



Abstract — At the process of creation and maintenance of

information systems the model-based approach to the software

development is increasingly used. This approach allows to move the

focus from writing of the program code with using general purpose

language to the models development with automatic generation of

data structures and source code of applications. However at usage of

this approach it is necessary to transform models constructed by

various categories of users at different stages of system creation with

usage of various modeling languages. An approach to models

transformation in DSM platform MetaLanguage is considered. This

approach allows fulfilling vertical and horizontal transformations of

the designed models. The Metalanguage system support “model-text”

and “model-model” types of transformations. The component of

transformations is based on graph grammars described by production

rules. Transformations of model in Entity-Relationship notation are

presented as example.

Keywords — Domain-specific languages, visual language, DSM-

platform, language workbench, model-based approach, model

transformation, vertical transformation, horizontal transformation.

I. INTRODUCTION

Development of information systems with usage of the

modern tools is based on the design of the various models

describing the domain of the information system, defining data

structures and algorithms of system functioning. The main idea

of such model-driven approach is the systematic usage of

models at various stages of software development that allows

to shift the focus from writing code in general purpose

programming language to building models and automatic

generation of the source code and other necessary artifacts. At

modeling developer abstracts from concrete technologies of

implementations. It facilitates the creation, understanding and

maintenance of models. This approach is intended to increase

productivity and to reduce development time.

There are implementations of model-driven approach which

use general purpose modeling languages for describing of

information systems. So, the modeling language UML with the

standard MOF (Meta-Object Facility) forms a basis of the

concept MDA (Model-Driven Architecture) [1]. Other

implementations of the model-driven approach are based on

use of the visual domain-specific modeling languages

This work was supported by Russian Foundation for Basic Research (grant

14-07-31330).

A. O. Sukhov is with the National Research University Higher School of

Economics, Perm, Russia (phone: (+7) 912-589-0986; e-mail:

Sukhov.psu@gmail.com).

L. N. Lyadova is with the National Research University Higher School of

Economics, Perm, Russia (e-mail: LNLyadova@gmail.com).

(DSMLs, DSLs), intended to solve a particular class of

problems in the specific domain. Unlike general purpose

modeling languages, DSMLs are more expressive, simple in

applying and easy to understand for different categories of

users as they operate with domain terms. To support the

process of development and maintenance of DSMLs the

special type of software – language workbench (DSM-

platform) – is used.

The various categories of specialists (programmers, system

analysts, database designers, domain experts, business

analysts, etc.) are involved in the process of information

systems creation and maintenance. Often they need

modification of modeling language description to customize

and adapt DSML to new conditions, requests of business and

possibilities of users. The transformations of models

constructed by various users at different stages of information

system creation with usage of various DSMLs are necessary

for the models adjustment and integration [2].

For implementation of these possibilities it is necessary, that

the language workbench allowed to build the whole hierarchy

of models: model, metamodel, meta-metamodel, etc., where

model is an abstract description on some formal language of

system characteristics that are important from the point of view

of the modeling purpose, a metamodel is a model of the

language, which is used for models development, and a meta-

metamodel (metalanguage) is a language for the metamodels

description. Furthermore, the language workbench should

contains the tools allowing to fulfill conversion of models

between various levels of hierarchy (vertical transformations)

and in one hierarchy level (horizontal transformations).

The MetaLanguage system is a language workbench for

creating of visual dynamic adaptable domain-specific

modeling languages. This system allows to fulfill multilevel

and multi-language modeling of domain [3]. The basic

elements of the metalanguage are entity, relationship and

constraint.

Usage of domain-specific languages and tools for the system

development also affects a transformation problem as there is a

need of export of the models created with DSML to external

systems which, as a rule, use one of the standard modeling

languages that is different from used DSL. That is why one of

the main components of the MetaLanguage system is the

transformer. This component uses graph grammars for models

transformations description. Implementation of graph

grammars in the MetaLanguage system is defined by

appointment of this language workbench.

Visual Models Transformation

in MetaLanguage System
Alexander O. Sukhov, Lyudmila N. Lyadova

II. BASIC CONCEPTS

The basic concept of transformation definition is a

production rule which looks like :p L R , where p is a rule

name, L is a left-hand side of the rule, also called the pattern,

and R is a right-hand side of the rule, which is called the

replacement graph. Rules are applied to the starting graph

named the host-graph.

Let’s suppose that four labeled graphs G, H, L, R are given,

and graph L is a subgraph of graph G. Applying of the rule

:p L R to the starting graph G is called the replacement in

graph G of subgraph L on graph R, which is a subgraph of

graph H. The graph H is the result of this replacement [4].

