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ABSTRACT

Given a Lie algebra with a scalar product, one may consider the latter as a symplectic
structure on a dg-scheme, which is the spectrum of the Chevalley–Eilenberg algebra.
In Sec. 1 we explicitly calculate the first-order deformation of the differential on the
Hochschild complex of the Chevalley–Eilenberg algebra. The answer contains the Duflo
character. This calculation is used in the last section. There we sketch the definition of
the Wilson loop invariant of knots, which is, hopefully, equal to the Kontsevich integral,
and show that for unknot they coincide. As a byproduct, we get a new proof of the Duflo
isomorphism for a Lie algebra with a scalar product.
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1. Introduction

In [18] we built perturbative Chern–Simons invariants by means of the factorization
complex of Weyl n-algebras. In this paper, we continue this line and introduce the
Wilson loop invariant. This invariant is supposed to be equal to the Bott–Taubes
invariant and the Kontsevich integral. In fact, we are only interested in one question
here: calculating the Wilson loop invariant of unknot in S3. This problem appears
to be connected with the Duflo isomorphism.

We consider the Duflo isomorphism for Lie algebras with a scalar product, which
is much simpler to prove than the general statement from [8]. There are (at least)
two proofs of the Duflo isomorphism for a Lie algebra with a scalar product. In [1]
the authors use a quantization of the Weil algebra. In [4] the Kontsevich integral of
knots and link is used. Our sketch of a proof (see remark before Proposition 4.1) is
related to the both. The work [13] also connects these two approaches and it would
be very interesting to compare it with our arguments.
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Section 1 is not strongly connected with the rest of the paper, but is of inde-
pendent interest. Here we make a very concrete calculation of the first-order
deformation of the Hochschild complex for the Chevalley–Eilenberg algebra of a
Lie algebra. The deformation is given by the scalar product. This calculation is
closely connected with [17] and may be rephrased in the style of this paper, see
Remark 2.9.

In Sec. 2, we give a very short survey of results about en-algebras and the
factorization complex we need. For basics we refer the reader to [16] and for a
much more detailed survey than ours we refer to [10]. At the end of the section we
describe a construction, which plays a crucial role in the next section.

In Sec. 3, we apply this construction to the quantum Chevalley–Eilenberg alge-
bra, the role of which for perturbative Chern–Simons invariants is explained in
[18, Appendix]. The central result here is Proposition 4.1. The calculation we make
here strongly reminds the one from Sec. 1. I would like to understand better reasons
of this similarity. This section must be considered as an announcement. It contains
no proofs.

Everything is over a field k of characteristic 0.

2. Quantization of the Chevalley–Eilenberg Complex

2.1. Hochschild homology of the Chevalley–Eilenberg complex

Let g be a finite-dimensional Lie algebra. The Chevalley–Eilenberg algebra Ch•(g)
is a super-commutative dg-algebra S∗(g∨[1]) generated by the dual space g∨ placed
in degree 1. The differential is a derivation of this free super-commutative algebra
defined on the generators by the tensor g∨ → g∨ ∧ g∨ dual to the bracket. The Jacobi
identity guarantees that this is indeed, a differential. In terms of [2] the Chevalley–
Eilenberg algebra may be thought of as the function ring of a Q-manifold.

With any g-module E one may associate the module Ch•(g, E) over Ch•(g) as
follows. As a S∗(g∨[1])-module it is freely generated by E and the differential is
defined by its value on E ⊗ 1 given by the tensor E → E ⊗ g∨ of the g-action. As
a complex, Ch•(g, E) calculates the cohomology of g with coefficients in E.

The Ch•(g)-module Ch•(g, g∨ad) corresponding to the adjoint g-module may
be thought of as a cotangent complex of Ch•(g). The de Rham differential
ddR : Ch•(g) → Ch•(g, g∨ad), which is a derivation of Ch•(g)-modules, is tauto-
logically defined on the generators. Define the Ch•(g)-module of differential forms
of Ch•(g) as Ch•(g, k[[g∨]]ad). It is a super-commutative algebra and the de Rham
differential acts on it in the usual way, it is a derivation.

For a unital dg-algebra A define the reduced (or normalized) Hochschild complex
C∗(A) (see e.g. [15, Chap. 1.1]) as the total complex of the bi-complex with the
(−i)th term ∏

i≥0

(A ⊗ A/k ⊗ · · · ⊗ A/k︸ ︷︷ ︸
i

), (2.1)
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the first differential coming from A and the second differential given by

a0 ⊗ a1 ⊗ a2 ⊗ · · · ⊗ ai

�→ a0a1 ⊗ a2 ⊗ · · · ⊗ ai − a0 ⊗ a1a2 ⊗ · · · ⊗ ai

+ · · · + (−1)i+deg ai(deg a0+···deg ai−1)aia0 ⊗ a1 ⊗ · · · ⊗ ai−1. (2.2)

Here one have to choose representatives of quotients A/k, then apply formula and
take quotients again, the result does not depend on choices. Note, that the usual
definition uses direct sums instead of products, but we need the one we gave. In
other words, we shall consider unbounded chains, that is the graded completion
([7, Definition A.25]) of

∑
i≥0(A ⊗ A/k ⊗ · · · ⊗ A/k︸ ︷︷ ︸

i

) with respect to the grading

given by the grading on A. For an ungraded algebra the reduced Hochschild complex
calculates TorA⊗Ao

∗ (A, A).
The following proposition is a variant of the Hochschild–Kostant–Rosenberg

isomorphism.

