

d3x
[

|∂tφ|2 + |∂iφ|2 +m2|φ|2 − e2E2z2|φ|2
]

=

∫

d3x
[

|∂tφ|2 − φ∗∂2
t φ − 2ieEzφ∗∂tφ

]

=

∫

d3k̄

(2π)3
k0

[

a†
k̄
ak̄ + b†

k̄
bk̄

]

. (2.5)
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Here we have used the harmonic expansion of φ and the fact that harmonic functions obey

the equation of motion, (2.2).

From the obtained form of the free Hamiltonian (it is diagonal and time independent)

we can see that in static gauge in the constant electric field background there is energy

conservation for each single harmonic. But the energy is not bounded from below, because

k0 can have any sign. Because of the latter fact we will see that various particle creation

processes will be allowed when the interaction with the quantum gauge field, aµ, will be

turned on.

3 One-loop correction

Because the free Hamiltonian, H0, is not bounded from below, the field theory under con-

sideration is in the non-stationary situation. Hence, to calculate correlation functions one

has to apply the Keldysh-Schwinger (KS) diagrammatic technique instead of the Feynman

one [33, 34]. In such a formalism every particle is described by the matrix propagator,

whose entries are the Keldysh propagator GK
µν = 1

2 〈{aµ(x), aν(y)}〉, and the retarded and

advanced propagators GA,R
µν = ∓θ(∓∆t) 〈[aµ(x), aν(y)]〉 (and the same for the scalar fields,

with aµ → φ).

For our discussion it is instructive to see how the Keldysh propagators behave if the

quantum average is done with the use of an arbitrary state |ψ〉. Performing the harmonic

expansion of the quantum part, aµ(x), of the photon field

aµ(x) =

∫

d3~q

(2π)3
√

2|q|

(

α~qµ e
−i|q|t+i~q·~x + h.c.

)

,

we find that the photon’s Kledysh propagator has the following form:

GK
µν(x1, x2) =

1

2

∫

d3~qd3~q′

(2π)6

{

nµν

(

~q, ~q′
) eiq·x1−iq′·x2

√

|~q| |~q′|
+ κµν

(

~q, ~q′
) e−iq·x1−iq′·x2

√

|~q| |~q′|
+ h.c.

}

.

(3.1)

Here nµν(~q, ~q
′) =

〈

ψ
∣

∣

∣
α†
~qµα~q′ν

∣

∣

∣
ψ
〉

, κµν(~q, ~q
′) =

〈

ψ
∣

∣α~qµα~q′ν

∣

∣ψ
〉

and q · x = |q|t − ~q · ~x.

Furthermore, h.c. stands for the quantities containing
〈

ψ
∣

∣

∣
α~qµα

†
~q′ν

∣

∣

∣
ψ
〉

= nµν(~q, ~q
′) −

gµν δ
(3) (~q − ~q′) and κ∗µν (~q, ~q

′) =
〈

ψ
∣

∣

∣
α†
~qµα

†
~q′ν

∣

∣

∣
ψ
〉

.

Furthermore from (2.1) we find that scalar field’s Keldysh propagator is as follows:

DK(x1, x2) =
1

2

〈{

φ(x1), φ̄(x2)
}〉

=
1

2

∫

d3k̄d3k̄′

(2π)6
(3.2)

×
{

n+
(

k̄, k̄′
)

eik0t1−i~k⊥·~x1⊥ e−ik′0t2+i~k′
⊥
·~x2⊥ f∗

k⊥

(

z1−
k0
eE

)

fk′
⊥

(

z2−
k′0
eE

)

+ κ+
(

k̄, k̄′
)

e−ik0t1+i~k⊥·~x1⊥ e−ik′0t2+i~k′
⊥
·~x2⊥ fk⊥

(

z1−
k0
eE

)

fk′
⊥

(

−z2−
k′0
eE

)

+h.c.

}

.