Graph grammar is a pair GG = (P, 0G), where P is a set of

production rules, 0G is a starting graph of grammar.

Graph transformation is a sequenced applying to the starting

labeled graph 0G of finite set of rules  1 2, nP p p p :

1 2

0 1

n
pp p

nG G G   .

Transformations can be classified as horizontal and vertical

according to direction. The horizontal transformation is the

conversion, in which the source and target models belong to

one hierarchy level. An example of a horizontal transformation

is a conversion of model description from one notation to

another (see Fig. 1). The vertical transformation converts the

models which belong to various hierarchy levels, for example,

at mapping of the metamodel objects to domain model objects.

Data

Model

Metamodel

Meta-metamodel

Vertical

transformation

Horizontal

transformation

Entity-

Relationship

Diagram

UML Class

Diagram

Fig. 1. Horizontal and vertical model transformations

The models are described with some modeling languages.

Depending on the language on which source and target models

are described, horizontal transformations can be divided into

two types: endogenous and exogenous. An endogenous

transformation is the transformation of the models, which are

described on the same modeling language. An exogenous

transformation is the transformation of models, which are

described on various modeling languages [5].

Graph grammars are often used to describe any

transformations performed on graphs: definition of the models

operational semantics [6], the analysis of program systems

with dynamic evolving structures [7], etc.

The right-hand side of the rule may be not only a labeled

graph, but the code on any programming language, and also a

fragment of a visual model described in some notation. That is

why the graph grammar can be used for generation syntactic

correct models and for refactoring of existing models, code

generation and model transformation from one modeling

language to another [8].

Considering singularities and designation of MetaLanguage

system, it is necessary to make the following requirements to

its transformation component:

 To be obvious and easy to use for providing the

opportunity of involving to transformation description not

only programmers, but also experts, specialists in

domains. It can be achieved through the usage of visual

notation of transformations description language.

 To allow using the created transformations directly in the

system, i.e. to produce the models transformations in the

same user interface, in which they were designed.

 To perform both horizontal and vertical transformations,

and possibility to fulfill the horizontal transformations

from one notation to another, including a “model-text”

type.

 To allow specifying the transformations of entities and

relationships attributes and constraints imposed on

metamodel elements.

III. RELATED WORKS

There are various approaches to model transformations.

Some of them have the formal basis, so the systems AGG,

GReAT, VIATRA use graph rewriting rules to perform

transformations, and others apply technologies from other

areas of software engineering, for example the technique of

programming by example.

Various modifications of the algebraic approach [9] are

implemented in systems AGG, GReAT, VIATRA. In AGG

(Attributed Graph Grammar) [10], [11] the left- and right-hand

sides of the production rule are the typed attribute graphs, both

sides of a rule should be described in one notation, i.e. this

system allows to fulfill only endogenous transformations that

does impossible its usage in MetaLanguage system. Besides,

this tool does not allow to make transformation of a “model-

text” type. However the usage as the formal basis of the

algebraic approach to graph transformations allows to produce

graph parsing, to verify graph models, and the extension of

graphs of Java possibilities makes transformations more

powerful.

The GReAT (Graph REwriting And Transformation) system

[12], [13] is based on the algebraic approach with double-

pushout, therefore for transformation description it is

necessary to create the domain that contains both the left- and

right-hand sides of the production rule simultaneously with

instructions of what element it is necessary to add, and what to

remove. This form of rule is unusual for the user and a bit

tangled. However it provides a possibility of execution the

transformation of several source metamodels at once, which is

significant advantage in comparison with other approaches.

For metamodels definition the GReAT uses UML and OCL, it

does not allow the user to choose the language of metamodels

specification or to change its description. It makes this

approach unsuitable for usage in MetaLanguage.

The QVT (Query/View/Transformation) is the proposed by

OMG approach to models transformation, which provides the

user with declarative and imperative languages [14], [15].

Conversion is defined at the level of metamodels, which is

described on MOF. The advantage of this approach is the

existence of standard of its description, and also usage of

standard languages OCL and MOF at the models

transformation definition. But usage of MOF as a meta-

metamodeling language, does not allow the user to choose a

metalanguage convenient for him, or to change description of

the metalanguage which is integrated in the QVT.

