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systems of Matveev and Shevchishin involving linear and cubic integrals. This enables us
to determine for which values of the parameters these systems are indeed globally defined
on S2.
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1. Introduction

The study of superintegrable dynamical systems has received many important developments reviewed recently in [1].
While integrable systems on the cotangent bundle T ∗M of a n-dimensional manifold, M , require a set of functionally
independent observables (H,Q1, . . . ,Qn−1) which are all in involution for the Poisson bracket { · , · }, a superintegrable
system is made out of ν ≥ n functionally independent observables

H, Q1, Q2, · · · Qν−1,

with the constraints
{H,Qi} = 0, for all i = 1, 2, . . . , ν − 1. (1)

The maximal value of ν is 2n − 1 since the system (1) reads dH(XQi) = 0, implying that the span of the Hamiltonian vector
fields, XQi , is, at each point of T ∗M , a subspace of the annihilator of the 1-form dH , the latter being of dimension 2n − 1. Let
us observe that for two-dimensional manifolds, a superintegrable system is necessarily maximal since ν = 3.

As is apparent from [1], the large amount of results for superintegrable models is restricted to quadratically superinte-
grable ones, whichmeans that the integrals Qi are either linear or quadratic in themomenta, and themetrics onwhich these
systems are defined are either flat or of constant curvature. Formanifolds of non constant curvature, Koenigs [2] gave exam-
ples of quadratically superintegrable models. For some special values of the parameters the metrics happen to be defined
on a manifold,M , which is never closed (compact without boundary).
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In their quest for superintegrable systems defined on closed manifolds, Matveev and Shevchishin [3] have given a
complete classification of all (local) Riemannian metrics on surfaces of revolution, namely

G =
dx2 + dy2

h2
x

, h = h(x), hx =
dh
dx
, (2)

which have a superintegrable geodesic flow (whose Hamiltonian will henceforth be denoted by H), with integrals L = Py
and S respectively linear and cubic in momenta, opening the way to the new field of cubically superintegrable models. Let
us first recall their main results.

They proved that if the metric G is not of constant curvature, then I3(G), the linear span of the cubic integrals, has di-
mension 4 with a natural basis L3, LH, S1, S2, and with the following structure. The map L : S → {L, S} defines a linear
endomorphism of I3(g) and one of the following possibilities hold:
(i) L has purely real eigenvalues ±µ for some real µ > 0, then S1, S2 are the corresponding eigenvectors.
(ii) L has purely imaginary eigenvalues ±iµ for some real µ > 0, then S1 ± iS2 are the corresponding eigenvectors.
(iii) L has the eigenvalue µ = 0 with one Jordan block of size 3, in this case

{L, S1} =
A3

2
L3 + A1 LH, {L, S2} = S1,

for some real constants A1 and A3. Superintegrability is then achieved provided the function h be a solution of following
non-linear first-order differential equations, namely

(i) hx(A0 h2
x + µ2 A0 h2

− A1 h + A2) = A3
sin(µ x)
µ

+ A4 cos(µ x)

(ii) hx(A0 h2
x − µ2 A0 h2

− A1 h + A2) = A3
sinh(µ x)

µ
+ A4 cosh(µ x)

(iii) hx(A0 h2
x − A1 h + A2) = A3 x + A4

(3)

and the explicit form of the cubic integrals was given in all three cases. For instance, whenµ = 1 orµ = i, their structure is

S1,2 = e±µy a0(x) P3
x + a1(x) P2

x Py + a2(x) Px P2
y + a3(x) P3

y


, (4)

where the ai(x) are explicitly expressed in terms of h and its derivatives; see [3].
For A0 = 0 these equations are easily integrated and one obtains the Koenigs metrics [2], while the cubic integrals have

the reducible structure S1,2 = Py Q1,2 where the quadratic integrals Q1,2 are precisely those obtained by Koenigs.
Furthermore it was proved that in the case (ii), under the conditions
µ > 0, A0 > 0, µ A4 > |A3|, (5)

the metric and the cubic integrals are real-analytic and globally defined on S2.
The aim of this article is on the one hand to integrate explicitly the three differential equations in (3) and, on the other

hand, to determine, by a systematic case study, all special cases which lead to superintegrable models globally defined on
simply-connected, closed, Riemann surfaces.

In Section 2 we analyze the trigonometric case (real eigenvalues), integrating explicitly the differential equation (3)(i) to
get an explicit local form for the metric and the cubic integrals. The global questions are then discussed, and we show that
there is no closed manifold,M , on which the superintegrable model under consideration can be defined.

In Section 3we investigate the hyperbolic case (purely imaginary eigenvalues). Here too, the integration of the differential
equation (3)(ii) provides an explicit form for both the metric and the cubic integrals.

The previous results allows the determination of all superintegrable systems globally defined on S2, and these are proved
in Theorems 1 and 2, namely

Theorem 1. The metric

G = ρ2 dv2

D
+

4D
P

dφ2, v ∈ (a, 1), φ ∈ S1,

with

D = (v − a)(1 − v2), P = (v2 − 2av + 1)2, −ρ = 1 + 4
(v − a)D

P
, (6)

is globally defined on S2, as well as the Hamiltonian

H =
1
2
GijPiPj =

1
2


Π2

+
P
4D

P2
φ


, Π =

√
D
ρ

Pv,

iff a ∈ (−1,+1). The two cubic integrals S1 and S2, also globally defined on S2, read

S1 = cosφA + sinφB, S2 = − sinφA + cosφB, (7)
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where

A = Π3
− f f ′′Π P2

φ, B = f ′Π2 Pφ − f (1 + f ′ f ′′) P3
φ, f =

√
D. (8)

Theorem 2. The metric

G = ρ2 dx2

D
+

4D
P

dφ2, ρ =
Q
P
, x ∈ (−1,+1), φ ∈ S1, (9)

with 
D = (x + m)(1 − x2),

P =


L+ (1 − x2)+ 2(m + x)


L− (1 − x2)+ 2(m + x)


, L± = l ±


l2 − 1,

Q = 3x4 + 4mx3 − 6x2 − 12mx − 4m2
− 1,

(10)

is globally defined on S2, as well as the Hamiltonian

H =
1
2
GijPiPj =

1
2


Π2

+
P
4D

P2
φ


, Π =

√
D
ρ

Px,

iff m > 1, and l > −1. The two cubic integrals S1 and S2, still given by the formulas (7) and (8), are also globally defined on S2.

In Section 3.6 we compare of our results with those of Matveev and Shevchishin [3]. In particular, for a convenience of
the reader, we provide the transition formulas between the coordinates and functions used in [3] and the coordinates and
function used in the present paper.

In Section 4 we analyze the affine case (zero eigenvalue). As in the trigonometric case, the system is never defined on
closed manifolds but we determine in which cases it is globally defined either on R2 or on H2.

In Section 5 we draw some conclusions and present some possibly interesting strategy for future developments.

2. The trigonometric case

2.1. The explicit form of the metric

The ode (3)(i) obtained in [3] is:

hx


A0 h2

x + µ2 A0 h2
− A1 h + A2


= A3

sin(µ x)
µ

+ A4 cos(µ x).