Here n+
(

k̄, k̄′
)

=
〈

ψ
∣

∣

∣
a†
k̄
ak̄′

∣

∣

∣
ψ
〉

, κ+
(

k̄, k̄′
)

= 〈ψ |ak̄bk̄′ |ψ〉 and h.c. stands for the ex-

pressions containing
〈

ψ
∣

∣

∣
ak̄a

†

k̄′

∣

∣

∣
ψ
〉

= δ(3)
(

k̄ − k̄′
)

+ n+
(

k̄, k̄′
)

,
〈

ψ
∣

∣

∣
b†
k̄
bk̄′

∣

∣

∣
ψ
〉

= n−
(

k̄, k̄′
)

,
〈

ψ
∣

∣

∣
bk̄b

†
k̄′

∣

∣

∣
ψ
〉

= δ
(

k̄ − k̄′
)

+ n−
(

k̄, k̄′
)

and κ−
(

k̄, k̄′
)

=
〈

ψ
∣

∣

∣
a†
k̄
b†
k̄′

∣

∣

∣
ψ
〉

.
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At the same time the form of the retarded and advanced propagators does not depend

on the state |ψ〉. In [2] it was shown that there are no large (growing with time) loop

corrections to the retarded and advanced propagators and also to the vertexes. This is a

quite generic phenomenon: see e.g. [34] for the similar situations in different theories. It is

straightforward to show that the same is true in the static gauge. Hence, we continue with

the discussion of the Keldysh propagators. The reason why we present (3.1) and (3.2) here

is that loop corrections contribute to n and κ in the Keldysh propagators of both fields.

3.1 Correction to the photon’s Keldysh propagator

We start with the one-loop correction to the photon’s Keldysh propagator in the limit
t1+t2

2 = t → ∞, when t1 − t2 = const. The initial state that we consider here is the one

that is annihilated by all annihilation operators under consideration (a’s, b’s and α’s). I.e.

the tree-level Keldysh propagators GK and DK look as (3.1) and (3.2) with all n and κ

equal to zero.1

Performing the same calculation as in [2] one can see that the one-loop cor-

rection to the propagator in question has the form of (3.1), where nµν (~q, ~q
′, t) =

δ(2) (~q⊥ − ~q′⊥) nµν (q3, q
′
3, ~q⊥, t) and κµν (~q, ~q

′, t) = δ(2) (~q⊥ − ~q′⊥) κµν (q3, q
′
3, ~q⊥, t). The lat-

ter quantities are as follows:

nµν

(

q3, q
′
3, ~q⊥, t

)

≈ e2
∫

d3k̄

(2π)3

∫

dk′0
2π

t
∫

t0

t
∫

t0

dt3dt4
e−i(k0+k′0)(t3−t4)e−i|q|t3+i|q′|t4

2
√

|q||q′|

×
∫

dz3e
iq3z3

[

fk⊥

(

z3 −
k0
eE

)←→
Dµf|~q⊥+~k⊥|

(

−z3 −
k′0
eE

)]

×
∫

dz4e
−iq′3z4

[

f∗
k⊥

(

z4 −
k0
eE

)←→
Dνf

∗

|~q⊥+~k⊥|

(

−z4 −
k′0
eE

)]

,

and

κµν
(

q3, q
′
3, ~q⊥, t

)

≈ −2e2
∫

d3k̄

(2π)3

∫

dk′0
2π

t
∫

t0

t3
∫

t0

dt3dt4
e−i(k0+k′0)(t3−t4)e−i|q|t3−i|q′|t4

2
√

|q||q′|

×
∫

dz3e
iq3z3

[

fk⊥

(

z3 −
k0
eE

)←→
Dµf|~q⊥+~k⊥|

(

−z3 −
k′0
eE

)]

×
∫

dz4e
iq′3z4

[

f∗
k⊥

(

z4 −
k0
eE

)←→
Dνf

∗

|~q⊥+~k⊥|

(

−z4 −
k′0
eE

)]

, (3.3)

where Dµfp⊥ (±z − p0/eE) = (−ip0 ± ieEz, i~p⊥, ∂z) fp⊥ (±z − p0/eE) and f1
←→
Dµf2 =

(Dµf1) f2 − f1
(

D∗
µf2

)

; t0 is the moment of time after which we adiabatically turn on

interactions between charged scalars, φ, and quantum gauge fields, aµ. In these expres-

sions we neglect the difference between t1,2 and t in the limit under consideration. This

is mathematically rigorous if nµν and κµν have a divergence as t → +∞ and if we would

1Note that then GK and DK in (3.1) and (3.2) are not zero because 〈vac|α~qµ α+
~q′ν

|vac〉 =

−gµν δ
(3) (~q − ~q′) and

〈

ground
∣

∣ak̄ a
+
k̄′

∣

∣ ground
〉

= δ(3)
(

k̄ − k̄′
)

.
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like to single out only the leading contributions. Otherwise we do such an approximation

just to estimate the quantities under consideration. The physical meaning of such loop

corrections is discussed in [2].

