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Abstract. Most modern software is written in high level 
languages. The task of translating source code, written in high-
level languages, into a representation, which can be executed 
on a computer system, solves by specialized programs called 
compilers. Errors in compilers lead to differences between the 
behavior of modules, resulting from the work of compilers, and 
behavior, defining the semantics of the original program. Such 
errors are very difficult to detect and correct, and their 
presence casts doubt on the quality of the programs generated 
by a compiler. Obviously, the correctness of the compiler is a 
strong prerequisite for reliable software created with its help 
[20]. This paper describes the concept of a system designed to 
automate the process of testing the major components of any 
compiler: syntax analyzer and context conditions analyzer 
(semantic analyzer). 
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I. INTRODUCTION 
All kinds of software verification methods can be divided 

into two large groups [8]: 

1. Static verification methods, including formal 
methods, methods of static analysis and expertise. 
Using of such methods implies that the verification 
of software systems is done “statically”, i.e. without 
execution on a computer system. 

2. Dynamic methods that are used to verify the 
behavior of the program during execution. 

The compiler of any language, having practical value, is 
such a complex system that static verification techniques can 
be used only for its individual small subsystems. Despite the 
fact that there are exceptions such as CompCert or πVC, 
common practice for compiler testing is dynamic verification 
[20], which involves the following tasks [14]: 

1. Test generation (test writing). 

2. A verdict on the results of test execution which is 
performed by the so-called test oracle, which is a 
procedure for determining the correctness of the 
system under this test. 

3. Assessment of the tests quality which is performed 
with special test coverage metrics. 

Currently, there are two common approaches used to 
solve these problems: 

1. “White box” testing that used to identify all 
erroneous fragments of specific implementation. 

2. “Black box” testing, designed to determine formal 
specification’s degree of compliance. 

Model-based testing is a compromise between these two 
methods. This approach combines the advantages and 
eliminates the disadvantages of the above methods [20]. The 
model can be described formally, that allows using it as input 
for test generation and evaluation of test coverage. At the 
same time, the model defines the requirements for 
implementation and therefore it can be used to test the 
correctness of a particular implementation. 

But it is obvious that manual construction and 
maintenance of the test suite is extremely difficult task. To 
simplify this task, it is proposed to use one of the main 
advantages of the model-based testing – the ability to 
systematically and automatically generate test cases [2]. The 
existence of a formal description allows automating the 
process of tests construction, which significantly reduces 
labor costs, and the systematic nature of testing increases 
confidence in its results. 

Thus, the described above problems of the dynamic 
compiler verification can be summarized to the following 
problems [20]: 

1. Automation of test construction:  

a. Automation of the test data generation. 

b. Automation of the test results validation (the 
problem of constructing a test oracle).  

2. Definition of the verification process’s termination 
criterion. 



In [20] author proposed a verification scheme that 
designed to solve these problems. Its schematic 
representation is shown in Fig. 1. 

 

Fig. 1. Verification method scheme 

The first stage of the scheme is process of requirements 
extraction from regulatory documents (e.g., specifications of 
the target programming language) and its classification. At 
the second stage a formal model is built via description of 
extracted requirements in some formal language. At the third 
stage test generation is performed on basis of the created 
model. It is often assumed that the user can optionally 
specify the desired size of the test suite, and/or test suite 
requirements in terms of some test coverage metrics. 
Depending on the task in addition to texts in the target 
programming language test suite may additionally contain an 
oracle for automatic verdict of the compiler correctness. At 
the last stage the created test suite is performed. After that 
reports on the entire process of testing are built. These 
reports contain information on how the compiler's observed 
behavior corresponds to the created formal model. 

As mentioned above, compilers for real programming 
languages are extremely complex software systems. 
Furthermore, there is an additional source of difficulty in 
verifying compiler. It is the complexity of input data 
structure and its internal links. Obvious solution to reduce 
the complexity of the compilers verification task is 
functional decomposition into separate subtasks that should 
together cover all the functionality of the compiler [20]. 
Additional incentive for it is that the compiler is usually 
represented as a set of functional modules that have strictly 
defined order of interactions between them. 

However, in this paper it is considered verification of 
only the first three modules: lexical analyzer, syntax analyzer 
and semantic analyzer. It is worth noting that the 
development of the lexical analyzer often regarded not as a 
standalone module, but as an internal infrastructure for 
syntax analyzer. Under the semantic analyzer in the future 
will be understood analyzer of static semantics given by the 
set of so-called context conditions, as an example of which is 
the enforcement that all used variables should be declared in 
the program code. 