VIATRA (VIsual Automated model TRAnsformations)

[16], [17] is a transformation language, based on rules and

patterns, which combines two approaches into a single

specification paradigm: the algebraic approach for models

description and the abstract state machines intended for

exposition of control flow. Thanks to constructions of state

machines the developers significantly raised the semantics of

standard languages of patterns definition and graph

transformation. Besides, powerful metalanguage constructions

allow to make multilevel modeling of domains. One of

shortcomings of the VIATRA is an inexpressive textual

language of metamodels description. VIATRA is not intended

for execution of horizontal model transformations. Its main

purpose is a verification and validation of the constructed

models by their transformation.

The ATL (ATLAS Transformation Language) is the

language, allowing to describe transformations of any source

model to a target model [18], [19]. Transformation is

performed at the level of the metamodels. The disadvantage of

this language is high requirements to the developer of

transformation. Since ATL in most cases uses only textual

definition of transformation, then in addition to knowledge of

source and target metamodels the developer needs to know

language of transformation definition. The ATL is a dialect of

QVT language and therefore inherits all its shortcomings.

MTBE (Model Transformation By-Example) approach [20],

[21] is quite non-standard and unusual. The main purpose of

MTBE is automatic generation of transformation rules on a

basis of an initial set of learning examples. However

implementations of this approach do not guarantee that the

generation of model transformation rules is correct and

complete. Moreover, the generated transformation rules

strongly depend on an initial set of learning examples. Current

implementations of MTBE approach allow to fulfill only full

equivalent mappings of attributes, disregarding the complex

conversions.

In summary, it is possible to say that all considered systems

have some disadvantages which restrict their applicability for

transformation definitions in the MetaLanguage system. But

the most appropriate and perspective, from the author’s point

of view, is the algebraic approach.

IV. MODEL TRANSFORMATIONS

Horizontal transformation is the conversion, in which the

source and target models belong to one hierarchy level.

All horizontal transformations in MetaLanguage system are

described at level of metamodels that allows to specify

conversions which can be applied to all models created on

basis of this metamodels. For a transformation definition it is

necessary to select a source and target metamodels and to

define production rules that are describing conversion.

To define the rule it is necessary to select objects (entities

and relationships) in a source metamodel, to set constraints on

pattern occurrence and to define the right-hand side of the rule.

Depending on a type of transformation a right-hand side will

be a text template for code generation, or a fragment of a

target visual metamodel.

Transformation rules are applied according to their order.

At first all occurrences of a first rule pattern will be found, for

each of them the system will replace it by the right-hand side

of the production rule, then the system will pass to the second

rule and will begin to execute it, etc.

Let’s assume that the system has selected next production

rule of transformation and trying to execute it. For

implementation of rule application it is necessary to describe

two algorithms: the algorithm of the pattern search in the

source host-graph and the algorithm of replacement of the left-

hand side of the rule by the right-hand side.

There are various algorithms of search of subgraph

isomorphic to the given pattern: Ullmann algorithm [22],

Schmidt and Druffel algorithm [23], Vento and Foggia

algorithm [24], Nauty-algorithm [25], etc. These algorithms

are the most elaborated and often used in practice.

However difference of the proposed approach from the

classical task of graph matching is that in this case it is

necessary to find a pattern in the metamodel graph, i.e. it is

required to lead matching of graphs which belong to various

hierarchy levels, thus it is necessary to consider type of nodes

and arcs, as between two nodes of the metamodel graph the

several arcs of various type can be led.

The offered algorithm for finding a pattern in the graph

model is a kind of backtracking algorithm that takes

exponential time.

Since the amount of arcs in the model graph is less than

amount of the nodes usually, each arc uniquely identifies

nodes, that are incident to it, and the degree of node can be

more than two, that does not allow to select the following node

of the model graph, entering into a pattern. It was decided to

start search of subgraph in a model graph on the basis of

search of particular type arcs.

At the first step of algorithm all instances of some arbitrary

relationship of the pattern will be found, i.e. search of an initial

arc with which execution of the second step of algorithm will

begin is carried out. At the second stage it is necessary to find

one of possible occurrence of all relationships instances of the

pattern-graph PG in the source model graph SG . At the third

step necessary nodes will be add to target graph TG and

replace the left-hand side of the rule by the right-hand side.

Then it is necessary to replace the left-hand side of the

production rule by the right-hand side after the subgraph of

left-hand side has been found in the source graph. The

algorithm of replacement will depend on a type of

transformation: whether transformation is “model-text” or

“model-model”.

Transformation “model-text”. The transformation of this

type allows to generate the source code on any target

programming language on the basis of the constructed models

as well as any other textual representation of model, for

example, its description on XML. In this case the right-hand

side of production rule contains some template consisting of as

static elements, which are independent of the found pattern,

and dynamic parts, i.e. elements which vary depending of the

found fragment of model.