Proposition 2.1. The formula

a0 ⊗ a1 ⊗ · · · ⊗ ai �→ a0 ddRa1 · · · ddRai (2.3)

defines a morphism from the reduced Hochschild complex C∗(Ch•(g)) of the
Chevalley–Eilenberg algebra to its differential forms Ch•(g, k[[g∨]]ad). This mor-
phism is a quasi-isomorphism.

Proof. Direct calculation shows that this is a morphism. The proof of Proposi-
tion 2.2 implies that this is a quasi-isomorphism.

Equip C∗(Ch•(g)) with a descending filtration F : the subcomplex FkC∗(Ch•(g))
is spanned by chains a0 ⊗ a1 ⊗ · · · ⊗ ai such that deg a0 ≥ k.

Proposition 2.2. The spectral sequence associated with the filtration F on
C∗(Ch•(g)) degenerates at the second sheet. The complex Ep,0

1 is isomorphic to
Ch•(g, k[[g∨]]ad) and Ep,>0

1 = 0.

Proof. The associated graded object to the filtration F is the tensor product of
S∗(g∨[1]) and the normalized standard complex, which calculates the homology of
algebra Ch•(g) with coefficients in the augmentation module. More precisely, the
latter complex is the total complex of the bicomplex, which is the direct product∏

i(Ch•(g)/k)⊗i, and with the second differential defined on a1 ⊗ · · · ⊗ ai by

a1 · a2 ⊗ · · · ⊗ ai − a1 ⊗ a2 · a3 ⊗ · · · ⊗ ai + · · · ± a1 ⊗ · · · ⊗ ai−1 · ai, (2.4)

where ai are elements of the augmentation ideal, which is identified with Ch•(g)/k.
To compute its cohomology consider the spectral sequence associated with the
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above mentioned bicomplex with the first differential (2.4). It degenerates at the
first sheet for trivial reasons and equals k[[g∨]] sitting in degree 0.

Equip Ch•(g, k[[g∨]]ad) with the stupid filtration (e.g. [9, III.7.5]) and consider
the map (2.3) of filtered complexes. In the light of the above, the associated map of
spectral sequences gives an isomorphism on the first sheet. It follows that the first
differentials also coincide. Thus the first differential of our spectral sequence is as
stated and the higher differentials vanish for dimensional reasons.

Note, that FiCi(Ch•(g)) is spanned by chains a0 ⊗ a1 ⊗ · · · ⊗ ai such that
deg a>0 = 1. Taking into account Proposition 2.2 we get the following.

Corollary 2.3. Every cycle in C∗(Ch•(g)) may be presented by a sum of chains
a0 ⊗ a1 ⊗ · · · ⊗ ai with deg a>0 = 1.

Finding an explicit formula for these cycles seems to be an interesting question.

2.2. Invariant vector fields

Along with the Hochschild complex as above one may consider the Hochschild
complex C∗(A, M) of a dg-algebra A with coefficients in a A-bimodule M (see
e.g. [15, Chap. 1.1]). It is given by the same formulas (2.1) and (2.2), but a0 now
is an element of M . For an ungraded algebra the reduced Hochschild complex
calculates TorA⊗Ao

∗ (A, M).
The Ch•(g)-module of 1-forms Ch•(g, g∨) is a bimodule as well, because the

algebra is supercommutative. Introduce the Hochschild complex of Ch•(g) with
coefficients in this bimodule C∗(Ch•(g), Ch•(g, g∨)).

Proposition 2.4. The formulas

a0 ⊗ a1 ⊗ · · · ⊗ ai �→ a0 ddRa1 ⊗ a2 ⊗ · · · ⊗ ai,

a0 ⊗ a1 ⊗ · · · ⊗ ai �→ ±a0 ddRai ⊗ a1 ⊗ · · · ⊗ ai−1,
(2.5)

where the sign is defined by the Koszul rule, define morphisms from the Hochschild
complex C∗(g) to the Hochschild complex with coefficients C∗(Ch•(g), Ch•(g, g∨))
of degree 1.

Proof. This is a direct calculation.

The following proposition describes these morphisms in terms of the quasi-
isomorphism (2.1).

Recall some basic facts from Lie group theory. For a finite-dimensional Lie alge-
bra g denote by Ug its enveloping algebra. This is a Hopf algebra which is dual to
the Hopf algebra of formal functions F (G) on the formal group associated with g.
The Poincaré–Birkhoff–Witt map from the symmetric power of g to its universal
enveloping iPBW : S∗g → Ug provides an isomorphism between them as adjoint
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g-modules. It is dual to the exponential coordinate map exp∗ : F (G) → k[[g∨]].
Maps

LL : F (G) → F (G) ⊗ g∨ and LR : F (G) → F (G) ⊗ g∨ (2.6)

dual to the multiplications

Ug ⊗ g → Ug and g ⊗ Ug → Ug

respectively. After identifying G and g by the exponential map, the maps (2.6) are
given by elements of Vect(g)⊗g∨. Corresponding maps from g to Vect(g) are given
by left and right invariant vector fields on G. Applying the constant trivialization of
the tangent bundle to g one may identify such a tensor with a section of the trivial
vector bundle with fiber End(g) over g. In other words, this section is the trans-
formation matrix between the constant basis of the tangent bundle and the one
given by left (right) invariant vector fields. By e.g. [21, Chap. 3.4] they are given
by formulas

id ± 1
2
Ad +

∑
n≥1

B2n

(2n)!
Ad2n (2.7)

(“+” for the first and “−” for the second tensor), where Ad is the structure tensor
of the g considered as linear function on g taking values in End(g) and Bn are
Bernoulli numbers: ∑

n≥0

Bn

n!
zn =

z

ez − 1
. (2.8)

Recall that Proposition 2.1 identifies C∗(Ch•(g)) with the complex
Ch•(g, k[[g∨]]ad). In the same way, one can build a quasi-isomorphism between
C∗(Ch•(g), Ch•(g, g∨)) and Ch•(g, g∨ ⊗ k[[g∨]]ad).