Let us consider nµν in (3.3). In order to estimate the expression in (3.3) we make the

change of integration variables to: t′ = t3+t4
2 , τ = t3 − t4. Then, we obtain the τ -integral

in the range [t0 − t, t− t0], but its integrand is rapidly oscillating for large τ , as t → +∞
and t0 → −∞. Hence, we can extend the upper and lower limits of the τ -integration to

plus and minus infinity, respectively. Then, the integral over τ leads to the δ-function in

the following expression:

nµν

(

q3, q
′
3, ~q⊥, t

)

≈ e2
∫ t

t0

dt′
∫

d3k̄

(2π)3

∫

dk′0δ

( |q|+ |q′|
2

+ k′0 + k0

)

e−i(|q|−|q′|)t′

2
√

|q||q′|

×
∫

dz3e
iq3z3

[

fk⊥

(

z3 −
k0
eE

)←→
Dµf|~q⊥+~k⊥|

(

−z3 −
k′0
eE

)]

×
∫

dz4e
−iq′3z4

[

f∗
k⊥

(

z4 −
k0
eE

)←→
Dνf

∗

|~q⊥+~k⊥|

(

−z4 −
k′0
eE

)]

. (3.4)

We further make the following change of integration variables Z = z3+z4
2 and z = z3 − z4.

Also we change k0 → k0 − eEZ and k′0 → k′0 + eEZ. This change of integration variables

allows us to simplify the integral over Z, which leads to a δ-function establishing that

q3 = q′3. As a result, nµν (q3, q
′
3, ~q⊥, t) = δ (q3 − q′3) nµν (~q, t), where

nµν (~q, t) ≈ e2 (t− t0)

∫

d3k̄

(2π)3
1

2|q|

×
∫

dze−i 2 q3 z

[

fk⊥

(

z − k0
eE

)←→
Dµf|~q⊥+~k⊥|

(

−z +
k0 + |q|
eE

)]

×
[

f∗
k⊥

(

−z − k0
eE

)←→
Dνf

∗

|~q⊥+~k⊥|

(

z +
k0 + |q|
eE

)]

. (3.5)

To obtain this expression from (3.4) we have used that |q| = |q′| due to the presence of

δ(2) (~q⊥ − ~q′⊥) δ (q3 − q′3) in nµν (~q, ~q
′, t). Also we evaluate the integral over t′ in (3.4).

Finally, making the Fourier transformation (2.4), one can straightforwardly see

that (3.5) coincides with the expression for nµν obtained in [2]. Thus, nµν is divergent

as (t − t0) → ∞. This divergence signals the presence of the photon production which

starts right after the moment t0, when the interactions are turned on. It brakes the time

reversal and translational invariance of QED on the constant field background. We discuss

the physical meaning of all these observations in [2] in greater detail, but let us clarify a

few points here.

The photon’s Keldysh propagator does not depend on t = t1+ t2 on the tree-level. But

the Keldysh propagator contains such an element as 〈α+
µαν〉. At the tree-level this quantity

does not depend on time, because all the time dependence is absorbed into the harmonics.

However, if one turns on selfinteractions of quantum charged fields with quantum photons,

this quantity starts to run in the loops. It happens that in the stationary situation it

vanishes in the limit t− t0 → ∞, because of the energy-momentum conservation (〈α+
µα

µ〉
is proportional to the corresponding δ-functions imposing the conservation laws). That

should be the case, because in the stationary situation the level-population does not change.
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However, in the background fields there is no energy conservation or the energy is not

bounded from below. As the result 〈α+
µα

µ〉 shows the secular growth, i.e. is proportional

to t− t0 — level-populations start to change immediately right after one switches on self-

interactions (after t0) and continues till the moment of observation, t. The coefficient in

front of (t−t0) is nothing but a part of the collision integral responsible for particle creation

by the background field. As the result, unlike the stationary situation, one cannot take the

moment t0 (after which the coupling constant is adiabatically turned one) to past infinity.