For the Koenigsmetrics A0 = 0; we thusmust consider here a non-vanishing A0 which can be scaled to 1. By a scaling of xwe
can also set µ = 1. By a translation of x and a scaling of h the right-hand side becomes λ sin x, with λ a free real parameter.
By a translation of h, we can set A1 = 0 and A2 = a. We hence have to solve

hx(h2
x + h2

+ a) = λ sin x, a ∈ R, λ ∈ R \ {0}. (11)

Let us regard now u = hx as a function of the variable h and define

U = u(u2
+ h2

+ a) with
d2U
dx2

+ U = 0. (12)

This last relation, when expressed in terms of the variable h becomes then

d
dh


u
dU
dh


+ u2

+ h2
+ a = 0, a ∈ R, (13)

and can be integrated, yielding

4hu
dU
dh

= c + (u2
+ h2

+ a)(3u2
− h2

− a). (14)

Since U = λ sin xwe have also a first order equation

U ′2
= λ2 − U2

⇒


4hu

dU
dh

2

= 16h2 (λ2 − U2), (15)

and upon using (14) we obtain a quartic equation for u:
c + (u2

+ h2
+ a)(3 u2

− h2
− a)

2
= 16 h2


λ2 − u2(u2

+ h2
+ a)2


. (16)
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If we define v = u2
+ h2, this equation remains a quartic in v but happens to be linear in h2. Solving for h2 in terms of the

variable v, we find

v = u2
+ h2, h2

=
D′2

8D
, D(v) = (v + a)(v2 − a2 + c)+ 2λ2. (17)

At this stage, it turns out to be convenient to define

f =
√
D =


(v + a)(v2 − a2 + c)+ 2λ2 and g = 2v − f ′2 (18)

where f ′
= df /dv. This allows, once the old coordinates (x, y) have been expressed in terms of the new ones, (v, y), to get

eventually the explicit form of the metric

1
2
G =

1
2h2

x
(dx2 + dy2) =


f ′′

g

2

dv2 +
dy2

g
(19)

which gives the Hamiltonian

H ≡ GijPiPj =
1
2


Π2

+ g P2
y


, Π =

g
f ′′

Pv. (20)

2.2. The cubic integrals

They were given in (4), as borrowed from [3], and become in our new coordinates with a slight change of notation

S± = e±y

Π3

∓ f ′Π2 Py + f f ′′Π P2
y ± f (1 − f ′f ′′)P3

y


. (21)

However due to the relation dH ∧ dPy ∧ dS+ ∧ dS− = 0, the four observables involved are not functionally independent.
Indeed, we have

S+ S− = 8H3
+ 8a H2 P2

y + 2c H P4
y − 2λ2 P6

y , (22)
so that we may consider two different superintegrable systems

I+ = (H, Py, S+) and I− = (H, Py, S−). (23)

Proposition 1. The observables S+ and S− are integrals and the set (H, Py, S+, S−) generates a Poisson algebra.

Proof. The Poisson brackets are given by

{H, S±} = e±y g
f ′′
Π P2

y (Π ∓ f ′ Py)

f f ′′′

− 3(1 − f ′ f ′′)

. (24)

Quite remarkably, the ode

f f ′′′
− 3(1 − f ′ f ′′) = 0 (25)

does linearize upon the substitution f =
√
D since we have

2

f f ′′′

− 3(1 − f ′ f ′′)


= D′′′
− 6 = 0, (26)

which gives for D the most general monic polynomial of third degree

D(v) = v3 − s1 v2 + s2 v − s3, (27)

whose coefficients are expressed in terms of the symmetric functions of the roots. As a matter of fact, the function D already
obtained in (17) displays exactly 3 parameters a, c, λ. Eqs. (24) and (25) insure then conservation of both cubic integrals S+

and S−.
The Poisson algebra structure follows from the following relations, viz.,

{S+, S−} = −16a H2 Py − 8c H P3
y + 12λ2 P5

y ,

S+ S− = 8H3
+ 8a H2 P2

y + 2c H P4
y − 2λ2 P6

y ;
(28)

it is generated by 4 observables in this case. �

2.3. Transformation of the metric and its curvature

Taking for D the expression (27), let us define the following quartic polynomials P and Q , namely

P = 8v D − D′2, Q = 2DD′′
− D′2

= P + 4(v − s1)D, Q ′
= 12D, (29)
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enabling us to write the metric (19) in the form

1
2
G = ρ2 dv2

D
+

4D
P

dy2, ρ ≡
Q
P

= 1 + (v − s1)
4D
P
, (30)

the scalar curvature being given by

RG =
1

4Q 3


2PQ W ′

− (QP ′
+ 2PQ ′)W


, W ≡ DP ′

− PD′
= 8D2

− QD′. (31)

One should bear in mind the following restrictions:

1. The relation v = u2
+ h2 requires v > 0.

2. For h to be real we must have D > 0.
3. For the metric G to be Riemannian we need P > 0.

2.4. Global properties

To study the global geometry of these superintegrable models, we will be using techniques which have proved quite
successful in [4,5] for integrable models with either a cubic or a quartic integral.

As emphasized in the Introduction, wewill from now on confine considerations to the case of simply connected Riemann
surfaces, which, by the Riemann uniformization theorem [6], are conformally related to spaces of constant curvature
S2,R2,H2.

One has first to determine, from the above positivity conditions, the open interval I ⊂ R admissible for the variable v.
The end-points are singular points for the metric and the possibility of a manifold structure is related to the behavior of the
metric at these end-points. Either they are true singularities (for instance if the scalar curvature is divergent at these points)
or they are apparent singularities (also called coordinate singularities) due to a bad choice of the coordinates as, for instance,

G = dr2 + r2 dφ2, r ∈ (0,+∞), φ ∈ S1, (32)

for which r = 0 is an apparent singularity which can be wiped out, using back Cartesian coordinates.
We will detect true singularities from the scalar curvature:

Lemma 1. Let us consider the interval I = (a, b), allowed for v, i.e., such that D(v) > 0 and P(v) > 0 for all v ∈ I . Suppose
that Q has a simple real zero v∗ ∈ I; then v = v∗ is a curvature singularity precluding any manifold structure associated with
the metric.

Proof. The relation (31) entails that

lim
v→v∗

Q 3(v) RG(v) = −4 P(v∗)D2(v∗)Q ′(v∗) (33)

and the right-hand side of this equation does not vanish. The existence of such a curvature singularity for v∗ ∈ I rules out
the possibility of a manifold structure. �

We will detect non-closedness by

Lemma 2. If the variable v takes its values in some interval I = (a, b) and if one of the end-points is a zero of P (and not of Q ),
then the manifold having infinite measure, it cannot be closed.

Proof. Let the allowed interval for v be I = (a, b). The measure of the manifold is

µG = 4
 b

a

Q (v)
P3/2(v)

dv


dy. (34)

Now, if P has a zero at one end-point where Q does not vanish, then this integral will be divergent. �

Let us turn ourselves to the analysis of this first case (i). Given any polynomial P we will use the notation ∆(P) for its
discriminant. The discussion will be organized according to the sign of∆(D). Let us begin with:

Proposition 2. If ∆(D) = 0 the superintegrable systems I+ and I− given by (23) are either trivial or are not defined on a closed
manifold.

Proof. If ∆(D) = 0, we may have first D = (v − v0)
3. The scalar curvature, easily computed using (31), is a constant. The

following theorem, due to Thompson [7], states that for Riemannian spaces of constant curvature, namely Sn, Rn, Hn with
n ≥ 2, every (symmetric) Killing–Stäckel tensor of any degree is fully reducible to symmetrized tensor products of the Killing
vectors. This implies that the cubic integrals are reducible, leaving us with the trivial integrable system (H, Py).
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For∆(D) = 0 we may also have D = (v − v0)(v − v1)
2 with v0 ≠ v1, which yields

P(v) = −(v − v1)
2 p(v), p(v) = v2 − 2(2v0 + 3v1)v + (2v0 + v1)

2,

Q = 3(v − v1)
3(v − v∗), v∗ = v0 +

v0 − v1

3
.

(35)

Let us first observe that for the metric

1
2
G =

9(v − v∗)
2

p(v)2
dv2

(v − v0)
+

4(v − v0)

(−p(v))
dy2 (36)

to be Riemannian we must have v > v0 and p(v) < 0. If the rootsw± of p are ordered asw− < w+, positivity of the metric
is achieved iff v ∈ I = (v0,+∞) ∩ (w−, w+), the upper bound of I being w+. Since P(w+) = 0 and Q (w+) ≠ 0, the
expected manifold cannot be closed by Lemma 2. �

Proposition 3. If ∆(D) < 0 the superintegrable systemsI+ andI− given by (23) are never globally defined on a closedmanifold.

Proof. If∆(D) < 0 the polynomial D has only a simple real zero. Using new parameters (a, b)we can write

D = (v − v0)

(v − a)2 + b2


, v ∈ (v0,+∞), a ∈ R, b ∈ R \ {0},

with

∆(D) = −4b2

(v0 − a)2 + b2

2
and, for P and Q ,

∆(P) = 16 384 a2

(v0 + a)2 + b2

2
∆(D), ∆(Q ) = 27 648 b2


(v0 − a)2 + b2

2
∆(D). (37)

Wemust exclude a = 0 since P(v) = −(v2−2v0v−b2)2 is negative. Hence, the previous discriminants are strictly negative,
implying that both polynomials P and Q have two simple real zeros.