Proposition 2.5. Under the quasi-isomorphism as above, maps (2.5)

Ch•(g, k[[g∨]]ad) → Ch•(g, g∨ ⊗ k[[g∨]]ad)

are induced by (2.6), where k[[g∨]] is identified with F (G) by the exponential map;
that is, (2.5) are given by formulas (2.7).

Proof. Recall that in the proof of Proposition 2.2 we considered the direct product
of terms of the standard complex calculating TorCh•(g)

∗ (k, k) and identified it with
k[[g∨]]. Consider also the complex calculating Ext∗Ch•(g)(k, k), where we take direct
sum rather than direct product. The former complex is dual to the latter one.
As in the proof of Proposition 2.2, the spectral sequence argument shows, that
the cohomology of the latter complex is isomorphic to S∗(g). The Yoneda product
endows it with multiplication which, as it easy to check, gives it the structure of
the universal enveloping algebra of g. As the unbounded version of TorCh•(g)

∗ (k, k)
is dual to it, this is formal functions on the group. The quasi-isomorphism (2.3) is
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dual to the PBW isomorphism; that is, it is given by the exponential coordinates.
Formulas (2.5) define the left and right actions of the Lie algebra on the functions
on the group. This proves the statement.

Remark 2.6. Maps (2.5) may be thought as the Atiyah class of the diagonal of
the dg-manifold which is a spectrum of Ch•(g). Analogous maps and formulas for
a usual complex manifold play a crucial role in [17].

2.3. Quantization

Let now g be an finite-dimensional Lie algebra with a non-degenerate invariant
scalar product 〈· , ·〉. The scalar product may be thought of as a constant symplectic
structure of degree −2 on the dg-manifold (or Q-manifold), which is the spectrum
of Ch•(g). That is, we define a Poisson bracket on Ch•(g) on the generators by
{x, y} = 〈x, y〉 and extend it to the whole algebra by the Leibnitz rule. In terms of
[2] we get a QP -manifold.

A symplectic structure gives a first-order deformation of the product of functions
on a manifold and thus deforms the Hochschild complex. Our aim is to calculate it
in our case.

More precisely, consider the ring k[ε], where deg ε = 2 and ε2 = 0 and the
Chevalley–Eilenberg complex Ch•(g)⊗k[ε] over k[ε] with the differential as before,
with the product given by x·y = x∧y+ 1

2ε〈x, y〉. Take the Hochschild complex of k[ε]-
algebra Ch•(g)⊗k[ε], that is, all tensor products are taken over k[ε]. It is a module
over k[ε]. Multiplication by ε defines a 2-step filtration on it. Consider the spectral
sequence associated with this filtration. The zeroth sheet is C∗(Ch•(g))⊗k[ε]. The
following proposition describes d0 of this spectral sequence, which is the first-order
deformation of the differential in the Hochschild complex.

Proposition 2.7. Contract tensors (2.6) from Vect(g) ⊗ g∨ with the pairing 〈· , ·〉
and consider the resulting element of Vect(g) ⊗ g as a differential operator on
Ch•(g, k[[g∨]]ad) of the second-order, where term · ⊗ g differentiates Ch•(g) and
term Vect(g) ⊗ · differentiates k[[g∨]]. Under quasi-isomorphism (2.3) differential
d0 of the above-mentioned spectral sequence is given by half-sum of these operators
on the complex Ch•(g, k[[g∨]]ad). By (2.7), the matrix of this differential operator
is given by

id +
∑
n≥1

B2n

(2n)!
Ad2n, (2.9)

Bn are Bernoulli numbers, Ad is the structure tensor of the g, being considered as
linear function on g taking values in End(g).

Proof. By the very definition, the derivative of the differential of the Hochschild
complex along the first-order deformation given by a symplectic form is presented
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by the formula

d0(a0 ⊗ a1 ⊗ · · · ⊗ an)

=
1
2
{a0, a1} ⊗ a2 ⊗ · · · ⊗ an − 1

2
a0 ⊗ {a1, a2} ⊗ · · · ⊗ an

+ · · · ± 1
2
{an, a0} ⊗ a1 ⊗ · · · ⊗ an−1, (2.10)

where { , } is the Poisson bracket, associated with the symplectic form. Apply it to
the Chevalley–Eilenberg complex. By Corollary 2.3, any class in C∗(Ch•(g)) may
be represented by a cycle with degree one elements as entries with nonzero indexes.
As the Hochschild complex is reduced, it follows that in (2.10) only the first and
the last terms do not vanish. These terms are given by the maps (2.5). Applying
Proposition 2.5 we complete the proof.

Proposition 2.7 defines, therefore, on the algebra Ch•(g, k[[g∨]]ad) a differen-
tial operator of order 2 and of cohomological degree −1. On this algebra another
differential operator of the same order and degree is defined, in terms of the
above proposition it is given by the unit matrix. Call it the Brylinski differen-
tial after [5] and denote it by dBr. They are not chain homotopic, but by the
following proposition they become such after conjugation by an automorphism of
complex Ch•(g, k[[g∨]]ad). This automorphism equals to multiplication by the Duflo
character.