For transformation fulfillment it is necessary to find all

occurrences of a pattern in a source graph and to produce an

insertion of an appropriate text fragment with a replacement of

a dynamic part by appropriate names of entities, relationships,

values of their attributes, etc.

The template is described on the target language. For

selection of a dynamic part of a template the special

metasymbols are used: “<<” (double opening angle brackets)

to indicate the beginning of a dynamic part, “>>” (double

closing angle brackets) to indicate the end of a dynamic part.

As entities and relationships can have the same name, then for

entity describing before its name the prefix “E.” is specified,

and for relationship describing before its name the prefix “R.”

is specified.

At the transformation specifying it is possible to set

constraints on pattern occurrence. These constraints allow to

define the context of the rule. They contain conditions with

which found fragment of model should satisfy.

Let’s consider an example: define the transformation that

allows on the basis of Entity-Relationship Diagrams (ERD) to

generate a SQL-query, building the schema of a corresponding

database.

At the first step it is necessary to choose the metamodel of

Entity-Relationship Diagrams (see Fig. 2) and to set the

transformation rules.

The metamodel contains the entities “Abstract”, “Attribute”,

“Entity”, “Relationship”. Attributes of the entity “Abstract” are

“Name” that identifies an entity instance, and “Description”,

containing the additional information about the entity. The

entity “Abstract” is abstract, i.e. it is impossible to create

instances of this entity in the model. “Abstract” acts as a parent

for entities “Entity” and “Relationship” (in the figure it is

shown by an arrow with a triangular end). Both child entities

inherit all parent attributes, relationships, constraints. “Entity”

does not have own attributes and constraints. “Relationship”

has the own attribute “Multiplicity”. The entity “Attribute” has

following attributes: “Name”, “Type” and “Description”.

The bidirectional association “Linked_Links” connects

entities “Relationship” and “Entity”. It means that it is possible

to draw equivalent relationship between these entity instances

in ERD-models. The second unidirectional association

“SuperClass_SubClass” binds entity “Entity” with itself, it

allows any instance of “Entity” to have parent (another

instance of “Entity”) in ERD-models. In ERD metamodel

between entities “Attribute” and “Abstract” the aggregation

“Belongs” is set (in figure this relationship is presented by an

arc with a diamond end), therefore in ERD-models instances of

entities “Relationship” and “Entity” can be connected by

aggregation with the instances of entity “Attribute”.

Fig. 2. Metamodel of Entity-Relationship Diagrams

For correct transformation execution the additional

attributes in the source metamodel should be added. To

determine what entity is a parent, and what entity is a child it is

necessary to add the mandatory attributes of a reference type

(“Child” and “Parent”) to relationship “SuperClass_SubClass”.

The entity “Relationship” should be transformed to the

reference between relational tables, therefore we will add to

“Relationship” additional mandatory attributes-references of

“LeftEntity” and “RightEntity” and attribute of logical type

“Has_Attribute”, which will facilitate the replacement of the

left-hand side of the production rule by the right-hand side.

For transformation definition we will use the traditional

rules of conversion of the ERD notation to a relational model,

for this purpose we will define the following rules.

The rule “Entity” which transforms the instance of entity

“Entity” to the single table looks like:


CREATE TABLE <<E.Entity.Name>>

(id INTEGER primary key)

Here <<E.Entity.Name>> is a dynamic part of the

template which allows to get a name of corresponding entity.

As there is not inheritance relationship in a relational model,

it is necessary to specify the rule “Inheritance”, which for each

instance of the relationship “SuperClass_SubClass” in the

“SubClass” table creates foreign key for connection with the

“SuperClass” table.

This rule looks like:



ALTER TABLE

<<R.SuperClass_SubClass.Child>>

ADD <<R.SuperClass_SubClass.Parent>>

ID INTEGER

ALTER TABLE

<<R.SuperClass_SubClass.Child>>

ADD FOREIGN KEY

(<<R.SuperClass_SubClass.Parent>>ID)

REFERENCES

<<R.SuperClass_SubClass.Parent>> (id)

The rule “Relationship_1M” allows to transform instance of

entity “Relationship”, which does not have attributes and its

multiplicity is “1:M”, to the reference between tables.