The relation Q ′
= 12D shows that Q is strictly increasing from Q (v0) = −[(v0 − a)2 + b2] to Q (+∞) = +∞, hence

there exists a simple zero v∗ of Q such that v∗ > v0 while the other one lies to the left of v0 because Q (−∞) = +∞.
The polynomial P retains the form

P(v) = −


v2 − 2(v0 + 2a)v − a2 − b2 − 2av0

2
+ 16a


(v0 + a)2 + b2


v

showing that for a < 0 it is never positive as it should; so, we are left with the case a > 0. From the relations

P(v) = Q (v)+ 4(v0 + 2a − v)D(v), P ′(v) = 8D(v)+ 4(2a + v0 − v)D′(v),

we see that P(v0) is strictly negative and that P ′(v) is positive from v = v0 to v = v0 + 2a. Thus P increases to its first zero
v = w− < v∗ (since P(v∗) = 4(2a + v0 − v∗)D(v∗) > 0), is equal to Q for v = v0 + 2a > v∗, then vanishes at its second
zerow+ such thatw+ > v0 + 2a and, at last, decreases to −∞. Therefore, we end up with the ordering

v0 < w− < v∗ < v0 + 2a < w+.

So, D > 0 and P > 0 iff v ∈ (w−, w+), and within this interval Q has a simple zero for v = v∗; hence, by Lemma 1, there is
no underlying manifold structure. �

Let us conclude this section with

Proposition 4. If ∆(D) > 0 the superintegrable systemsI+ andI− given by (23) are never globally defined on a closedmanifold.

Proof. Let us order the roots of D according to 0 ≤ v0 < v1 < v2, so that

D(v) = (v − v0)(v − v1)(v − v2) = v3 − s1 v2 + s2 v − s3,

and D > 0 for v ∈ (v0, v1) ∪ (v2,+∞). We need to determine now the positivity interval for P . Since

∆(P) = 4096 σ 2∆(D) > 0, σ = (v0 + v1)(v1 + v2)(v2 + v0) > 0,

there will be either four real simple roots or no real root for P . The latter is excluded since P = 8vD − (D′)2 is nega-
tive at the zeros of D, and positive at those of D′. Also, notice that ∆(Q ) = −6912∆2(D) < 0 implies that Q has two
simple real roots and one of them is v∗ > v2. This is so because Q (v) = P(v) + 4(v − s1)D(v), which shows that
Q (v2) = P(v2) = −(v0 − v2)

2(v1 − v2)
2 < 0; but Q ′

= 12D entails that, for positive D, the function Q is increasing
with Q (+∞) = +∞. Hence v = v∗ is a simple zero of Q , forbidding any manifold structure by Lemma 1.
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The zeros of P may appear only when D > 0. Let us consider v ∈ (v0, v1). Observing that P(v0) = −(v0 − v1)
2(v0 − v2)

2

and P(v1) = −(v1 − v0)
2(v1 − v2)

2 are negative and that there does exist v = v− ∈ (v0, v1) for which D′(v−) = 0, we get
P(v−) > 0 which implies v0 < w0 < v− < w1 < v1, where (w0, w1) is the first pair of simple zeros of P . Positivity of both
D and P is therefore obtained for v ∈ (w0, w1). The function Q remains strictly negative for v ∈ [v0, v1], and Lemma 2 help
us conclude that the supposed manifold cannot be closed.

The remaining two zeros of P denoted byw2 < w3 must lie in (v2,+∞). Since Q (v2) = −(v2 − v0)
2(v2 − v1)

2 < 0 and
then it increases to Q (+∞) = +∞ it will have a simple zero v = v∗ > v2, and at this point P(v∗) = 4(s1 − v∗)D(v∗). Let
us discuss:
1. If v∗ < s1, we have P(v∗) > 0, and since P(+∞) = −∞ we get v2 < w2 < v∗ < w3. The positivity of D and P requires
v ∈ (w2, w3), and there is no manifold structure since the curvature RG is singular at v = v∗.

2. If v∗ ≥ s1, we have P(v∗) < 0 hence v2 < v∗ < w2 < w3, and the positivity of D and P requires v ∈ (w2, w3). Since
Q (w3) > 0 the supposed manifold cannot be closed by Lemma 2. �

We conclude this section by observing that the trigonometric case never leads to superintegrable systems defined on a
closed manifold.

3. The hyperbolic case

3.1. The explicit form of the metric

The ode (3)(ii) obtained in [3] is

hx(A0 h2
x − µ2 A0 h2

− A1 h + A2) = A3
sinh(µ x)

µ
+ A4 cosh(µ x). (38)

Again, we may put A0 = 1, µ = 1, A1 = 0, A2 = −a, but, this time, the right-hand side of the previous equation leads to
three different cases we will describe according to

hx(h2
x − h2

− a) =
λ

2
(ex + ϵ e−x), ϵ = 0,±1 (39)

where λ is a free parameter.
Let us point out that for ϵ = 0 the changes x → −x and λ → −λ show that there is no need to consider e−x in the

right-hand side of (39).
With the definitions

u = hx, U = u(u2
− h2

− a), a ∈ R,
we get similarly

U ′′
− U = 0 ⇒

d
dh


u
dU
dh


− (u2

− h2
− a) = 0,

which can be integrated to yield

4hu
dU
dh

= c + (u2
− h2

− a)(3u2
+ h2

+ a), c ∈ R. (40)

Since U =
λ
2 (e

x
+ ϵ e−x)we also have the first order ode:

U ′2
= U2

− ϵ λ2 ⇒


4hu

dU
dh

2

= 16 h2 (U2
− ϵλ2), (41)

which, upon use of (40), leaves us with a quartic equation in the variable u. Positing v = h2
− u2, we still have a quartic in

v but the h2 dependence is merely linear and we can solve for h2 in terms of the variable v, namely

v = u2
− h2, h2

=
D′2

8D
, D(v) = (a − v)(v2 − a2 + c)− 2ϵλ2, (42)

giving a result surprisingly similar to the case (i), except that v needs not be positive. Upon defining

f =
√
D =


(a − v)(v2 − a2 + c)− 2ϵλ2 and g = f ′2

+ 2v, (43)
we obtain the metric in the new coordinates (v, y) in the form

1
2
G =

1
2h2

x
(dx2 + dy2) =


f ′′

g

2

dv2 +
dy2

g
, (44)

together with the Hamiltonian

H ≡ Gij Pi Pj =
1
2


Π2

+ g P2
y


, Π =

g
f ′′

Pv. (45)
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3.2. The cubic integrals

They were given in (4) and read in our coordinates
S1 = cos yA + sin yB, S2 = − sin yA + cos yB, (46)

where

A = Π3
− f f ′′Π P2

y , B = f ′Π2 Py − f (1 + f ′ f ′′) P3
y . (47)

Proposition 5. The observables S1 and S2 are integrals of the geodesic flow.
Proof. Let us define the complex object

S = S1 + iS2 = e−iy(A + iB). (48)

The Poisson bracket with the Hamiltonian reads

{H, S} = −e−iy g
f ′′
Π P2

y (Π + if ′ Py)

f f ′′′

+ 3(1 + f ′ f ′′)

. (49)

Again, the transformation f =
√
D leads to the following linearization:

2

f f ′′′

+ 3(1 + f ′ f ′′)


= D′′′
+ 6 = 0 H⇒ D = −(v3 − s1 v2 + s2 v − s3). (50)

We conclude via (43) and (49) that S is an integral. �

As in case (i) we have dH∧dPy∧dS1∧dS2 = 0,which shows that these four observables are not functionally independent.
Indeed, we readily find

S21 + S22 = A2
+ B2

= 8H3
+ 8a H2 P2

y + 2c H P4
y − 2ϵλ2 P6

y , (51)
leading us to consider two different superintegrable systems, namely

I1 = (H, Py, S1), I2 = (H, Py, S2). (52)
The Poisson bracket of the two cubic integrals still reduces to a polynomial in the observables H and Py, viz.,

{S1, S2} = −8a H2 Py − 4c H P3
y + 6ϵ λ2 P5

y , (53)

as in (51) for S21 + S22 , but this is no longer true for the product

S1 S2 = cos(2y)A B + sin(2y)
B2

− A2

2
(54)

which is a new, independent, observable. This time, the set (H, Py, S1, S2) of first integrals of the geodesic flow does not
generate a Poisson algebra.