Let us continue now with the consideration of κµν . In [2] we show that it does not

receive growing contributions. (This, in particular, shows that the initial state for the

photons is the appropriate vacuum state.) Now we are going to show, that in the static

gauge, κµν also does not grow with time. Similarly to the case of nµν here we also get that

κµν(q3, q
′
3, ~q⊥) ∝ δ(q3 + q′3). Then, we take the limit t → ∞ and t0 → −∞ in (3.3). This

way we find that κµν(q3, ~q⊥) ∝ δ(k0 + k′0 + |q|)δ(k0 + k′0 − |q|). Hence, one can integrate

out k′0 to find that:

κµν (~q, t → +∞) ≈ −2e2
1

|q| δ (2|q|)
∫

d3k̄

(2π)3

∫

dzei2q3z

×
[

fk⊥

(

z − k0
eE

)←→
Dµf|~q⊥+~k⊥|

(

−z +
k0 + |q|
eE

)]

×
[

f∗
k⊥

(

z − k0
eE

)←→
Dνf

∗

|~q⊥+~k⊥|

(

−z +
k0 + |q|
eE

)]

.

The obtained expression contains only convergent integrals and, hence, is finite, if q 6= 0.

3.2 Correction to the Keldysh propagator of the charged particles

The one-loop correction to the scalar Keldysh propagator, in the limit t = (t1 +

t2)/2 → ∞ and t1 − t2 = const, can also be expressed as (3.2) where n±
(

k̄, k̄′, t
)

=

δ(2)
(

~k⊥ − ~k′⊥

)

n±
(

k0, k
′
0,
~k⊥, t

)

and similarly for the case of κ±. In this case, for example,

n+
(

k0, k
′
0,
~k⊥, t

)

= e2
∫

d3~q

(2π)3

∫

dk′′0
2π

t
∫

t0

t
∫

t0

dt3dt4
e−i(|q|+k′′0 )(t3−t4)e−ik0t3+ik′0t4

2|q|

×
∫

dz3e
iq3z3

[

fk⊥

(

z3 −
k0
eE

)←→
Dµf|~q⊥+~k⊥|

(

−z3 −
k′′0
eE

)]

×
∫

dz4e
−iq3z4

[

f∗
k⊥

(

z4 −
k′0
eE

)←→
Dµf

∗

|~q⊥+~k⊥|

(

−z4 −
k′′0
eE

)]

and

κ+
(

k0, k
′
0,
~k⊥, t

)

= −2e2
∫

d3~q

(2π)3

∫

dk′′0
2π

t1
∫

t0

t3
∫

t0

dt3dt4
e−i(|q|+k′′0 )(t3−t4)e−ik0t3−ik′0t4

2q

×
∫

dz3e
iq3z3

[

fk⊥

(

z3 −
k0
eE

)←→
Dµf|~q⊥+~k⊥|

(

−z3 −
k′′0
eE

)]

×
∫

dz4e
−iq3z4

[

fk⊥

(

z4 −
k′0
eE

)←→
Dµf

∗

|~q⊥+~k⊥|

(

−z4 −
k′′0
eE

)]

. (3.6)

There are similar expressions for n− and κ−.

– 10 –



J
H
E
P
0
9
(
2
0
1
5
)
0
8
5

In [2] we show that none of the n± and κ± receive corrections that grow with time.

To make the same conclusion here we perform the same trick as at the end of the previous

subsection. For example, let us consider n+ and take t → +∞ and t0 → −∞. Then,

performing the same transformations as at the end of the previous subsection, we find:

n+
(

k0, k
′
0,
~k⊥, t →+∞

)

≈ e2δ(k0−k′0)

∫

d3~q

(2π)2
1

2q
(3.7)

×
∣

∣

∣

∣

∫

dz3e
iq3z3

[

fk⊥

(

z3−
k0
eE

)←→
Dµf|~q⊥+~k⊥|

(

−z3+
k0 + |q|
eE

)]∣

∣

∣

∣

2

.

This expression contains only convergent integrals. Hence, n+ cannot contain contributions

that grow with time. Using the same line of arguments one can draw the same conclusion

for the case of n− and κ±.

4 Discussion

We would like to present here some additional physical consequences of the observations

made above and in our previous paper.

4.1 Remarks on the loop correction to the current of the created particles

Since we have shown that the result of [2] is gauge independent, we prefer to use the

temporal gauge, i.e. Aµ = (0, 0, 0,−Et), because then the situation is easier to generalize

to more physically natural situations such as the pulse background.