Thus, in accordance to the aforesaid, task of compiler 
verification may be divided into the following subtasks: 

1. Syntax analyzer verification. 

2. Semantic analyzer verification. 

In the case of automated testing, these tasks can be 
formulated as follows: 

1. Syntax analyzer automated testing. 

2. Semantic analyzer automated testing. 

II. SYNTAX ANALYZERS AUTOMATED TESTING 
The syntax analyzer is one of the core modules of any 

compiler and its incorrectness makes futile testing the rest of 
the modules. Therefore, verification of the syntax analyzer is 
one of the most important tasks of compiler verification. 

Positive tests generation 
Since the 60's of the 20th century, many authors have 

investigated the grammar-based test generation for syntax 
analyzers. 

One of the first works in the field was the work of 
Hanford [6], who proposed a method based on using 
“dynamic” grammar for generating test data for PL/1 
compiler. Its drawbacks are the lack of any coverage metrics 
and non-deterministic nature of the method. 

Purdom’s work [15] considered fundamental. It contains 
one of the first coverage criteria for positive test sets: in a 
whole variety of tests for each grammar rule there must be 
language sentence, which is used in the derivation of this 
rule. In addition, in the same paper, the author proposed an 
algorithm for constructing a minimal test set that would 
satisfy this criterion. 

Lämmel [10] showed that the Purdom’s criterion is 
inadequate: tests that are constructed by this algorithm fail to 
detect the simplest errors. Stronger criterion proposed by 
Lämmel avoids this disadvantage and consisted in the fact 
that the test should cover each pair of rules, one of which can 
be applied directly after the other. 

Many authors ([11], [12], [13]) proposed probabilistic 
methods of test generation. But in any case, this means that 
there is no guarantee that the algorithm has finished for the 
end time and thereby violates one of the basic principles that 
we have tried to follow, is consistency. 

Negative tests generation 
The above-described methods devoted exclusively to the 

generation of positive tests. At this time works, which would 
have offered methods for generating negative tests, are 
virtually absent. 

A so-called “mutation testing” method is proposed in [7]. 
The basis of this method is the assumption that after the 
adding to the original grammar a number of changes 
(mutations) it can be used to generate potentially negative 
tests. However this approach entails the following problems: 

1. Grammar-mutant can be equivalent to the original 
grammar. 

2. Tests, generated on the basis of grammar-mutant, 
which is not equivalent to the source, may not be 
valid. 
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In [19] authors described methods for generating positive 
and negative tests and their coverage criteria. The authors 
embodied developed methods in the tool SynTESK. Using of 
this tool for testing industrial compilers confirmed the 
practical applicability of the developed approaches. 

SynTESK main advantages are: 

1. It is made under a unified methodology UniTESK, 
which formalizes the process of testing not only 
syntax analyzers, but also any other software. 

2. Mechanisms of its work are based on the formal 
theory having a clear rationale. 

3. It has open nature and is distributed with source 
code. 

4. SynTESK allows to store together with tests their 
descriptive metadata (for example, the parse tree), 
which can be used for subsequent analysis. 

5. Tool’s functionality can be expanded through the 
development of specialized plugins. 

6. The tool has real-world examples of successful 
application in practice. 

But SynTESK has the following disadvantages: 

1.  SynTESK allows using as a meta-language for the 
grammar formally describing only one certain type 
of EBNF. Users who use specialized tools to 
generate the syntax analyzer (Lex/Flex, SableCC, 
ANTLR, etc.) will be forced to perform translation 
from tool’s meta-language to SynTESK meta-
language. 

2. It does not contain any specialized tools for 
managing sets of tests and their analysis. SynTESK 
provides no opportunities to work with the 
generated tests (e.g., edit or delete), and the user is 
forced to use for this a file system, which greatly 
complicates the tests processing. In addition, it is 
often necessary to analyze a set of generated tests 
(for example, to estimate the coverage metrics or 
determine the number of tests for a certain grammar 
rules, etc.), but SynTESK also provides no any 
special features for this and the user is forced to 
perform these operations manually. 