The rule has the following appearance:



ALTER TABLE <<E.Relationship.LeftEntity>>

ADD <<E.Relationship.RightEntity>>

ID INTEGER

ALTER TABLE <<E.Relationship.LeftEntity>>

ADD FOREIGN KEY

(<<E.Relationship.RightEntity>>ID)

REFERENCES <<E.Relationship.RightEntity>>

(id)

In this rule at first in the table corresponding to the left

entity the additional column with the name

<<E.Relationship.RightEntity>>ID is added, and then the

foreign key (correspondence between this additional column

and a column containing the identifiers of right table rows) is

created. This rule contains the constraint on the pattern

occurrence:
E.Relationship.Multiplicity = 1:М AND

E.Relationship.Has_Attribute = False

The rule “Relationship_M1” allows to transform instance of

entity “Relationship”, which does not have attributes and its

multiplicity is “M:1”, to the reference between tables.

The rule looks like:



ALTER TABLE <<E.Relationship.RightEntity>>

ADD <<E.Relationship.LeftEntity>>

ID INTEGER

ALTER TABLE

<<E.Entity.Relationship.RightEntity>>

ADD FOREIGN KEY

(<<E.Relationship.LeftEntity>>ID)

REFERENCES

<<E.Relationship.LeftEntity>>(id)

The content of this rule is similar to the content of the rule

“Relationship_1M”. This rule contains the constraint on the

pattern occurrence:
E.Relationship.Multiplicity = M:1 AND

E.Relationship.Has_Attribute = False

For each instance of entity “Relationship”, which has the

attributes, or has the multiplicity “1:1” or “М:М”, it is

necessary to create the single table that contains the key

columns of each entity involved in relationship. We call this

rule “Relationship_MM”, it has the following appearance:



CREATE TABLE <<E.Relationship.Name>>

(id INTEGER primary key,

<<E.Relationship.LeftEntity>>ID INTEGER,

<<E.Relationship.RightEntity>>ID INTEGER)

ALTER TABLE <<E.Relationship.Name>> ADD

FOREIGN KEY

(<<E.Relationship.LeftEntity>>ID)

REFERENCES <<E.Relationship.LeftEntity>>

(id)

ALTER TABLE <<E.Relationship.Name>> ADD

FOREIGN KEY

(<<E.Relationship.RightEntity>>ID)

REFERENCES <<E.Relationship.RightEntity>>

(id)

This rule contains the constraint on the pattern occurrence:
E.Relationship.Multiplicity = M:M OR

E.Relationship.Multiplicity = 1:1 OR

E.Relationship.Has_Attribute = True

The rule “Attribute” adds the columns corresponding to

attributes of instances of entities and relationships to the

created tables:



ALTER TABLE

<<E.Abstract.Name>>

ADD <<E.Attribute.Name>>

<<E.Attribute.Type>>

Let’s consider an example, apply the described

transformation to the model “University” presented in Fig. 3.

Fig. 3. Simplified model “University” on the ERD notation

As the result the following text has been generated by the

MetaLanguage system:
CREATE TABLE Man (id INTEGER primary key)

CREATE TABLE Student (id INTEGER primary key)

CREATE TABLE Lecturer (id INTEGER primary key)

CREATE TABLE ExamCards (id INTEGER primary key)

ALTER TABLE Lecturer ADD ExamCardsID INTEGER

ALTER TABLE Lecturer ADD FOREIGN KEY

(ExamCardsID) REFERENCES ExamCards (id)

ALTER TABLE ExamCards ADD StudentID INTEGER

ALTER TABLE ExamCards ADD FOREIGN KEY (StudentID)

REFERENCES Student (id)

CREATE TABLE PassExam (id INTEGER primary key,

StudentID INTEGER, LecturerID INTEGER)

ALTER TABLE PassExam ADD FOREIGN KEY (StudentID)

REFERENCES Student (id)

ALTER TABLE PassExam ADD FOREIGN KEY (LecturerID)

REFERENCES Lecturer (id)

ALTER TABLE Student ADD ManID INTEGER

ALTER TABLE Student ADD FOREIGN KEY (ManID)

REFERENCES Man (id)

ALTER TABLE Lecturer ADD ManID INTEGER

ALTER TABLE Lecturer ADD FOREIGN KEY (ManID)

REFERENCES Man (id)

ALTER TABLE Man ADD Name nvarchar(MAX)

ALTER TABLE PassExam ADD Duration nvarchar(50)

ALTER TABLE Lecturer ADD Post nvarchar(50)

ALTER TABLE Student ADD Direction nvarchar(MAX)

It should be noted that this transformation does not take into

account complex conversions the ERD notation to the database

schema, for example, those which would allow to create single

dictionary table on the base of attribute, because it requires a

special description language of templates and it is one of the

areas for further research. Although such conversion could be

done by adding to the entity “Attribute” the attribute

“Is_a_Dictionary” and setting the constraints on pattern

occurrence.