The fact that n± do not grow with time does not necessarily mean that there is no

charge particle production generated by loops. First, it is worth stressing here that the

correct particle number in the temporal gauge is n±
(

~k, t
) ∣

∣

∣
fk⊥

(

±t+ k3
eE

)∣

∣

∣

2
rather than

n± itself. Second, although n±
(

~k, t → −∞
)

= 0, κ±
(

~k, t → −∞
)

= 0 it is the case that

n±
(

~k, t → +∞
)

= n± 6= 0, κ±
(

~k, t → +∞
)

= κ± 6= 0. This kind of behavior of n± and

κ± is clearly another sign of the breaking of the time translational and reversal invariance

of the theory, which is respected at tree-level.

What physical consequences should all this have? In e.g. [36, 37] it was shown that

the tree-level current of the produced pairs,

〈: J3 :〉tree = 2e

∫

dp3 d
2~p⊥

(2π)3
(p3 + eEt)

[

∣

∣

∣
fp⊥

(

t+
p3
eE

)
∣

∣

∣

2
− 1

2ωp⊥ (p3 + eEt)

]

, (4.1)

is vanishing. Here ωp⊥ (p3 + eEt) =
√

m2 + ~p2⊥ + (p3 + eEt)2 and the last term under the

integral cancels UV divergent contribution to the current, if it is present (see e.g. [36, 37]).

To see the vanishing of (4.1) one has to convert the integration variables p3 → pph = p3+eEt

and to note that |fp⊥(pph)|2 is an even function of pph. Thus, the current vanishes just

as a consequence of the time translation and time reversal invariance of the theory in the

constant electric field.
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At loop order, time translational and reversal invariance is broken. Hence, we can

expect that the one-loop correction to the current will be non-vanishing. In fact, the

correction is given by

〈: J3 :〉loop = 4e

∫

dpph d
2~p⊥

(2π)3

{

n+
p⊥

(pph) |fp⊥(pph)|2 +Re
[

κ+p⊥(pph) f2
p⊥

(pph)
]}

pph ,

(4.2)

where we denote n+ (~p, t) = n+
p⊥

(p3 + eEt) = n+
p⊥

(pph) and similarly for κ+. Here n± and

κ± are indeed functions of pph = p3 + eEt [2]:

n+
p⊥

(pph) ≈
e

E

∫ pph

−∞
dkph

∞
∫

−∞

dτ

∫

d3q

(2π)3
e−2i|q|τ

2|q|

×
[

fp⊥

(

τ +
kph
eE

)←→
Dµf|~p⊥−~q⊥|

(

τ +
kph − q3

eE

)]

×
[

f∗
p⊥

(

τ − kph
eE

)←→
Dµf

∗
|~p⊥−~q⊥|

(

τ − kph − q3
eE

)]

,

and

κ+p⊥(pph) ≈ −2 e

E

∫ pph

−∞
dkph

∞
∫

−∞

dτ

∫

d3q

(2π)3
e−2i|q|τ

2|q|

×
[

f∗
p⊥

(

τ +
kph
eE

)←→
Dµf|~p⊥−~q⊥|

(

τ +
kph − q3

eE

)]

×
[

f∗
p⊥

(

τ − kph
eE

)←→
Dµf

∗
|~p⊥−~q⊥|

(

τ − kph−q3
eE

)]

, (4.3)

where Dµ fp⊥
(

t+ p3
eE

)

≡ (∂t, ip1, ip2, ip3 + ieEt) fp⊥
(

t+ p3
eE

)

. Furthermore, to derive (4.2)

we use that κ− is just the complex conjugate of κ+ and n− (pph) = n+ (−pph), which is

straightforward to show.

It is not hard to see that (4.2) is not zero. The point is that n+ and κ+ are not even

functions of pph. For any choice of the harmonic functions, fk⊥ , these quantities do vanish

as pph → −∞ and approach finite non-zero constants as pph → +∞.