3. SynTESK does not provide any special features to 
perform syntax analyzers profiling. For example, 
changing of string handling internal mechanisms in 
the syntax analyzer can strongly affect both the 
value of consumed memory and performance. 

4. The tool interprets negative tests as a self-checking. 
However, apart from establishing the fact of error 
there must also ensure that the syntax analyzer 
correctly identifies the type of error and its location. 
Because application developers will use exactly this 
information when working with the compiler. 

III. SEMANTIC ANALYZERS AUTOMATED TESTING 
In their works Hanford [6] and Purdom [15] described 

the methods used to generate a positive tests for the syntax 
analyzers of procedural languages compilers, but these 
methods does not take into account any contextual 
conditions. 

In [17] Wichmann and Jones proposed a method for 
constructing test sets, which would take into account some 
contextual conditions such as a correct processing of 
restrictions on the depth of nesting blocks, procedures 
blocks, cycles, etc. However, this method does not allow 
checking other simple rules of static semantics, for example, 
concerning the using of variable names. 

Celentano et al in [3] described the practical application 
of approach, which allows partially automate the testing of 
Pascal compiler. They used Purdom’s algorithm to generate 
positive tests. To generate the test programs, which correct 
from the standpoint of static semantics, they used a 
specialized module with a grammar, augmented with a code 
for converting syntactically correct programs to semantically 
correct. The authors noted that the description of the context 
conditions in this way requires considerable effort and it is 
unlikely that this approach would be viable for testing 
modern programming language analyzers. 

In [5] authors offer to use attribute grammars as a 
formalism to describe contextual conditions. The resulting 
test suite, generated in accordance with the method proposed 
by Duncan and Hutchison, should contain only syntactically 
correct tests satisfying the context conditions. This is 
achieved by sequential scanning of all grammar production 
rules, which are executed only if it’s permitted by contextual 
conditions. The tests generated by this method, should cover 
all grammar production rules and all described contextual 
conditions. However, this approach leads to a large number 
of empty runs of the generator, because of necessity to 
interrupt the process of generation due to unfulfilled 
contextual conditions. Furthermore, this approach leads to 
the construction of large numbers of semantically 
uninteresting tests [5]. 

In [16] Sirer and Bershad described language Lava. 
Grammar defined on Lava reminds EBNF-grammar 
augmented by Java code describing the contextual 
conditions. The authors used Lava to generate a small 
number of tests (approximately 6 tests) with large size 
(approximately 60,000 instructions). These tests allowed 
making some resistance checks of Java Virtual Machine. 
Unfortunately, the paper does not give any estimates of test 
coverage. 

In [1] author provides a method for constructive 
description of static semantics, as well as the method of 
generating both positive and negative tests. In addition, the 
author proposed a set of coverage criteria. The SemaTESK 
tool is the practical embodiment of proposed approaches. 

SemaTESK as a SynTESK was developed in accordance 
with the methodology UniTESK and therefore inherits many 
advantages of this tool. Its other advantages are: 



1. The tool uses an algorithm of semantically controlled 
generation. This algorithm makes it possible to 
systematically generate test data. 

1. The performance of this tool is significantly higher 
compared to the other instruments (both real and 
hypothetical) [2]. It is achieved through the use of 
constructive test generation techniques. 

Many SynTESK disadvantages, listed above, are also 
present in the SemaTESK. Its other disadvantages are: 

1. One of necessary steps when working with the tool is 
the stage of creating a TreeDL representation of AST. 
However, in the case of using of specialized tools for 
the generation of syntax analyzers, this representation 
may be generated by this tool. For example, ANTLR 
generates a similar representation together with 
generation of grammar listener or visitor. 

2. Users of the tool must create a specialized Java code 
intended for translation TreeDL representation into 
the text. 

Common SynTESK and SemaTESK problem is that for 
the user they look like two completely different programs, 
each of which has its own characteristics and specific 
sequence of actions. For example, SynTESK user only has to 
run the program, passing to the input a formal description of 
the grammar and generation parameters. In the case of tool 
SemaTESK sequence of actions is much more difficult. In 
addition to formal description of context conditions user 
should also create TreeDL representation and develop Java 
code that performs mapping from TreeDL representation into 
the text. In the first case, a tester without any programming 
skills could handle the task of generating. In the second case, 
the requirements for the qualification of the tool’s user are 
significantly higher. 