Transformation “model-model”. Transformation of this

type allows to produce conversion of model from one notation

to another or to perform any operations over model (creation

of new elements, reduction, etc.). Such transformation will

allow to export model to external systems, and to provide the

ability to convert the domain-specific language that was

created by the user in one of most common modeling

language, for example, UML, ERD, IDEF0, etc.

The left-hand side of a production rule of this type

transformation is some fragment of the source metamodel, and

the right-hand side of the rule is some fragment of the target

metamodel. At the production rule definition also it is

necessary to describe the rules for converting the attributes of

entities and relationships. The created model should not

contain dangling pointers, therefore the process of the

transformation executions begins with the creation of entity

instances and only then instances of relationships are created.

If in the process of model building the dangling pointers are

still found the system will delete them.

At transformation execution it is necessary to consider the

following elementary conversions:

 conversion “entity entity”;

 conversion “relationship relationship”;

 conversion “entityrelationship”;

 conversion “relationshipentity”.

Let’s suppose that in the source model the instances of

entities and relationships of pattern are already found.

For fulfillment of the conversion : L Ree Ent Ent it is

necessary to create in the new model the instance
REntI of the

appropriate entity from a rule right-hand side and to perform

transformation of attributes. The created instance of entity will

have the same name, as the name of source entity instance.

For execution the conversion : L Rrr Rel Rel at first it is

necessary to found in the source model the instances of entities

.LRelI SEI and .LRelI TEI , which are connected by the

relationship instance LRelI , then the images of these instances

should be found in the new model, and an instance of the

relationship from a rule right-hand side should be lead between

them. After that it is necessary to fulfill transformation of

attributes.

For fulfillment of the conversion : L Rer Ent Rel it is

necessary to find in source model the nodes SEntI , TEntI

which are adjacent to entity instance LEntI . Let’s denote their

images in the target model as Source and Target. In the target

model the relationship instance RRelI between nodes Source

and Target should be lead. Further it is necessary to execute

defined transformation of attributes.

Conversion : L Rre Rel Ent transforms the instance of

relationship LRelI found in the source model to the entity

instance REntI of target model. For conversion execution it is

necessary to create the entity instance REntI , to perform the

specified transformation rules of attributes. The name of

REntI will be the same as the name of the relationship

instance LRelI . At the next step it is necessary to find entities

instances .LRelI SEI , .LRelI TEI , which are connected by

relationship instance LRelI .

Further the instances of relationships that connect an entity

instance REntI with nodes Source and Target, which are

images of the nodes .LRelI SEI and .LRelI TEI , accordingly,

are created with keeping of orientation of relationship instance.

It is possible to present the rest conversions of “model-

model” type by a combination of these elementary operations.

Let’s consider an example, perform the transformation of

the model on ERD notation to UML Class Diagrams.

Since the transformation is done at the metamodel level,

then at the first step it is necessary to create/open source and

target metamodels. The ERD metamodel was presented in the

Fig. 2. Metamodel of UML Class Diagrams is shown in the

Fig. 4. It contains the following elements: the entity “Class”

and three relationships “Inheritance”, “Association”,

“Aggregation”. Let’s define the production rules that

determine the transformation.

Fig. 4. Metamodel of UML Class Diagrams

The rule “Abstract-Class” allows to convert the instances of

entities “Entity” and “Relationship”, which are connected at

least with one instance of entity “Attribute”, to the instance of

entity “Class”.

This rule has the following appearance:



The rule “Entity-Class” allows to convert the instance of

entity “Entity”, which is not associated with any instance of the

entity “Attribute”, to the instance of an entity “Class”.

The rule has the following form:



The rule “Relationship-Association” converts instances of

the entity “Relationship” of the source model to instances of

the relationship “Association” of the target model.

This rule looks like:



The rule “Inheritance” puts in correspondence to each

instance of the relationship “SuperClass_SubClass” of source

model a particular instance of the relationship “Inheritance” of

target model. This rule has the following form:



After definition of all rules, which are included in the

transformation, it is possible to execute conversion on a

specific model. Let’s perform this transformation on the

considered earlier model “University” (see Fig. 3). The result

of the transformation execution is presented in Fig. 5.