3.3. Transformation of the metric and curvature

Returning to the expression (50) of D, let us define the polynomials

P = 8vD + D′2, Q = 2DD′′
− D′2

= −P − 4(v − s1)D, Q ′
= −12D, (55)

which readily yield the metric

1
2
G = ρ2 dv2

D
+

4D
P

dy2, −ρ ≡ −
Q
P

= 1 + (v − s1)
4D
P
, (56)

with the restrictions D > 0 and P > 0 that ensure its Riemannian signature.We notice that the scalar curvature is still given
by

RG =
1

4Q 3


2PQ W ′

− (QP ′
+ 2PQ ′)W


, W ≡ DP ′

− PD′
= 8D2

+ QD′, (57)

showing that Lemma 1 remains valid.

Lemma 3. Let I = (−∞, v0) be the allowed interval for v where v0 is a simple zero of D. If for all v ∈ I one has P(v) > 0 and
Q (v) > 0, then the metric exhibits a conical singularity which precludes any manifold structure.
Proof. Using the relations given in (55), when v → v0+ the metric approximates as

1
2
G ≈

4
D′(v0)

(dr2 + r2 dy2), r =
√
v − v0 → 0+ (58)

and hence, for this singularity to be apparent, we need to assume y = φ ∈ S1.
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For v → −∞ we get

1
2
G ≈ dr2 + r2


dφ
3

2

, r =
1

√
−v

→ 0+ (59)

and we cannot have φ/3 ∈ S1 as well. This kind of singularity, called conical, rules out a manifold structure. �

For further use we will also prove the general result:

Lemma 4. Assume that the metric

G = A(v) dv2 + B(v) dφ2, v ∈ I = [a, b], φ ∈ S1, (60)

be globally defined on a closed manifold M. Then its Euler characteristic is given by

χ(M) = γ (b)− γ (a), γ = −
B′

2
√
A B
. (61)

Proof. Using the orthonormal frame

e1 =
√
A dv, e2 =

√
B dφ,

we find that the connection 1-form reads ω12 =
γ

√
B
e2, where γ is as in (61). The curvature 2-form is then given by

R12 = dω12 =
γ ′

√
AB

e1 ∧ e2,

from which we get

χ(M) =
1
2π


M
R12 =


I
γ ′(v)dv = γ (b)− γ (a),

which was to be proved. �

Let us consider now the global properties of these metrics.

3.4. The global structure for ϵ = 0

In this section we will keep the notation

D(v) = (a − v)(v2 − a2 + c), ∆(D) = 4c2(a2 − c),

and organize the discussion according to the values of the discriminant∆(D) ofD. Wewill exclude the single case a = c = 0
since then the scalar curvature vanishes, implying thatwe loose superintegrability as explained in the proof of Proposition 2.

3.4.1. First case:∆(D) = 0
We will begin with

Proposition 6. There exists no closed manifold for c = 0 and a ≠ 0.

Proof. We have, in this case,

D(v) = (a − v)(v2 − a2), P(v) = (v − a)4, Q (v) = 3(v − a)3(v − v∗), v∗ = −
5
3
a, (62)

and the metric writes

1
2
G = 9

(v − v∗)
2

(a − v)4

dv2

−a − v
+

4
3

a − v

(v − v∗)
dy2. (63)

For a > 0 we have D > 0 and P > 0 iff v ∈ I = (−∞,−a); but since v∗ ∈ I we get no manifold structure by Lemma 2.
For a < 0 the positivity of G is satisfied for v ∈ (−∞, a) ∩ (a,−a). In both cases, a is a zero of P but we cannot use

Lemma 2 because Q (a) = 0. In fact, the measure of the sought manifold

µG = 12

(v − v∗)

(v − a)3
dv


dy

is divergent (since the integrand blows up at v = a), prohibiting a closed manifold. �
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Proposition 7. There exists no closed manifold for c = a2 > 0.
Proof. We have now

D(v) = v2(a − v), P(v) = v2(v − 2a)2, Q (v) = 3v3(v − v∗), v∗ =
4
3
a. (64)

For a < 0we haveD > 0 and P > 0 iff either v ∈ I1 = (2a, a) or v ∈ I2 = (−∞, 2a). In the first intervalQ has a simple zero
v = v∗, and P(v∗) and D(v∗) do not vanish; in view of Lemma 1 we get a curvature singularity. As for the second interval,
the end-point v = 2a is a zero of P where Q (2a) ≠ 0; hence by Lemma 2, the sought manifold is not closed.

For a > 0 we have I = (−∞, a). There will be no curvature singularity since Q never vanishes for v ∈ I . Since v = a is
a simple zero of D such that P(a) and Q (a) are non-zero; we conclude by Lemma 3. �

3.4.2. Second case:∆(D) < 0
Here, we have

D = (a − v)

v2 + c − a2


, c > a2, P = (v − w−)

2(v − w+)
2, w± = a ±

√
c, (65)

and
Q = −P + 4(a − v)D, Q ′

= −12D. (66)

Proposition 8. There exists no closed manifold for ∆(D) < 0.
Proof. The positivity of D and P holds for any v ∈ (−∞, w−) ∪ (w−, a). The second interval is excluded since Q is strictly
decreasing and the relations

Q (w−) = 8 c3/2 (
√
c − a) > 0, Q (a) = −c2 < 0, (67)

imply that Q has a simple zero inside the interval (w−, a), inducing a curvature singularity as already explained. This never
happens for v ∈ (−∞, w−) since then Q (v) > 0. Butw− is a zero of P and Q (w−) > 0; we conclude by Lemma 2. �

3.4.3. The case∆(D) > 0
This time, c < a2 and we find

D(v) = (a − v)(v2 − v20), v0 =


a2 − c,

P(v) =


(v − a)2 − c

2
, Q (v) = −P(v)+ 4(a − v)D(v).

(68)

The parameter c can take its values in the set
(−∞, 0) ∪ {0} ∪ (0, a2).

Let us consider first negative values of c.

Theorem 1. If c ∈ (−∞, 0) the superintegrable systems I1 and I2 given in (52) are globally defined on S2.
Proof. First of all,wehave P > 0. The ordering of the zeros ofD is−v0 < a < v0. This implies twopossible intervals ensuring
its positivity: either v ∈ (−∞,−v0) or v ∈ (a, v0).

The first case is easily ruled out since Q decreases from Q (−∞) = +∞ to Q (−v0) = −P(−v0) < 0; it thus vanishes in
the interval and leads to a curvature singularity.

So let us consider v ∈ (a, v0). Then Q (a) = −P(a) = −c2 is negative, and since Q is decreasing it will remain strictly
negative everywhere on the interval. Putting v0 = 1 and performing the transformation G → 2G for convenience, we end
up with the explicit form of the metric, namely

G = ρ2 dv2

(v − a)(1 − v2)
+ 4

(v − a)(1 − v2)

(v2 − 2av + 1)2
dφ2, v ∈ (a, 1), φ ∈ S1, (69)

where

a ∈ (−1, 1), −ρ = 1 + 4
(v − a)2(1 − v2)

(v2 − 2av + 1)2
. (70)

Both end-points are apparent singularities because

G(v → 1−) ∼
2

1 − a
(dr2 + r2 dφ2), r =

√
1 − v, (71)

and

G(v → a+) ∼
4

1 − a2
(dr2 + r2 dφ2), r =

√
v − a. (72)
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Let us compute the Euler characteristic. Resorting to Lemma 4, we find

γ (v) =
(1 − v2)2 − 4(v − a)2

Q (v)
H⇒ χ(M) = γ (1)− γ (a) = 2, (73)

which proves that the manifold is diffeomorphic to S2. The measure of this surface is

µG(S2) =
4π

1 + a
. (74)

Let us investigate now the global status of the integralsH, Py, S1, S2. Using (68), and referring to the Riemann uniformiza-
tion theorem, we can write

H =
1
2


Π2

+ P
P2
φ

4D


=

1
2Ω2


P2
θ +

P2
φ

sin2 θ


(75)

with

t ≡ tan
θ

2
=


(v − a)P
(1 − v2)

, Ω =
1 − v2

P
+ v − a, (76)

and the conformal factor is indeed C∞ for all v ∈ [a, 1].
To ascertain that the previous integrals are globally defined, wewill express them in terms of globally defined quantities,

e.g., the SO(3) generators on T ∗S2, namely

L1 = − sinφ Pθ −
cosφ
tan θ

Pφ, L2 = cosφ Pθ −
sinφ
tan θ

Pφ, L3 = Pφ, (77)

and the constrained coordinates

x1 = sin θ cosφ, x2 = sin θ sinφ, x3 = cos θ.