Given a Lie group G, equip it with the left invariant volume form (which is the
right invariant as well, due to the invariant scalar product). Equip its Lie algebra
g with the constant volume form and denote by j ∈ k[[g∨]] the Jacobian of the
exponential map. The Duflo character is the power series on g which is the square
root of the Jacobian and is given by

j
1
2 = exp

∞∑
n=1

B2n

4n(2n)!
Tr(Ad2n), (2.11)

where Bn are the Bernoulli numbers from (2.8) and Ad is the linear function on g

taking values in End(g) as above.

Proposition 2.8. Under the quasi-isomorphism (2.3), the differential d0 on Ch•(g,

k[[g∨]]ad) is chain homotopic to j−
1
2 ◦dBr ◦ j

1
2 , where j

1
2 is the operator of the mul-

tiplication of k[[g∨]] by the Duflo character and j−
1
2 is the inverse operator.

Proof. We will use the differential operator notation for endomorphisms of com-
plex Ch•(g, k[[g∨]]ad) and the Einstein summation convention. For example, dBr =
gij∂/∂xi∂/∂ ddRxj , where gij is the scalar product, xi is a basis in g∨ and ddR is
the de Rham differential (we think of Ch•(g, k[[g∨]]ad) as of differential forms on
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Ch•(g) as in Sec. 1). By Proposition 2.3,

d0 − dBr =
∑
n≥1

B2n

(2n)!
(Ad2n)i

jgik∂/∂xk∂/∂ ddRxj , (2.12)

where gij is the scalar product and Ad∗ is the element of k[[g∨]]⊗End(g). Consider
the differential operators of order 2 given by

H2n−1 = (Ad2n−1)i
jgik∂/∂xk ∧ ∂/∂xj .

We leave to the reader to check that

[dCE , H2n−1] = 2(Ad2n)i
jgik∂/∂xk∂/∂ ddRxj − 1

2n
[dBr, Tr(Ad2n)],

where dCE is the differential in the Chevalley–Eilenberg complex; all other terms
vanish due to the Jacobi identity. Comparing it with (2.12) we see, that d0 − dBr

is chain homotopic to [dBr, ln j
1
2 ]. This implies the statement.

Remark 2.9. The above proposition can be stated and proved in a coordinate-free
manner for any QP -manifold in terms of [2]. In the setting of [17] (see Remark 2.6) it
describes the differential on the differential forms on a complex symplectic manifold,
that is, on the Hochschild homology of the structure sheaf, coming from the first-
order deformation of the structure sheaf along the symplectic structure. It seems
that when applied to the cotangent bundle of a complex manifold, it gives an
alternative way of calculating the Todd class of this manifold.

Remark 2.10. Proposition 2.8 was inspired by the proof of the Duflo isomorphism
for a Lie algebra with an invariant scalar product from [1]. As we will see below,
the calculation above is connected with another proof of the Duflo isomorphism,
the one from [4].

3. en-algebras

3.1. en-algebras

The main character in what follows is a unital algebra over the operad en, the
operad of rational chains of the little discs operad. Recall that this dg-operad and
its cohomology for n > 1 is the shifted Poisson operad, which is generated by an
associative commutative product · of degree 0 and a Lie bracket { , } of degree 1−n,
they subject to the Leibnitz rule. A e∞-algebra is a unital homotopy commutative
algebra and e0-algebra is a complex with a chosen cocycle.

The embedding of spaces of little discs induces the map of operads ek → en

for k < n. It induces a functor from en-algebras to ek-algebras which we denote
by oblnk . In particular, functor obl∞n produces an en-algebra from any commutative
(that is, e∞-) algebra.

For our purpose it will be more convenient to consider the operad of rational
chains of the Fulton–MacPherson operad, see [18] and references therein for details.
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The latter operad is homotopy equivalent to en and below we will make no difference
between them; by saying an en-algebra we shall mostly mean an algebra over the
Fulton–MacPherson operad.

The operations of the operad of little discs are spaces of n-balls embedded in a
radius one n-ball. The group SO(n) acts by rotations on the big ball. In order to
take this action into the account one may consider SO(n) as an operad with 1-ary
only operations and take the semi-direct product of this operad and the little discs
operad. The result is called the framed little discs operad, see [22]. We denote the
dg-operad of chains of this operad by fen.

An alternative and better way to take into account the SO(n)-action is to con-
sider equivariant chains. It gives us a dg-operad colored by BSO(n), see e.g. [18].
Modules over this operad are SO(n)-equivariant complexes. Call these modules
equivariant en-algebras. In general, the category of such algebras is not the same as
the one of fen-algebras. However, for n = 2 commutativity of the group simplifies
things and these categories are essentially the same.

Consider the latter case in some detail. The cohomology of fe2 is known as the
Batalin–Vilkovisky (BV) operad, see e.g. [22]. It is generated by the product · and
the bracket { , } obeying the same relations as those in e2 and an additional 1-ary
operation ∆ of degree −1 obeying the relations

∆2 = 0, {a, b} = (−1)|a|∆(ab) − (−1)|a|∆(a)b − a∆(b).

3.2. The factorization complex

Given a framed n-manifold (that is, a manifold with the tangent bundle trivialized)
M and a en-algebra, the factorization complex

∫
M

A is defined as in [18] and in
the references therein. The idea of the definition is straightforward: discs embedded
in M define a right module over en and the factorization complex is the tensor
product over en of this right module with the left module given by A.

In order to extend the above definition to unframed manifolds, one needs the
algebra A to be equivariant. Locally, one may choose a framing on M and apply the
definition and then use the equivariance to identify results for different framings.