Fig. 5. Simplified model “University” in the Class Diagrams

notation, generated by MetaLanguage system

Vertical transformation is a conversion of model, described

at one level of hierarchy, to model presented at other level.

Transformation of model allocated at higher level of hierarchy

to model of subordinate level corresponds to operation of

creation of model allocated at subordinate level. Inverse

transformation allows to make interpretation of subordinate

level model, to define types of its elements, to fulfil various

operations over this model.

This mapping allows to support metamodels and created on

their basis models in a consistent state. At metamodel

modification the MetaLanguage system automatically makes

all necessary changes in appropriate models.

Let’s consider the process of vertical models

transformations in more details.

If the model “University” is loaded in the MetaLanguage

system as a metamodel, it will play the role of the domain-

specific language and the models can be created on its basis.

Let’s construct on the basis of the domain-specific metamodel

“University” the model “Exam”. This model contains the

following elements (see Fig. 6):

 “Test”, “Essay” are instances of the entity “ExamCards”;

 “Full-time student”, “Extramural student” are instances of

the entity “Student”;

 “Professor”, “Senior lecturer” are instances of the entity

“Lecturer”;

 “Name” is instance of the entity “Name”;

 “Writes”, “Solves” are instances of the relationship

“Gets”;

 “Checks”, “Prepares” are instances of the relationship

“Makes”.

Fig. 6. Simplified model “Exam”

Thus, at creation of metamodel “ERD” the mapping of

metalanguage constructions in metamodel entities and

relationships is fulfilled. So the metalanguage construction

“Entity” is mapped in the entities “Abstract”, “Attribute”,

“Entity”, “Relationship”.

Then at construction of the domain-specific metamodel

“University” the elements of metamodel “ERD” are mapped in

instances of entities and relationships of the metamodel

“University”. For example, on the basis of entity “Attribute”

its instances “Direction”, “Duration”, “Name”, “Post”, “Task”

are built.

At the creation of model “Exam” the entities and

relationships of the domain-specific metamodel “University”

are mapped in elements of the model “Exam”. So on the basis

of entity “Lecturer” the elements “Professor”, “Senior

lecturer” are created.

At the stage of models validation and transformation the

MetaLanguage system fulfills interpretation of models

elements at various hierarchy levels. So at transformation of

the domain-specific metamodel “University” in the SQL-query

the language workbench should determine with what entities

and relationships the elements of metamodel “University” are

created, since transformation rules are described at level of

metamodels. For example, at fulfillment of the previously

described transformation “model-text” the MetaLanguage

system will determine that elements “Man”, “Student”,

“Lecturer”, “ExamCards” are instances of the entity “Entity”

and will apply to them the transformation rule “Entity”.

V. CONCLUSION

Models transformations are a central part of the model-

based approach to system development, because an existence

in one system of models, which are fulfilled from the different

points of view, with a different level of details and with use of

different modeling languages, requires of existence of model

transformation tools, which allow to convert models both

between various levels of hierarchy, and within one level (at

transition from one modeling language to another).

The presented approach has been implemented in a

transformer of MetaLanguage system. This component allows

to convert models described on visual domain-specific

languages to text or other graphical models. The component

has a convenient and simple user interface, therefore not only

professional developers, but also domain specialists, for

example business analysts, can work with it.

With the usage of this approach some languages and models

have been developed. As example, the domain specific

languages for the queuing system simulation have been

designed and rules for transformation of visual simulation

models into code in GPSS language have been described [26].

Generated model has been used for simulation running.

REFERENCES

[1] A. Kleppe, J. Warmer, W. Bast, MDA explained. The model-driven

architecture: practice and promise. Reading: Addison-Wesley, 2003,

170 p.

[2] S. Sendall, W. Kozaczynski, “Model transformation: the heart and soul

of model-driven software development”, IEEE Software, vol. 20,

pp. 42–45, 2003.

[3] A. O. Sukhov, “The language workbench for visual domain-specific

modeling languages creation”, Fundamental Researches, vol. 4,

pp. 848-852, 2013.

[4] E. Grabska, B. Strug, “Applying cooperating distributed graph

grammars in computer aided design”, Parallel Processing and Applied

Mathematics, vol. 3911/2006, pp. 567–574, 2006.

[5] T. Mens, K. Czarnecki, P. V. Gorp, “A taxonomy of model

transformations”, Electronic Notes in Theoretical Computer Science,

vol. 152, pp. 125–142, 2006.

[6] U. Montanari, F. Rossi, “Graph rewriting, constraint solving and tiles

for coordinating distributed systems”, Applied Categorical Structures,

pp. 333–370, 1999.