IV. ANOTHER COMPILER TESTING SUITE 
Our goal is to develop a system that would combine the 

advantages of the above-described tools and thus would be 
deprived of their disadvantages. First of all, the system must 
meet the following requirements: 

1. Unified approach to test generation for syntax and 
semantic analyzers. 

2. Presence of specialized tools designed to manage test 
sets and to analyze them. 

3. Ability for integration with existing development 
tools using to automate the development process of 
syntax and semantic analyzers. 

The system was called ACTS (Another Compiler Testing 
Suite) and its schematic representation is shown in Fig. 2. 

 
Fig. 2. Automated testing system scheme 

Components of this system are: 

1. Test generator is the main component of the system. 
It is designed to automate the process of developing 
test sets. 

2. Test warehouse is storage for test suites and their 
metadata. This component contains special tools for 
analyzing the warehouse content. 

3. Test runner is a component, the main purpose of 
which is to automatically run test suites and collect 
the results of testing. 

A. Test Generator 
Test generator should use a unified approach to the 

generation of tests for both the syntax and semantic 
analyzers. To implement this requirement, we suggest the 
following: 

1. To use for grammar formal description a meta-
language used in some of the most popular tools for 
generating syntax analyzers (for example, ANTLR). 

2. To eliminate the need for intermediate TreeDL 
representation and use as a representation for the 
parse tree grammar classes generated by ANTLR 
tool. This, in turn, saves us from having to write 
additional code that performs the mapping from 
TreeDL representation into the text. 

Schematic representation of the test generator is shown in 
Fig. 3. 

 

Fig. 3. Test generator scheme 

Input data for the test generator are the formal 
specification of interesting language constructs and user-
defined generation parameters. User may specify tests kind 
(syntax/semantic, positive/negative), test generation method 
kind, coverage metric, etc. 

Currently there are many different methods for 
generating test data for syntax and semantic analyzers. Many 
of them are interesting from a practical point of view. That is 
why the test generator must provide the ability to use 
different methods of generation. 

To implement this requirement, it is proposed to use the 
plugin-based architecture. Plugin is an abstraction of a 
method for generating tests and describes a generalized 
software interface that is used by the generator. Any 
particular method of generation may be implemented as a 
separate plugin. 
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To control the individual plugins it is proposed to use 
specific module, called “plugin manager”. It allows viewing 
a list of available plugins, adding new or deleting an existing 
one. Test generator has access to a specific plugin only 
through the plugin manager. To select a specific plugin, the 
user must specify the appropriate information in the list of 
parameters passed to the input of the generator. 

Schematic representation of the plugin manager is shown 
in Fig. 4. 

 

Fig. 4. Test generator plugin manager scheme 

In addition to testing compliance of a developed analyzer 
to a formal specification, ACTS can be used to test analyzers 
efficiency and productivity. To do this, for example, ACTS 
can use specialized plugins designed for generation of tests 
with a very large number of instructions. These tests can be 
used for analyzers load testing. It is worth noting that these 
plugins do not have to be a stand-alone product and can use 
existing plugins for test generation. 

The results of the test generator are test suite, which is a 
set of programs for a particular programming language, and 
set of metadata representing a formalized description of the 
test suite. 

Such metadata can be extremely diverse. For example, 
such metadata can be a subset of the Dublin Core properties 
or the information of the tests structure. 

B. Test Warehouse 
Test suite and its metadata are placed in test warehouse. 

Testing reports are also stored in warehouse. Its schematic 
representation is shown in Fig. 5. 

 

Fig. 5. Test warehouse scheme 

In addition to direct physical storage warehouse should 
provide to the user with a convenient tools to control and 
analyze its content: 

1. Test warehouse should provide a special opportunity 
to examine the contents of test suites and its 
metadata. For example, the user may need 
information on statistical information of existing 
tests: the number of positive/negative tests, the 
number of tests for a certain grammar rules, etc. 

2. Warehouse must provide the ability to retrieve tests 
that meet certain criteria (for example, tests that 
verify the correctness of the implementation of a 
compiler module). 

3. User should be able to view statistical information 
on the test results: the total number of uncorrected 
errors, common errors, etc. 

4. Test warehouse may need also functions of version 
control system. At the case of new language 
development old tests can be an important historical 
material, showing the path of language development. 

To implement this requirement, we propose to use 
warehouse’s structure, schematically depicted in Fig. 6. 