The relationΠ = −Pθ/Ω and formulas (46) and (47) yield

S1 = −
L2
Ω


Π2

− Q
P2
φ

4D


+ x2 L3


AΠ2

− B
P2
φ

4D


, (78)

where the functions A, B of θ retain the form

A =
D′

−
√
P cos θ

2 sin θ
√
D

, B =
W − Q

√
P cos θ

2 sin θ
√
D

. (79)

The polynomials P,Q and W are clearly globally defined, as well as the quantitiesΠ2 and P2
φ/(4D) in the Hamiltonian. So,

it is sufficient to check that the functions A and B are well-behaved near the poles.
Let us begin with the north-pole (v → a+ or θ → 0+) for which we get

A =
φ(a)

2(1 − a2)
−

sin2 θ

4(1 − a2)2
+ O(sin4 θ),

B = −
(1 − a2)

2
φ(a)+

3
4
sin2 θ + O(sin4 θ),

φ(a) = a4 − 2a2 − 2a + 1, (80)

while for the south pole (v → 1− or θ → π−) we obtainA =
ψ(a)

2(1 − a)
−
(1 − a)4

2
sin2 θ + O(sin4 θ),

B = −2(1 − a) ψ(a)+ 6(1 − a)6 sin2 θ + O(sin4 θ),

ψ(a) = 2a2 − 4a + 1. (81)

We observe that either φ(a) or ψ(a)may vanish for some a ∈ (0, 1), but this does not jeopardize the conclusion.
For the other integral, due to the relation

S2 = {Pφ, S1} =
L1
Ω


Π2

− Q
P2
φ

4D


+ x1 L3


AΠ2

− B
P2
φ

4D


, (82)

there is nothing more to check. �
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Let us consider now the second case where c vanishes.

Proposition 9. For c = 0 there exists no closed manifold.

Proof. The above functions simplify and read

D = −(v + a)(v − a)2, P = (v − a)4, Q = (3v + 5a)(v − a)3, a ≠ 0. (83)

For a > 0 the positivity of D requires v ∈ I = (−∞,−a), but since Q has a simple zero v = −
5
3 a ∈ I , in view of Lemma 1

there is no manifold structure.
For a < 0 either v ∈ (−∞, a) or v ∈ (a,−a) ensure the positivity of D. But in both cases P vanishes for v = a, and the

measure of the would-be manifold

µG = 12

(v − v∗)

(v − a)3
dv


dy

is divergent, excluding a closed manifold. �

The remaining case is c ∈ (0, a2). The discussion depends strongly on the sign of a. Beginning with a > 0 we have:

Proposition 10. For c ∈ (0, a2) and a < 0 there exists no closed manifold.

Proof. The two functions (D, P) are now

D(v) = (a − v)(v2 − v20), v0 =


a2 − c, P = (v − w−)

2(v − w+)
2, w± = a ±

√
c, (84)

with the orderingw− < a < w+ < −v0.
The positivity requirements give three possible intervals:

I1 = (−∞, w−), I2 = (w−, a), I3 = (−v0, v0).

• For v ∈ I1 we notice thatw− is a zero of P for which Q (w−) = 4(a − w−)D(w−) > 0, and we conclude by Lemma 2.
• For v ∈ I2 since Q (w−) > 0 and Q (a) = −P(a) < 0, there is a simple zero v∗ of Q inside I2; hence, by Lemma 1, there is

no manifold structure.
• For v ∈ I3 we have Q (−v0) = −P(−v0) < 0 and then Q decreases to Q (v0); it thus never vanishes and P > 0 in I3,

opening the possibility of a manifold structure.
Putting v0 = 1 and computing the metric brings us back to (69). �

For a > 0 we have:

Proposition 11. For c ∈ (0, a2) and a > 0 there exists no closed manifold.

Proof. The zeros of D and P interlace as followsw− < −|a| < −v0 < w+ < 0 < v0 giving four possible intervals

I1 = (−∞, w−), I2 = (w−,−|a|), I3 = (−v0, w+), I4 = (w+, v0).

• For v ∈ I1 = (−∞, w−), and sincew− is a zero of P , we use Lemma 2.
• If v ∈ I2 = (w−,−|a|), then Q is strictly decreasing with

Q (w−) = 4(−w− + a)D(w−) > 0 and Q (−|a|) = −P(−|a|) < 0,

so that Q has a simple zero in I2; thanks to Lemma 1, there is no manifold structure.
• For v ∈ I3 = (−v0, w+) or v ∈ I4 = (w+, v0), sincew+ is a zero of P we invoke again Lemma 2. �

3.5. The global structure for ϵ ≠ 0

Let us begin with

Proposition 12. If ∆(D) = 0 the superintegrable system is never globally defined on a closed manifold.

Proof. Wemay have either D(v) = (v0 − v)3 or D(v) = (v0 − v)(v − v1)
2 with v0 ≠ v1.

The first case is ruled out as in Proposition 2 since the metric is of constant curvature.
In the second case we haveP(v) = (v − v1)

2 p(v), p(v) = v2 − 2(2v0 + 3v1)v + (2v0 + v1)
2,

Q (v) = 3(v − v1)
3(v − v∗), v∗ = v0 +

v0 − v1

3
.

(85)

Let us first consider the case v0 < v1. Then D is positive iff v ∈ I = (−∞, v0). If ∆(p) < 0 then P > 0 for all v ∈ I .
But, since v∗ < v0, there will be a curvature singularity inside I . If ∆(p) vanishes, we get p(v) = (v − w0)

2 and either
w0 = v0 < 0 or w0 = 2v0 < 0. In the first case there will be a curvature singularity at v∗ =

4
3 v0 ∈ I while, in the second
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case, the positivity interval becomes (−∞, w0); since v = w0 is a zero of P we use Lemma 2. If∆(p) < 0 we have two real
zeros and p(v) = (v − w−)(v − w+). The interval of positivity becomes I = (−∞, v0) ∩ (w−, w+) and since at least one
of its end-points will correspond to a zero of P we conclude by Lemma 2.

Let us then consider the other case v0 > v1. Then D is positive iff v ∈ I = (−∞, v0). If∆(p) < 0 then P > 0 for all v ∈ I ,
andwe conclude by Lemma3. If∆(p) = 0weget p(v) = (v−w0)

2, and eitherw0 = v0 > 0 orw0 = 2v0 > 0. In the first case
we remain with v ∈ (−∞, v0) and end up with a conical singularity for v → −∞; in the second case v ∈ (w0, v0) where
w0 is a zero of P , which excludes closedness by Lemma 2. If∆(p) > 0we have two real zeros and p(v) = (v−w−)(v−w+).
The interval of positivity becomes I = (−∞, v0) ∩ (w−, w+) and at least one of its end-points will correspond to a zero of
P; we conclude by Lemma 2. �

Let us proceed to

Proposition 13. If ∆(D) < 0 the superintegrable systems are never globally defined on a closed manifold.

Proof. In this case, we can write

D(v) = (v0 − v)[(v − a)2 + b2], b ≠ 0, Q (v) = −P(v)+ 4(v0 + 2a − v)D(v), (86)

and

P(v) = p(v)2 − 16a[(v0 + a)2 + b2]v, p(v) = v2 − 2(v0 + 2a)v − a2 − b2 − 2av0. (87)

We have D > 0 iff v ∈ I = (−∞, v0). Let us also notice that∆(P) and∆(Q ) being negative, P and Q will have two simple
real zeros. Since Q (v0) < 0, then Q will have a simple zero v∗ < v0.

If a = 0 we have p(v) = (v − w−)(v − w+), with the orderingw− < w+; hence P is always positive, but its zeros may
change the interval for v: if w− < v∗ the interval for v becomes (w−, v0) and then v∗ is a curvature singularity inside this
interval; ifw− > v∗ the interval for v becomes (w−, v0) for which Lemma 2 applies.