In order to estimate (4.2), we note that in-harmonics behave as:

fp⊥(pph) ∝
(pph
m

)i
~p2
⊥

+m2

2eE

exp

[

i
p2ph
2eE

]

√
2
(

m2 + ~p2⊥ + p2ph

)
1
4

,

when pph → −∞ and

fp⊥
(pph) ≈ αp⊥

·
(pph
m

)i
~p2
⊥

+m2

2eE
exp

[

i
p2
ph

2eE

]

√
2
(

m2+~p2
⊥
+p2ph

)
1
4

+βp⊥
·
(pph
m

)−i
~p2
⊥

+m2

2eE
exp

[

−i
p2
ph

2eE

]

√
2
(

m2+~p2
⊥
+p2ph

)
1
4

,
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when pph → +∞. Here αp⊥ and βp⊥ are functions of p⊥, obeying the condition |αp⊥ |2 −
|βp⊥ |2 = 1. Then, defining n+

p⊥
(pph = +∞) = n+

p⊥
, κ+p⊥ (pph = +∞) = κ+p⊥ and using the

same approximations as in [38], we obtain

〈: J3 :〉loop ∝ eE2(t− t0)

∫

d2~p⊥

{

n+
p⊥

|βp⊥ |2 +Re
[

κ+p⊥ αp⊥ βp⊥
]

}

, (4.4)

This expression is similar to the one obtained in [15, 36–38, 47] in the pulse background.

The crucial difference with the tree-level result for the pulse background, however, comes

from the fact that n+ ∼ e2 and κ+ ∼ e2 are the results of the one-loop contribution.

4.2 Remarks on the solution of the kinetic equation and summation of the

leading loop corrections

In [2] we show that nµν for the photons is equal to nµν (~q, t) = πµνnq (t), where πµν is time

independent, symmetric, transversal, qµπµν = 0, q2 = 0, tensor. Then from the system of

Dyson-Schwinger equations we derive a kinetic equation for nq (t):

∂nq(t)

∂t
= Γ1(q) [1 + nq(t)]− Γ2(q)nq(t), (4.5)

where

Γ1(q) ≈ e2
∫

d3k

(2π)3

∞
∫

−∞

dτ
e−2i|q|τ

|q|

[

fk⊥

(

τ +
k3
eE

)←→
Dµf|~k⊥−~q⊥|

(

τ +
k3 − q3
eE

)]

×
[

f∗
k⊥

(

τ − k3
eE

)←→
Dµf

∗

|~k⊥−~q⊥|

(

τ − k3 − q3
eE

)]

and

Γ2(q) ≈ e2
∫

d3k

(2π)3

∞
∫

−∞

dτ
e−2i|q|τ

|q|

[

f∗
k⊥

(

τ +
k3
eE

)←→
Dµf

∗

|~k⊥−~q⊥|

(

τ +
k3 − q3
eE

)]

×
[

fk⊥

(

τ − k3
eE

)←→
Dµf|~k⊥−~q⊥|

(

τ − k3 − q3
eE

)]

. (4.6)

The physical meaning of (4.5) is transparent. The first term on the right hand side describes

the photon production by the background field, while the second term accounts for the

decay of the produced photons into charged pairs. These processes are allowed in the

presence of the background field. The absence of other terms describing other processes is

explained by their suppression by higher powers of e2 [2]. The solution of (4.5) sums up

leading corrections, i.e. unsuppressed powers of e2(t − t0), from all loops. Here we would

like to find/compare Γ1 and Γ2 and, hence, to solve this kinetic equation.

To find the relation between Γ1 and Γ2, note that generic harmonic functions look like

(see e.g. [36, 37]):

fk⊥

(

t+
k3
eE

)

= AD
− 1

2
+i

m2+k2
⊥

2eE

[

−e−iπ
4

√

2

eE
(k3 + eEt)

]

+BD
− 1

2
−i

m2+k2
⊥

2eE

[

−ei
π
4

√

2

eE
(k3 + eEt)

]

. (4.7)
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Where A and B some constants. For example, for the in-harmonics B = 0. Then, one

can see that f∗
k⊥

(

t+ k3
eE

)

is equal to fk⊥

(

t+ k3
eE

)

under the exchange of eE → −eE and

~k → −~k. Using this relation and the change of ~k → ~q − ~k under the integrals in (4.6), one

can show that Γ1 = Γ2. The same is also true for the case of out-harmonics. As a result,

for such a choice of the harmonic functions, the leading one-loop correction to nµν(~q, t) is

exact and we have the linear growth in all loops. This means that the time translational

and reversal invariance cannot be restored after summation of all loops.
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