One important property of the factorization complex is its behavior with respect
to gluing, see e.g. [10] and references therein. Let M1 and M2 be two mani-
folds with isomorphic boundaries B. Then for a en-algebra A there is a map of
complexes ∫

M1

A ⊗
∫

M2

A →
∫

M1∪BM2

A.

It follows that for k < n, a k-manifold Mk and a en-algebra A, the complex∫
Mk×In−k A is a ek-algebra, and it is equivariant, if A is. In particular, for an

n-manifold M with boundary B the complex
∫

B×I
A is a (homotopy) algebra, and

the map above equips
∫

M
A with a module structure over it. In terms of this action,
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the gluing rule may be written as∫
M1∪BM2

A =
∫

M1

A ⊗R
B×I

A

∫
M2

A. (3.1)

Another important property of the factorization complex is a kind of homotopy
invariance: ∫

Mk×In−k

A =
∫

Mk

oblnk A.

Below we will make no difference between the two sides of this equality and will
denote them simply by

∫
Mk A. In particular, the factorization complex on a disk is

quasi-isomorphic, as a complex, to the algebra itself.

Example 3.1. Let A be an equivariant e2-algebra. Then its factorization complex
on the disc

∫
D2 A, which is A itself, is a module over

∫
S1×I1 A =

∫
S1 obl21 A, which is

the Hochschild homology complex of obl21 A. The equivariance of A is essential here:
without it, the Hochschild complex of e2-algebra A does not act on A, and, if an
equivariance structure is chosen, the action depends on this choice. In order to see
it, note that S1 × I1 is a framed manifold, that is why we do not need equivariance
to take its factorization complex for any, not only equivariant algebra. However,
this framing, which comes from the constant framing on the square after gluing
together two opposite edges, can not be extended to the whole disc obtained from
the annulus S1 × I1 by gluing one of its boundary circles with the disc. Hence, in
order to construct the desired action by gluing the annulus with the disc one need
to identify factorization complexes with different framings, and here one needs the
equivariance.

3.3. Weyl n-algebras

The type of equivariant en-algebras we need are the Weyl n-algebras; we refer
to [6, 18] for the definition. In order to build such an algebra one needs a super-
vector space V with a super-skew-symmetric non-degenerate bilinear form on it.
The en-algebra associated with such data is denoted by Wn(V ). In analogy with
the usual Weyl algebra, it is the deformation of the polynomial algebra generated
by V in the direction given by pairing. In fact, this is an algebra over the field
of Laurent formal series in the quantization parameter h; this, however, must be
ignored, assuming, loosely speaking, that h = 1.

There are some important properties we need. Firstly, considered as an ek-
algebra, where k < n, it is commutative. In other words, oblnk Wn(V ) = obl∞k k[V ]
for any k < n, where k[V ] is the polynomial algebra.

The following property is crucial for the construction of the perturbative invari-
ants in [18]: for any n-manifold M the complex

∫
M

Wn(V ) has one dimensional
cohomology ([18, Proposition 11]). I conjecture that, for any k < n, the factor-
ization complex

∫
Nk×In−k Wn(V ) is again a Weyl algebra for any k-dimensional

manifold Nk.
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Example 3.2. Let V be a vector space. Equip V ⊕V ∨[−1] with the standard form
of degree −1. Then W2(V ⊕ V ∨[−1]) is the space of polyvector fields on V ∨ and
standard operations on it — the Gerstenhaber bracket and the cup product — are
the operations of the cohomology of e2.

As any Weyl algebra, W2(V ⊕ V ∨[−1]) is equivariant. Thus it is acted on by
the operad fe2 and by its cohomology, which is the BV operad. The operation ∆
is equal to the de Rham differential, where the polyvector fields are identified with
the differential forms by means of the constant volume form. Another choice of the
volume form leads to another fe2-structure with the same underlying e2-structure.

3.4. The action

For associative (or e1-) algebras the notion of modules plays the central role. The
higher generalization of this notion is a en-algebra acting on a en−1-algebra, for the
definition and the discussion see e.g. [10] and references therein. Constructively, it
may be defined by means of the Swiss cheese operad, which is especially convenient
for algebras over the operad of chains of the Fulton–MacPherson operad. In the
same way as the operations of the little discs operad are given by the configuration
spaces of R

n, the operations of the Swiss cheese operad are given by the spaces
of distinct points in R

≥0 × R
n−1. There are points of two types: those on the

boundary and those in the interior. This gives a colored operad with two colors. If
an en-algebra B acts on an en−1-algebra A, then elements of B sit on the interior
points and elements of A on boundary points. For further details we refer the reader
to [25].

Note that the action of the Swiss cheese operad may be formulated in terms
of factorization sheaves; for the definition of the latter see e.g. [10] and references
therein. Namely, such an action is equivalent to a factorization sheaf on the half-
space such that its restriction to the boundary and to the interior is constant
factorization sheaves, corresponding to the en−1-algebra A and the en-algebra B.

It is known that for any en-algebra there exists a universal en+1 algebra End(A)
acting on it ([16]). In other words, an action of an en+1 algebra B on A is the same
as a morphism of en+1-algebras B → End(A). For an associative (or e1-) algebra
the End-object is its Hochschild cohomology complex.

Let V be a vector space. Equip V ⊕V ∨[1−n] with the standard form of degree
(1−n). Then Wn(V ⊕V ∨[1−n]) is End(k[V ]), where k[V ] is the polynomial algebra.
In order to see it, one may construct an action of Wn(V ⊕V ∨[1−n]) on k[V ] directly
by using the Swiss cheese operad and the Fulton–MacPherson compactification.
Then one need to check that the resulting map Wn(V ⊕ V ∨[1 − n]) → End(k[V ])
is a quasi-isomorphism.