If a > 0, the relation (87) tells us that both roots of P must be positive and, since P(v0) =

(v0−a)2+b2

2
> 0, theymust

lie to the right of v0. The interval for v remains (−∞, v0) and we conclude by Lemma 3.
If a < 0 both roots of P ordered as w− < w+ must be negative and to the left of v0. The positivity of P will reduce the

interval of v either to (−∞, w−) or to (w+, v0) and in both cases Lemma 2 allows us to conclude. �

Let us end up this section with:

Theorem 2. If ∆(D) > 0 one can put D(v) = −(v − v0)(v − v1)(v − v2) with v0 < v1 < v2; the superintegrable systems I1
and I2 given by (52) are indeed globally defined on S2 iff v0 + v2 > 0.

Proof. Let us define the symmetric polynomials of the roots s1, s2, s3 by

D(v) = −(v − v0)(v − v1)(v − v2) = −v3 + s1 v2 − s2 v + s3.

The function D is positive iff either v ∈ (−∞, v0) or v ∈ (v1, v2). Let us first study the polynomial Q = 3v4 − 4s1 v3 + · · ·.
Since

∆(Q ) = −6912(v1 − v0)
4(v2 − v0)

4(v2 − v1)
4 < 0

we conclude that Q has two simple real zeros. For v ∈ (v0, v1) the relation Q ′
= −12D shows that Q increases from Q (v0)

= −(v0 − v1)
2(v0 − v2)

2 to Q (v1) = −(v1 − v0)
2(v1 − v2)

2; it then decreases to Q (v2) = −(v2 − v0)
2(v2 − v1)

2 so
that Q is strictly negative for all v ∈ (v0, v2) and, since Q (±∞) = +∞, it will have a simple zero at v = v∗ < v0 and at
v =v∗ > v2, with the relation v∗ +v∗ =

4
3 s1.

Let us come back to the first positivity interval for D which is I = (−∞, v0). As we have already seen, Q has a simple
zero v∗ ∈ I . Let us prove that P(v∗) > 0 which will be sufficient to ascertain, thanks to Lemma 1, that v = v∗ is a curvature
singularity. To this end we use the relation

P(v) = −Q (v)+ 4(s1 − v)D(v) H⇒ P(v∗) = 4(s1 − v∗)D(v∗). (88)

Since v∗ < v0 we have D(v∗) > 0 and

s1 − v∗ =v∗ −
s1
3
> v2 −

s1
3

=
2v2 − v0 − v1

3
> 0.

Let us now consider the second positivity interval for D which is I = (v1, v2). We find it convenient to define new
parameters by

d =
v2 − v1

2
> 0, l =

v1 + v2 + 2v0
v2 − v1

∈ R, m =
v1 + v2 − 2v0
v2 − v1

> 1, (89)

and a new coordinate, x, by

v = d

x +

l + m
2


, x ∈ I = [−1,+1]. (90)
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Since d > 0 we will set d = 1. It follows that
D = (x + m)(1 − x2),

P =


L+ (1 − x2)+ 2(m + x)


L− (1 − x2)+ 2(m + x)


, L± = l ±


l2 − 1,

Q = 3x4 + 4mx3 − 6x2 − 12mx − 4m2
− 1, Q ′

= −12D,

(91)

and the metric (again up to the change G → 2G) reads now

G = ρ2 dx2

D
+

4D
P

dφ2, ρ =
Q
P
. (92)

For x ∈ I the polynomial Q decreases from Q (−1) = −4(m − 1)2 to Q (1) = −4(m + 1)2 forbidding any curvature
singularity. It remains to check the positivity of P . Its factorized expression shows that for l ∈ [−1, 1) it has no real root. For
l ≥ 1 it has four simple real roots which lie outside I , and for l < −1 two of its real roots are still outside I , the remaining
two x− < x+ being contained in I . It follows that I may be reduced to any of the intervals

I1 = (−1, x−) or I2 = (x−, x+) or I3 = (x+, 1).

Now, at least one end-point is a zero of P , and by Lemma 3, the expected manifold is not closed. So far, we have proved that
a manifold can exists iff l ∈ (−1,+∞), which translates as v0 + v2 > 0.

Let us study the behavior of the metric at the end-points of I by setting x = cosϑ with ϑ ∈ (0, π). We find that

G(ϑ → 0+) ≈
1

m + 1
(dϑ2

+ sin2 ϑ dφ2), G(ϑ → π−) ≈
1

m − 1
(dϑ2

+ sin2 ϑ dφ2), (93)

and ϑ = 0, π are indeed apparent singularities. From Lemma 4 we get

γ = −
W

Q
√
P

W = −(x2 + 2x − 1 + 2m)(x2 − 2x − 1 − 2m)(x2 + 2mx + 1) (94)

which gives

χ(M) = γ (1)− γ (−1) = 2,

so that the manifold is actuallyM ∼= S2.
Returning to the integrals, we will define once more

H =
1
2


Π2

+ P
P2
φ

4D


=

1
2Ω2


P2
θ +

P2
φ

sin2 θ


, (95)

which leads to the relations

Ω2 sin2 θ =
4D
P
,

dθ
sin θ

=
F(x)

(1 − x2)
dx, F(x) =

Q (x)
2(m + x)

√
P(x)

, (96)

from which we deduce

t ≡ tan
θ

2
= exp

 x

0

F(u)
(1 − u2)

du

. (97)

We need first to check the behavior of the conformalΩ factor at the north pole for x → 1−. We have

t =
√
1 − x TN(x), TN(x) = exp(U(x)), U(x) =

 x

0


F(u)
1 + u

−
F(1)
2


du

1 − u
, (98)

so that TN is C∞ in a neighborhood of x = +1. This implies that

Ω2
=
(1 + t2)2(m + x)(1 + x)

P(x) T 2
N(x)

(99)

is also C∞ in a neighborhood of x = +1. At the south pole, i.e., for x → −1+ a similar argument works.
The expression of S1, in view ofΠ = Pθ/Ω , is now the following:

S1 =
L2
Ω


−Π2

+ Q
P2
φ

4D


+ x2 L3


AΠ2

− B
P2
φ

4D


(100)
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with

A =
D′

+
√
P cos θ

2 sin θ
√
D

, B =
W + Q

√
P cos θ

2 sin θ
√
D

, (101)

giving at the north pole:
A =

1
√
2(m + 1)

(l + m + 2)
2 TN(1)

+ O(sin2 θ),

B = −


2(m + 1)

3/2 (l + m + 2)
2 TN(1)

+ O(sin2 θ),

(102)

where the leading coefficients never vanish since l + m > 0.
To analyze the behavior of S1 at south pole let us define

t =
1

√
1 + x TS(x)

, TS(x) = exp(−V (x)), V (x) =

 x

0


F(u)
1 − u

−
F(−1)

2


du

1 + u
, (103)

from which we deduce
A = −

1
√
2(m − 1)

(l + m − 2)
2 TS(−1)

+ O(sin2 θ),

B = (2(m − 1))3/2
(l + m − 2)
2 TS(−1)

+ O(sin2 θ),

(104)

which are well-behaved. For l + m = 2 the power series expansions begin with sin2 θ , a possibility already observed in the
proof of Theorem 1.

As to the integral S2, the argument given in the proof of Theorem 1 works here just as well. �

3.6. Comparison with the results of Matveev and Shevchishin

In [3] it was stated in Theorem 6.1 that the metric

g =
dx2 + dy2

h2
x

, hx =
dh
dx
,

where h is a solution of the differential equation (3)(ii) with

µ = 1, A0 = 1, A1 = 0, A3 = A4 = Ae > 0 and A2 ∈ R, (105)

is globally defined on S2. As we will show in what follows, our results are partly in agreement with this Theorem 6.1.
Let us first write again the metric in our (v, φ) coordinates:

g =
Q 2

P2

dv2

D
+

4D
P

dφ2, φ ∈ S1, (106)

where Q and P are deduced from the knowledge of D by the relations given in (55). So to be able to compare these metrics
we have first to notice that

h =
D′

2
√
2D

D′
=

dD
dv
, hx = u =


h2 + v =


P
8D

> 0,

and that

y = φ,
dx
dv

=
dx
dh

dh
dv

=
1
hx

dh
dv

=
Q

2D
√
P
.