[7] B. Konig, “Analysis and verification of systems with dynamically

evolving structure”, habilitation thesis [Online]. Available:

http://jordan.inf.uni-due.de/publications/koenig/habilschrift.pdf.

[8] J. Rekers, A. Schuerr “A graph grammar approach to graphical

parsing”, in Proc. of the 11th IEEE International Symposium,

Washington, 1995, pp. 195–202.

[9] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of algebraic

graph transformation. New York: Springer-Verlag, 2006, 388 p.

[10] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, M. Loewe,

“Algebraic approaches to graph transformation. Part I: basic concepts

and double pushout approach”, Handbook of Graph Grammars and

Computing by Graph transformation, vol. 1, pp. 163–246, 1997.

[11] H. Ehrig, R. Heckel, M. Korff, M. Loewe, L. Ribeiro, A. Wagner,

A. Corradini, “Algebraic approaches to graph transformation. Part II:

single pushout approach and comparison with double pushout

approach”, Handbook of Graph Grammars and Computing by Graph

Transformation, vol. 1, pp. 247–312, 1997.

[12] A. Agrawal, G. Karsai, S. Neema, F. Shi, A. Vizhanyo, “The design of a

language for model transformations”, Journal on Software and Systems

Modeling, vol. 5, pp. 261–288, 2006.

[13] D. Balasubramanian, A. Narayanan, C. P. Buskirk, G. Karsai, “The

graph rewriting and transformation language: GReAT”, Electronic

Communications of the EASST, vol. 1, pp. 1–8, 2006.

[14] T. Gardner, C. Griffin, J. Koehler, R. Hauser, “A review of OMG MOF

2.0 Query/Views/Transformations submissions and recommendations

towards the final standard”, in Proc. of the 1st International Workshop

on Metamodeling for MDA, York, 2003, pp. 1–20.

[15] P. Stevens, “Bidirectional model transformations in QVT: semantic

issues and open questions”, Model Driven Engineering Languages and

Systems, vol. 4735/2007, pp. 1–15, 2007.

[16] G. Csertan, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, D. Varro,

“VIATRA – visual automated transformations for formal verification

and validation of UML models”, in Proc. of the 17th IEEE

International Conference on Automated Software Engineering,

Washington, 2002, pp. 267–270.

[17] A. Balogh, D. Varro, “Advanced model transformation language

constructs in the VIATRA2 framework”, in Proc. of the ACM

Symposium on Applied Computing, New York, 2006, pp. 1280–1287.

[18] V. Chiprianov, Y. Kermarrec, P. D. Alff, “An approach for constructing

a domain definition metamodel with ATL”, in Proc. of the 1st

International Workshop on Model Transformation with ATL, Nantes,

2009, pp. 18–33.

[19] F. Jouault, F. Allilaire, J. Bezivin, I. Kurtev, “ATL: a model

transformation tool”, Science of Computer Programming, vol. 72,

pp. 31–39, 2008.

[20] D. Varro, Z. Balogh, “Automating model transformation by example

using inductive logic programming”, in Proc. of the ACM Symposium

on Applied Computing, New York, 2007, pp. 978–984.

[21] M. Wimmer, M. Strommer, H. Kargl, G. Kramler, “Towards model

transformation generation by-example”, in Proc. of the 40th Annual

Hawaii International Conference on System Sciences, Washington,

2007, pp. 1–10.

[22] J. R. Ullmann, “An algorithm for subgraph isomorphism”, Journal of

the Association for Computing Machinery, no. 23, pp. 31–42, 1976.

[23] D. Schmidt, L. Druffel, “A fast backtracking algorithm to test directed

graphs for isomorphism using distance matrices”, Journal of the

Association for Computing Machinery, no. 23, pp. 433–445, 1976.

[24] L. P. Cordella, P. Foggia, C. Sansone, M. Vento, “An improved

algorithm for matching large graphs”, in Proc. of the 3rd Workshop on

Graphbased Representations in Pattern Recognition, Ischia, 2001,

pp. 149–159.

[25] B. D. McKay, “Practical graph isomorphism”, Congressus

Numerantium, vol. 30, pp. 45–87, 1981.

[26] E. B. Zamyatina, L. N. Lyadova, A. O. Sukhov, “An approach to

integration of modeling systems and information systems on the basis of

DSM-platform MetaLanguage”, in Proc. of the 4th International

Conference Information Systems Development Technologies,

Gelendzhik, 2013, pp. 61–70.