This action commutes with taking the factorization complex. That is, if an
equivariant en+1-algebra B acts on an equivariant en-algebra A, then for a k-
manifold N the en−k+1-algebra

∫
Nk×In−k+1 B acts on en−k-algebra

∫
Nk×In−k A.

It follows immediately from definitions of the Swiss cheese operad and of
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the factorization complex. It seems plausible that under appropriate conditions∫
Nk×In−k+1 End(A) = End(

∫
Nk×In−k A).

Example 3.3. Consider the polynomial algebra A = k[V ] as an associative alge-
bra. Its Hochschild cohomology complex C∗(A, A) (which, as it was mentioned
above, is W2(V ⊕ V ∨[−1])) acts on it. It follows, that

∫
S1 C∗(A, A), which is a

e1-algebra, acts on
∫

S1 A. The latter complex is the Hochschild homology complex
of A, which is known to be quasi-isomorphic to the direct sum of shifted differential
forms (see e.g. [15]). It is shown in [19] that the first complex is quasi-isomorphic to
the differential operators on differential forms, and this is in good agreement with
the speculation preceding the present example.

Recall, that in Example 3.1 for any an equivariant e2-algebra A we construct
action of e1-algebra

∫
S1 A on the underlying complex of A. In the same way for any

equivariant en-algebra A the e1-algebra
∫

Sn−1 A acts on the underlying complex
of A: the action is given by gluing a n-ball and Sn−1 × I. It may be generalized
even further. The factorization complex

∫
Sk A, which is a en−k-algebra, analogously

acts on en−k−1-algebra oblnn−k−1 A. As this action plays a crucial role in the next
section, let us phrase it below as the construction.

The construction. Let A be an equivariant en-algebra. Then, for any k < n, the
en−k-algebra

∫
Sk A naturally acts on oblnn−k−1 A. The corresponding action of the

Swiss cheese operad is defined as follows. Embed R
≥0×R

n−k−1 linearly into R
n. Put

at any point of this half-space the factorization complex of A on the k-sphere lying
into the k + 1 space perpendicular to the half-space, with its center on 0×R

n−k−1

and passing through this point. In particular, for points on 0× R
n−k−1 we get the

sphere of zero diameter, that is a point and the factorization complex is A itself.
In other words, consider a map R

n → R
≥0 × R

n−k−1 which sends a point
to the pair which consists of the distance from the point to the subspace {0} ×
R

n−k−1 and the orthogonal projection on R
n−k−1. Then the direct image of the

factorization sheaf on R
n corresponding to A is the desired factorization sheaf on

R
≥0 × R

n−k−1.

4. Wilson Loop

4.1. Quantum Chevalley–Eilenberg algebra

Given a Lie algebra g with an invariant scalar product, in [18, Appendix] (see
also [6, 3.6.2]) a e3-dg-algebra Ch•

h(g) is defined as follows. Take the Weyl 3-algebra
given by the space g∨[1] with the scalar product and equip it with a differential
1
h{·, q}, where { , } is the image of the Lie bracket under the map L∞ → e3 (see
e.g. [18, Proposition 2]) and q is the degree 3 element, which is the composition
of the Lie bracket on g and the scalar product. Call this e3-algebra the quantum
Chevalley–Eilenberg algebra.
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Consider the Hochschild complex C∗(Ch•
h(g)). Here and in what follows we will

consider unbounded Hochschild chains, that is, the Hochschild complex which is
the direct product of its terms.

This Hochschild complex is the factorization complex
∫

S1 Ch•
h(g). As Ch•

h(g) is
e3-algebra, the Hochschild complex is an e2-algebra. Consider it as an e1-algebra,
that is take obl21

∫
S1 Ch•

h(g). By the very definition it is equal to
∫

S1 obl32 Ch•
h(g). We

mentioned above an important property of Weyl algebras: oblnk Wn(V ) = obl∞k k[V ]
for any k < n. It follows, that obl32 Ch•

h(g) = obl∞2 Ch•(g). Thus obl32 Ch•
h(g) is

just the super-commutative Chevalley–Eilenberg algebra. Its Hochschild complex is
again a super-commutative algebra quasi-isomorphic to Ch•(g, k[[g∨]]ad) by Propo-
sition 2.1.To recap,

∫
S1 Ch•

h(g) as e1-algebra, that is obl21
∫

S1 Ch•
h(g) is isomorphic

to Ch•(g, k[[g∨]]ad).
Now, let us apply the construction from the previous section to A = Ch•

h(g),
n = 3 and k = 1. It gives an action of the e2-algebra

∫
S1 Ch•

h(g) on obl31 Ch•
h(g),

which is obl∞1 Ch•(g). That is we get a map from the e2-algebra Ch•(g, k[[g∨]]ad)
to the Hochschild cohomology complex of Ch•(g) by the universal property, which
is easily seen to be a quasi-isomorphism. The Hochschild cohomology complex of
Ch•(g) is known to be equal to Ch•(g, Uad

g ), where Ug is the universal enveloping
algebra of g.

To be more precise, in this way we get a map from Ch•(g, k[[g∨]]ad) to
Ch•(g, Uad

g ) ⊗ k[[h]]. The e1-structure on this complex comes from the one on the
universal enveloping algebra. On the other hand, as it is shown in the previous para-
graph,

∫
S1 Ch•

h(g) as e1-algebra isomorphic to Ch•(g, k[[g∨]]ad). Thus, an explicit
form of this map, which is supplied by the proposition below, implies the Duflo
isomorphism.