Let us notice that to be Riemannian the metric (106) requires D > 0 and P > 0 and for the transformation v → x to be
locally bijective we need Q to have a fixed sign.

Under the hypotheses of Theorem 6.1 we have, in our notation,

ϵ = 1, a = −A2, λ = 2Ae,

which gives

D = −(v + A2)(v
2
− A2

2 + c)− 8A2
e , (107)

where c is a constant of integration which does not appear in the proof of Theorem 6.1 and which can be freely chosen.
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The discriminant of D is
∆(D) = −27 ξ 2 + 4A2(8A2

2 − 9c)ξ + 4c2(A2
2 − c), ξ = 8A2

e ,

and the crucial point is that the sign of this discriminant is undefined. If ∆(D) > 0, then Theorem 6.1 of Matveev and
Shevchishin agreeswith our Theorem2, and themetric is indeed globally defined on S2. Nevertheless, if∆(D) ≤ 0 our Propo-
sitions 12 and 13 show that either curvature singularities or conical singularities rule out any closedmanifold. Let usmention
that we have also found a metric globally defined on S2 for ϵ = 0 (see Theorem 1), a case which has not been studied in [3].

4. The affine case

In this last case, wewill prove that there is no closedmanifold for themetric. However, since the analysis ismuch simpler
we will determine the metrics globally defined either on R2 or on H2.

4.1. The metric

The differential equation and the metric are

hx


h2
x + A1 h + A2


= A3 x + A4, G =

dx2 + dy2

h2
x

, (108)

see (3)(iii) and (2). Differentiating the equation for h gives
3 h2

x + A1h + A2


hxx + A1 h2

x = A3,

and regarding again u = hx as a function of the new variable h, we rewrite the previous equations as

u(3u2
+ A1h + A2)

du
dh

= A3 − A1u2.

Considering the inverse function h(u)we end up with a linear ode, namely

(A3 − A1u2)
dh
du

− A1u h = u(3u2
+ A2). (109)

Two cases have to be considered:

1. If A1 = 0 then A3 cannot vanish; positing µ =
3u2+A2

A3
, the original variable, x, and the metric, G, are now given by

dx = µ du, µ =
1
u

dh
du

H⇒ G =
1
u2


µ2 du2

+ dy2

. (110)

Interestingly, the relations

h = h0 +
A2

2A3
u2

+
3
4
u4

A3
, A3 x + A4 = A2 u + u3

show that we have integrated the ode (108) by expressing the function h and the variable x parametrically in terms of u.
2. If A1 ≠ 0 we can set A1 = 1 and, by a shift of h, we may put A2 = 0. To simplify matters, we will perform the following

rescalings: y → 2y, and G →
1
4G. This time, we will define

−2µ =
1
u

dh
du

H⇒ G =
1
u2


µ2 du2

+ dy2

,

and we get two possible solutions for µ:

µ = 1 +
C

(u2 − A3)3/2
or µ = 1 +

C
(A3 − u2)3/2

, (111)

where C is a real constant of integration.

4.2. Global structure for vanishing A1

We have just seen that µ =
3u2+A2

A3
, and must thus discuss two cases separately:

1. First case: A2 = 0, then we can pose µ = 2u2.
2. Second case: A2 ≠ 0, then we can pose µ = 1 + au2.

4.2.1. The case A2 = 0
The relation (110) and the change u → v = u2 yield the metric and Hamiltonian, viz.,

G = dv2 +
dy2

v
H⇒ H =

1
2
(P2
v + v P2

y ),
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while the cubic integrals read now

S1 =
2
3
P3
v + P2

y (v Pv +
y
2
Py) (112)

and

S2 = y S1 −


y2

4
+
v3

9


P3
y −

2
3
v2 H Py. (113)

This last relation shows that S2 is not algebraically independent, and that the superintegrable system we are considering is
just generated by (H, Py, S1). Let us mention, for completeness, the following Poisson brackets, namely

{Py, S1} =
1
2
P3
y , {Py, S2} = S1, {S1, S2} =

3
2
S2 P2

y . (114)

Proposition 14. For A2 = 0 the superintegrable system (H, Py, S1) is not globally defined.

Proof. The Riemannian character of themetric requires v > 0 and y ∈ R. If thismetricwere defined on amanifold, the scalar
curvaturewould be everywhere defined. An easy computation gives for result RG = −

3
2v2

which is singular for v → 0+. �

4.2.2. The case A2 ≠ 0
We have now the Hamiltonian

2H = u2


P2
u

µ2
+ P2

y


, u > 0, y ∈ R, µ = 1 + au2, a ∈ R, (115)

and the cubic integrals are respectively

S1 =
2a
3


u
µ

Pu

3

+ Py

u Pu Py + y P2

y


(116)

and

S2 = y S1 −
1
2


y2 + u2(1 + au2/3)2


P3
y −

a
3
u2(2 + au2)HPy. (117)

The non-trivial Poisson brackets of the observables are then given by

{Py, S1} = P3
y , {Py, S2} = S1, {S1, S2} = 3 S2 P2

y + 4 P3
y H +

16
3

a Py H2. (118)

Proposition 15. For A2 ≠ 0 the superintegrable system (H, Py, S1)
1. is not globally defined for a < 0,
2. is trivial for a = 0,
3. is globally defined on M ∼= H2 for a > 0.

Proof. The scalar curvature reads now

RG = −
2
µ3
(1 + 3au2), u > 0, y ∈ R.

If a < 0 it is singular for u0 = |a|−1/2, and the system cannot be defined on a manifold.
For a = 0 the metric reduces to the canonical metric

G(H2, can) =
du2

+ dy2

u2

of the hyperbolic planeH2. As a consequence of Thompson’s theorem,which has been recalled above, S1 and S2 are reducible.
Of course the set (H, Py) still remains an integrable system but it is trivial in the sense that it is no longer superintegrable.

Let us examine the last case for which a > 0. The change of coordinates

t = u

1 +

a
3
u2


−→ u =
ξ 1/3

a
− ξ−1/3, ξ(t) =

3
2
a2 t +


a3 +

9
4
a4 t2,

implies that u(t) is C∞ for all t ≥ 0.
In these new coordinates the metric becomes

G = Ω2 dt2 + dy2

t2
= Ω2 G(H2, can), Ω(t) = 1 +

a
3
u2(t), t > 0, y ∈ R, (119)

and, sinceΩ never vanishes, it is globally conformally related to the canonical metric of the hyperbolic plane,M ∼= H2.
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Using the generators of sl(2,R) on T ∗H2 (given in the Appendix) allows us to write the Hamiltonian in the new guise

H =
t2

2Ω2


P2
t + P2

y


=

1
2Ω2


M2

1 + M2
2 − M2

3


. (120)

The relations

Py = M2 + M3 and t Pt =
M1 − x1 P1
1 + (x1)2

show that

S1 =
2a
3


t Pt
Ω

3

+ P2
y


µ

t Pt
Ω

+ y Py


, µ(t) = 1 + a u2(t), a > 0, (121)

is globally defined onM . The same is true for S2 (see the relation (117)). �

4.3. Global structure for non-vanishing A1

In the formula (111) let us change A3 → a. We have, again, two cases to consider according to ϵ = sign(u2
− a).

4.3.1. First case: ϵ = +1
The metric and the Hamiltonian are given by

G =
1
u2


µ2 du2

+ dy2

, H =

u2

2


P2
u

µ2
+ P2

y


, u2

− a > 0, y ∈ R, (122)

where

µ = 1 +
C

(u2 − a)3/2
.

The cubic integrals are then

S1 =


u
µ

Pu

3

+ u(u2
− a) Pu P2

y − ay P3
y + 2y H Py (123)

and

S2 = y S1 +
1
2


a(u2

+ y2)−
2Cu2

√
u2 − a

+
C2

u2 − a


P3
y −


u2

+ y2 −
2C

√
u2 − a


H Py. (124)

The case C = 0 corresponds to the canonical metric on H2, and, as already explained in Proposition 15, the system
becomes trivial.

In the following developments, we will discuss the global properties of our superintegrable system according to the sign
of C ≠ 0, rescaling it to ±1.