 

Fig. 6. Test warehouse extended scheme 

Warehouse High Level API is a high-level programming 
interface for managing warehouse content (adding new test 
or test suite, changing, or deleting an existing one) and for 
managing its different versions. The main purpose of this 
programming interface is abstracting from low-level 
operations like creating new repository, adding new file to 
repository, committing changes, etc., which would assumed 
working with specific version control system. 

All low-level operations are performed by Warehouse 
Low Level API, which delegates the execution of these 
operations to a particular version control system. For 
example, Maven SCM API or specialized software interfaces 
used in different IDE (e.g., NetBeans VCS API). 

Query API is a high-level programming interface for 
executing queries that retrieve various information from the 
warehouse (for example, statistical information mentioned 
above). 

Reporting API is a specialized programming interface for 
reporting. For example, this report is in addition to the 
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standard information on the number of tests performed 
successfully or unsuccessfully, may also contain information 
extracted from the version control system (for example, 
information about what changes were made in the analyzer 
source code for a certain time period, by whom they were 
made and when). 

C. Test Runner 
Fig. 7 shows a schematic representation of the module 

running test suites. It is also based on the abstract program 
interface describing the runner, which can be used to run the 
tests in any programming language that are stored in the test 
warehouse. 

 

Fig. 7. Test runner scheme 

Required possibility of extension, as in the case of the 
test generator, achieved through the use of plugin-based 
architecture, where modules designed to run tests on a 
particular programming language acts as a plugins. 

To work with plugins as well as in test generator test 
runner uses a specialized plugin manager, schematic 
representation of which is shown in Fig. 8. 

 

Fig. 8. Test plugin manager 

In addition to plugins designed for running test suites and 
recording the results, ACTS must contain specialized plugins 
designed to perform profiling analyzers (for example, to 
determine the number of used RAM or to measure the total 
execution time). 

The result of the test runner is the test report, which 
contains information on which of the tests have been passed, 
and which are not, as well as any other information that may 
be needed for further analysis. 

VIII. INTEGRATION WITH DEVELOPMENT 
INSTRUMENTS 

As noted above, currently there are many tools designed 
to automate the development process of syntax and semantic 
analyzers: Lex\Flex, Yacc\Bison, SableCC, ANTLR, GOLD 
Parsing System, etc. 

Pretty interesting scenario is the integration of tools that 
automates the creation of separate compiler modules and 
tools that automate the process of testing them. In this case, 
the resulting instrument would almost completely automate 
the entire process of developing a compiler or its individual 
modules and greatly facilitate the work of both developers 
and testers. 

For example, in practice, it is not a rare case when one 
developed language is similar in many ways to others. 
“Language” at the same time may not necessarily mean a 
programming language (although in this case there are many 
examples of similarity of different languages, for example, 
C# and Java), but the description languages of different data 
structures, protocols, etc., or DSL languages. For example, 
the syntax grammar of the new DSL language may be based 
on the grammar of existing language, which has already been 
added to the warehouse. Thus the developer can create a new 
grammar, which includes existing rules and also the tests 
checking these rules. So with the help of a minimum set of 
actions developer can build not only a working analyzer, but 
also a set of tests that can be used to check how well the 
implementation meets the requirements. 

For example, the ease of warehouse integration with 
different development environments provide a specialized 
abstraction level Warehouse High Level API which allows 
you to use any version control APIs that exists in modern 
IDEs (for example, Maven SCM API, NetBeans VCS API, 
etc.). 

Using ANTLR in test generator should ensure ACTS 
easy integration in such a development environment like 
ANTLR Works or any ANTLR plugins, existing for other 
IDEs (IntelliJ IDEA, Eclipse and Visual Studio). 

IX. CONCLUSION 

In this paper it is introduced the concept of a system 
designed to automate the testing of syntax and semantic 
analyzers. The main advantage of this system compared to 
existing competing solutions: 

1. Unified approach to test generation for syntax and 
semantic analyzers. 

2. Presence of specialized tools designed to manage test 
sets and to analyze them. 

3. Ability for integration with existing development 
tools using to automate the development process of 
syntax and semantic analyzers. 

Together with instruments designed to automate the 
creation of separate compiler modules the system could 
almost completely automate the entire process of developing 
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a compiler or its individual modules and greatly facilitate the 
work of both developers and testers. 

A deep integration of testing tools and development tools 
can provide the high quality of the final product. 
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