Proposition 4.1. The map of complexes

Ch•(g, k[[g∨]]ad) =
∫

S1
Ch•

h(g) → Ch•(g, Uad
g ) ⊗ k[[h]] (4.1)

as above is chain homotopic to the map induced by the composition

k[[g∨]]
exp (h(·,·))→ S∗g ⊗ k[[h]]

j
1
2→ S∗g ⊗ k[[h]] PBW→ Ug ⊗ k[[h]], (4.2)

where the first arrow is given by the scalar product multiplied by h, the sec-
ond is the contraction with the Duflo character (2.11) and the third one is the
PBW map.

Proof. (Sketch of proof) As it was mentioned above, Ch•
h(g) as an e2-algebra is

isomorphic to the commutative algebra Ch•(g). It follows that the map induced
by the unit embedding Ch•(g) → Ch•(g, k[[g∨]]ad) is a morphism of e2-algebras
and in composition with (4.1) it gives the standard map Ch•(g) → Ch•(g, Uad

g ) .
Thus we know the image of the subalgebra Ch•(g) under (4.1). One may see that
the whole map (4.1) may be uniquely determined from it as the unique extension
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compatible with the Lie bracket coming from the e2-structure. To see this one may
use the faithful action of

∫
S1×S1 Ch•

h(g) on
∫

S1 Ch•
h(g) as in the sketch of the proof

of Proposition 4.3.
So our immediate purpose is to calculate the bracket on Ch•(g, k[[g∨]]), which

is
∫

S1 Ch•
h(g). As we will see below, it is enough to calculate the bracket with an

element which is image of a ∈ Ch•(g) under the embedding map as above. Given
an element b ∈ ∫

S1 Ch•
h(g), the bracket {a, b} may be interpreted geometrically

as follows. Consider the solid torus D2 × S1 and two circles in it: C = (0, S1),
call it the big one, and c = ({x ∈ D2 | |x| = 1/2}, ∗), call it the small one.
The cycle in the factorization complex of the solid torus, which is

∫
S1 Ch•

h(g),
representing {a, b} equals Cb ⊗ ([c] ⊗ a), where by Cb we denote the image of b in∫

D2×S1 Ch•
h(g) under the embedding C ↪→ D2 × S1. One may see that cycle [c]⊗ a

is equal to cddRa, where ddR is the de Rham differential. If a = x1 ∧ · · · ∧ xi, then
ddRx =

∑±ddRxi x1 ∧ · · · x̂i · · · ∧ xn.
Let us now start pulling the small circle to unlink it from the big one. That

is, consider a family of cycles ct where ct is a family of circles in the solid torus
such that c0 is the small circle, c1 is a circle unlinked with the big circle and only
one circle in the family intersects the big one. Until the circles do not intersect,
nothing happens and the cycle Cb ⊗ ct

a remains in the same class. But, as soon as
they intersect each other, this class is changed by the class which is a derivation
of b. The calculation shows that for b = ddRx0 x1 ∧ · · · ∧ xn it is given by the sum
of maps (2.5) contracted with x0 and multiplied by x1 ∧ · · · ∧ xn. The reasoning
is analogous to Proposition 2.7: unlinking influences only around the intersection
point. When the small circle is unlinked from the big one, Cb⊗c1

a vanishes, because
c1
a = [c1] ⊗ a is a boundary.

Note, that the e2-algebra Ch•(g, k[[g∨]]ad) is, in fact, a fe2-algebra. Thus,
instead of the Lie bracket, one may calculate the operator ∆ corresponding to
the rotation. Given an element x =

∑
aibi ∈ Ch•(g, k[[g∨]]ad), where ai are in the

odd part and bi in the even part, one may show, that

∆x =
∑

{ai, bi}.

Apply the calculations from the previous paragraph to it. Comparing it with Propo-
sition 2.7 we see, that the operator ∆ on Ch•(g, k[[g∨]]ad) coincides with the
operator d0 from there. Proposition 2.8 implies that the Duflo character gives an
isomorphism between this operator and dBr. In order to complete the proof, one
has to verify that dBr is the operator ∆ for the fe2-algebra Ch•(g, Uad

g ).

While proving the proposition we found that the operator ∆ on the fe2-
algebra

∫
S1 Ch•

h(g) is equal to the first-order deformation of the Hochschild dif-
ferential of Ch•(g) that we discussed in Sec. 1. I have no explanation for this
coincidence.
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4.2. Invariants of knots

In [18] we constructed invariants of manifolds using Weyl n-algebras. Below we
develop this idea for manifolds with embedded links. Let us restrict ourselves to a
3-sphere with a knot in it.

As it was observed in [18], the cohomology of the factorization complex of the
Weyl n-algebra Wn(V ) on a closed n-manifold is one-dimensional. If V lies in degree
1 and the manifold is a 3-sphere (or a homology sphere), then the generator of this
cohomology is given by the class [p] ⊗ StopV , where p is a point in the manifold.
As it was explained in [18, Appendix], the factorization complex

∫
S3 Ch•

h(g) is
isomorphic to the complex of the underlying Weyl 3-algebra. Since the Chevalley–
Eilenberg differential is inner, one needs to consider here unbounded chains that is,
take direct product rather than the direct sum. It is easy to see that the generator
in the cohomology of

∫
S3 Ch•

h(g) is given by [p]⊗Stopg∨. Call it the standard cycle.
The idea of invariants we construct is to produce another cycle and compare it with
the standard one.