Proposition 16. For C = −1 the superintegrable system (H, Py, S1) is globally defined iff a < 0 and |a| > 1, in which case the
manifold is M ∼= H2.

Proof. The scalar curvature is

RG = −
2
µ3


1 +

(2u2
+ a)

(u2 − a)5/2


. (125)

For a ≥ 0wemust have u >
√
a and RG will be singular for u0 =

√
a + 1. For a < 0wemust have u > 0. Then the curvature

is singular for u0 =
√
1 − ρ if ρ = |a| ≤ 1. However for ρ > 1 the functionµ no longer vanishes and the curvature remains

continuous for all u ≥ 0. The metric then reads

G =
1
u2


µ2 du2

+ dy2

, µ = 1 −

1
(ρ + u2)3/2

, u > 0, y ∈ R. (126)

Let us define the new variable

t = u


1 −

1

ρ

ρ + u2


, u ∈ [0,+∞) −→ t ∈ [0,+∞).
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Since µ =
dt
du never vanishes, the inverse function u(t) is C∞([0,+∞)) and the metric can be written as

G = Ω2 G(H2, can), Ω(t) = 1 −
1

ρ

ρ + u2(t)

, ρ > 1, (127)

where the conformal factorΩ(t) is C∞ and never vanishes: the manifold is againM ∼= H2.
The first cubic integral

S1 =


t Pt
Ω

3

+ µ(t)(ρ + u2(t))

t Pt
Ω


P2
y + ρ y P3

y + 2y H Py (128)

is therefore globally defined (with same argument as in the proof of Proposition 15), and (124) gives

S2 = y S1 +
1
2


−ρ(u2

+ y2)+
2u2
ρ + u2

+
1

ρ + u2


P3
y −


u2

+ y2 +
2
ρ + u2


H Py,

showing that this is also true for S2. �

Proposition 17. For C = +1 the superintegrable system (H, Py, S1) is globally defined either if a > 0 and the manifold is
M ∼= R2, or if a < 0 and M ∼= H2.

Proof. The metric reads now

G =
1
u2


µ2 du2

+ dy2

, µ = 1 +

1
(u2 − a)3/2

. (129)

Consider first the case a > 0 for which u >
√
a. Let us define the new coordinate

t = u

1 −

1

a
√
u2 − a


, u ∈ (

√
a,+∞) −→ t ∈ R.

Since, again, µ =
dt
du does not vanish u(t) is C∞(R), and the metric

G =
dt2 + dy2

u2(t)
, t ∈ R, y ∈ R, (130)

turns out to be globally conformally related to the flat metric; the manifold is thereforeM ∼= R2.
The cubic integral

S1 = (u(t) Pt)3 + µ(t)(u2(t)− a)(u(t) Pt) P2
y − ay P3

y + 2y H Py (131)

remains hence globally defined, and the same holds true for S2.
– For a = 0 the function µ = 1 +

1
u3

is no longer even, so we must consider that u ∈ R and the scalar curvature

RG = 2u6 (2 − u3)

(1 + u3)3

is not defined for u = −1; there is thus no obtainable manifold structure.
– For a < 0 we set ρ = |a| and we must take u > 0; we then define the new coordinate

t = u


1 +

1

ρ

ρ + u2


, u ∈ (0,+∞) −→ t ∈ (0,+∞).

Since µ =
dt
du never vanishes, the inverse function u(t) is C∞([0,+∞)). The metric

G = Ω2 dt2 + dy2

t2
, Ω(t) = 1 +

1

ρ

ρ + u2

, ρ > 0, t > 0, y ∈ R, (132)

is again globally conformally related to the canonical metric on the manifoldM ∼= H2. The proof that the cubic integrals
are also globally defined is the same as in Proposition 15. �

4.3.2. Second case: ϵ = −1
The metric and the Hamiltonian are now given by

G =
1
u2


µ2 du2

+ dy2

, H =

u2

2


P2
u

µ2
+ P2

y


, a − u2 > 0, y ∈ R, (133)
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where

µ = 1 +
C

(a − u2)3/2
.

The scalar curvature reads thus

RG = −
2
µ3


1 + C

(2u2
+ a)

(a − u2)5/2


. (134)

The cubic integral S1 is the same as in (123) while

S2 = y S1 +
1
2


a(u2

+ y2)+
2Cu2

√
a − u2

+
C2

a − u2


P3
y −


u2

+ y2 +
2C

√
a − u2


H Py (135)

is merely obtained by the substitution C → −C .

Proposition 18. Either for C = −1 and 0 < a < 1 or for C = +1 the superintegrable system (H, Py, S1) is globally defined on
the manifold M ∼= H2.
Proof. Wemust have a > 0 to ensure u ∈ (0,

√
a).

– For C = −1 the scalar curvature is singular when µ vanishes. This happens for u0 =
√
a − 1 and a ≥ 1; in this case

there exists no manifold structure. However for 0 < a < 1 the function µ never vanishes, so we can define

t = −u

1 −

1

a
√
a − u2


, u ∈ (0,

√
a) −→ t ∈ (0,+∞),

and the inverse function u(t) is in C∞([0,+∞)); this leads to the metric

G = Ω2 G(H2, can), Ω(t) = −1 +
1

a

a − u2(t)

, 0 < a < 1, (136)

where the conformal factor never vanishes; hence, the manifold is again M ∼= H2. The proof that the cubic integrals are
also globally defined is the same as in Proposition 15.

– For C = +1 the function

µ = 1 +
1

(a − u2)3/2

never vanishes, implying that the curvature is defined everywhere for u ∈ (0,
√
a). If we define

t = u

1 +

1

a
√
a − u2


, u ∈ (0,

√
a) −→ t ∈ (0,+∞),

the metric retains the form

G = Ω2 G(H2, can), Ω = 1 +
1

a

a − u2(t)

, a > 0, (137)

where the conformal factor, Ω , never vanishes; hence, the manifold is again M ∼= H2. At last, the proof that the cubic
integrals S1 and S2 are also globally defined is the same as in Proposition 15. �

5. Conclusion

We have completed the work initiated by Matveev and Shevchishin in [3] by providing the explicit form of their metrics
in local coordinates. This allowed us to determine systematically all the cases in which their superintegrable systems can
be hosted by a simply-connected, two-dimensional smooth manifold M . Let us emphasize that we have achieved, via
Theorems 1 and 2, the classification of all these metrics on closed, simply-connected, surfaces, namely onM ∼= S2.

As pointed out in [3] superintegrable systems on a closed manifold should lead to Zoll metrics [8], i.e., to metrics whose
geodesics are all closed and of the same length. Using the explicit formulas obtained here for the metrics it has been proved
by a direct analysis in [9] that all the metrics defined on S2 that we have obtained here are indeed Zoll metrics. Generalizing
this analysis to closed orbifolds gives either Tannery or Zoll metrics.

Another obvious line of research would be the generalization of these results to the case of observables of fourth or even
higher degree, as well as the challenging problem of their quantization. An interesting approach could be to use a well and
uniquely defined quantization procedure, in our case the conformally-equivariant quantization [10]. The latter, from its very
definition and construction, could be perfectly fitted to deal with integrable systems on Riemann surfaces.
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Appendix. The hyperbolic plane

Let us recall that the hyperbolic plane

H2
= {(x1, x2, x3) ∈ R3

| (x1)2 + (x2)2 − (x3)2 = −1, x3 > 0} (138)

may be embedded in R2,1 as follows

x1 =
y
t
, x2 =

1
2t
(t2 + y2 − 1), x3 =

1
2t
(t2 + y2 + 1). (139)

This choice of coordinates leads to the induced metric

G(H2, can) =
dt2 + dy2

t2
, t > 0, y ∈ R. (140)

The generators on T ∗(H2) of the group of isometries of H2 given by

M1 = x2 P3 + x3 P2 = t Pt + y Py,

M2 = x3 P1 + x1 P3 = −ty Pt +
(1 + t2 − y2)

2
Py,

M3 = x1 P2 − x2 P1 = +ty Pt +
(1 − t2 + y2)

2
Py,

(141)

are globally defined and generate, with respect to the Poisson bracket, the Lie algebra sl(2,R), namely

{M1,M2} = −M3, {M2,M3} = M1, {M3,M1} = M2.
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