Given a knot K : S1 ↪→ S3 and a class f ∈ ∫
S1 Ch•(g) = Ch•(g, k[[g∨]]ad),

denote by Kf the direct image of this class under K. The class we are interested in
is ([p] ⊗ Stopg∨) ⊗ Kf . For dimensional reasons, only f of degree 0 are interesting,
in fact, f ∈ k[[g∨]]inv. Thus we get the following definition.

Definition 4.2. For a knot K in R
3 the Wilson loop invariant is the function on

k[[g∨]]inv given by

f �→ ([∞] ⊗ Stop(g∨[1])) ⊗ Kf ∈
∫

S3
Ch•

h(g),

where we identify
∫

S3 Ch•
h(g) with k[[h]] using the standard cycle as the generator.

In [18] it is shown that invariants constructed there are described by formulas
similar to formulas for the Axelrod–Singer invariants. Following the same line, we
see that the Wilson loop invariants are connected with Bott–Taubes invariants;
for a survey of the latter see e.g. [24]. There is another invariant of knots — the
Kontsevich integral, see [7, Part 3]. In principle, it should coincide with the Bott–
Taubes invariants, see [12]. As far as I know, this point is not clear, for discussion
see [14]. One may hope that the definition above will help to elucidate this.

Our construction of the Wilson loop invariant depends on the choice of a Lie
algebra with a scalar product. One may give a more complicated, but universal defi-
nition of these invariants with values in the graph complex, which is the Chevalley–
Eilenberg complex of Hamiltonian vector fields, in the same way as it is outlined
in [18, Appendix].

An interesting property of the Kontsevich integral is its value on the unknot:
it is equal to the Duflo character and this allows to prove the Duflo isomorphism,
see [4; 7, Chap. 11]. The following proposition states that the Wilson loop invariant
shares this property.
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Proposition 4.3. The Wilson loop invariant of the unknot is equal to the compo-
sition

k[[g∨]]inv ↪→ k[[g∨]] → Ug ⊗ k[[h]] → k[[h]],

where the second arrow is given by (4.2) and the third one is the standard augmen-
tation.

Proof. (Sketch of proof) As it was discussed in Subsec. 4.1, the e2-algebra∫
S1 Ch•

h(g) acts on the e1-algebra Ch•
h(g). In Proposition 4.1 it is shown that this

action is not “naive”, the morphism to the End-object is the composition of the pair-
ing and the Duflo character. As it was mentioned above, this action is compatible
with taking the factorization complex: as

∫
S1 Ch•

h(g) acts Ch•
h(g) so

∫
S1×S1 Ch•

h(g)
acts on

∫
S1 Ch•

h(g). The e1-algebra
∫

S1×S1 Ch•
h(g) is the algebra of differential oper-

ators on Ch•
h(g, k[[g∨]]ad), see also Example 3.3. The complex

∫
S1 Ch•

h(g) is a kind
of a holonomic module over these differential operators. But, again, it is not “naive”,
this action is twisted by the Duflo character.

Cut S3 in two solid tori in the standard way, being the infinity point inside one of
them and the unknot is the middle circle of the other. Now apply (3.1) to calculate
the Wilson loop invariant of the unknot. As it was mentioned,

∫
S1×S1 Ch•

h(g) is
the algebra of differential operators and the factorization complexes of solid tori
are kind of holonomic modules with transversal characteristic varieties. Now, the
calculation of the Wilson invariant is reduced to taking the derived tensor product
of these modules and comparing cycles in the result given by different f ∈ k[[g∨]]inv.
Taking into account the Duflo twisting we get the result.

There is another natural approach to the knot invariants mentioned in [3]. Given
a knot in a closed manifold, one may cut out a small solid torus around it to get
a manifold with boundary. Then factorization complex for a fe3-algebra of this
manifold is a module over the factorization complex of the boundary torus, which
is an invariant of the knot.

The proof of the above proposition makes clear what happens when the fe3-
algebra is Ch•

h(g). In this case, the pair consisting of an algebra and a module
itself does not depend on the knot; they are, essentially, the algebra of differential
operators and the standard holonomic module over it. But this module contains a
chosen element (it is a e0-algebra!), which is the image of the unit. And the module
together with this element is the invariant of the knot. Reasoning analogous to the
proof of Proposition 4.3 shows that this invariant is, essentially, equivalent to the
Wilson loop invariant.

4.3. Skein algebra

It [23] for a Riemann surface S a skein algebra was introduced. It is generated by
non-self-intersecting loops on S. We claim that there is a map from this algebra
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to
∫

S×I Ch•
h(g). An element corresponding to a loop L maps to Lη, where η ∈∫

S1 Ch•
h(g) is the canonical element, which is the preimage of exp(hc) under (4.2),

where c is the Casimir element given by the scalar product.
The reason to propose it is the following. The skein algebra is the quantization

of a Poisson algebra. The latter appears in [11, 26] as a subalgebra of the Poisson
algebra of functions on the moduli space of G-local systems on S. But

∫
S×I

Ch•
h(g)

must be thought of as the quantization of the latter Poisson algebra, see [6].
Elements Lη play an important role since they are generating functions of Dehn

twists. In other words, the cobordism corresponding to the Dehn twist gives a
bimodule over

∫
S×I Ch•

h(g), according to speculations in the end of the previous
subsection. Then the element Lη, corresponding to the Dehn twist, gives us the
characteristic function of this module. This allows us to reduce the calculation of
the perturbative quantum invariants of manifolds to the Wilson loop invariant of
links similarly as it was done e.g. in [20].

We hope to elaborate all of this elsewhere.
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