
This work is licensed under the Creative Commons Attribution License.

One Approach to Automated Compiler Verification

Vyacheslav A. Bessonov
Department of Software and Computing

Systems Mathematical Support
Perm State University

Perm, Russian Federation
E-mail: v.bessonov@hotmail.com

Scientific Advisor:
Lyudmila N. Lyadova

Department of Business Informatics
National Research University Higher School

of Economics
Perm, Russian Federation

E-mail: LNLyadova@gmail.com

Abstract. Most modern software is written in high level
languages. The task of translating source code, written in high-
level languages, into a representation, which can be executed
on a computer system, solves by specialized programs called
compilers. Errors in compilers lead to differences between the
behavior of modules, resulting from the work of compilers, and
behavior, defining the semantics of the original program. Such
errors are very difficult to detect and correct, and their
presence casts doubt on the quality of the programs generated
by a compiler. Obviously, the correctness of the compiler is a
strong prerequisite for reliable software created with its help
[20]. This paper describes the concept of a system designed to
automate the process of testing the major components of any
compiler: syntax analyzer and context conditions analyzer
(semantic analyzer).

 Keywords – compiler verification, automated testing, syntax
analyzers testing, semantic analyzers testing

I. INTRODUCTION
All kinds of software verification methods can be divided

into two large groups [8]:

1. Static verification methods, including formal
methods, methods of static analysis and expertise.
Using of such methods implies that the verification
of software systems is done “statically”, i.e. without
execution on a computer system.

2. Dynamic methods that are used to verify the
behavior of the program during execution.

The compiler of any language, having practical value, is
such a complex system that static verification techniques can
be used only for its individual small subsystems. Despite the
fact that there are exceptions such as CompCert or πVC,
common practice for compiler testing is dynamic verification
[20], which involves the following tasks [14]:

1. Test generation (test writing).

2. A verdict on the results of test execution which is
performed by the so-called test oracle, which is a
procedure for determining the correctness of the
system under this test.

3. Assessment of the tests quality which is performed
with special test coverage metrics.

Currently, there are two common approaches used to
solve these problems:

1. “White box” testing that used to identify all
erroneous fragments of specific implementation.

2. “Black box” testing, designed to determine formal
specification’s degree of compliance.

Model-based testing is a compromise between these two
methods. This approach combines the advantages and
eliminates the disadvantages of the above methods [20]. The
model can be described formally, that allows using it as input
for test generation and evaluation of test coverage. At the
same time, the model defines the requirements for
implementation and therefore it can be used to test the
correctness of a particular implementation.

But it is obvious that manual construction and
maintenance of the test suite is extremely difficult task. To
simplify this task, it is proposed to use one of the main
advantages of the model-based testing – the ability to
systematically and automatically generate test cases [2]. The
existence of a formal description allows automating the
process of tests construction, which significantly reduces
labor costs, and the systematic nature of testing increases
confidence in its results.

Thus, the described above problems of the dynamic
compiler verification can be summarized to the following
problems [20]:

1. Automation of test construction:

a. Automation of the test data generation.

b. Automation of the test results validation (the
problem of constructing a test oracle).

2. Definition of the verification process’s termination
criterion.

In [20] author proposed a verification scheme that
designed to solve these problems. Its schematic
representation is shown in Fig. 1.

Fig. 1. Verification method scheme

The first stage of the scheme is process of requirements
extraction from regulatory documents (e.g., specifications of
the target programming language) and its classification. At
the second stage a formal model is built via description of
extracted requirements in some formal language. At the third
stage test generation is performed on basis of the created
model. It is often assumed that the user can optionally
specify the desired size of the test suite, and/or test suite
requirements in terms of some test coverage metrics.
Depending on the task in addition to texts in the target
programming language test suite may additionally contain an
oracle for automatic verdict of the compiler correctness. At
the last stage the created test suite is performed. After that
reports on the entire process of testing are built. These
reports contain information on how the compiler's observed
behavior corresponds to the created formal model.

As mentioned above, compilers for real programming
languages are extremely complex software systems.
Furthermore, there is an additional source of difficulty in
verifying compiler. It is the complexity of input data
structure and its internal links. Obvious solution to reduce
the complexity of the compilers verification task is
functional decomposition into separate subtasks that should
together cover all the functionality of the compiler [20].
Additional incentive for it is that the compiler is usually
represented as a set of functional modules that have strictly
defined order of interactions between them.

However, in this paper it is considered verification of
only the first three modules: lexical analyzer, syntax analyzer
and semantic analyzer. It is worth noting that the
development of the lexical analyzer often regarded not as a
standalone module, but as an internal infrastructure for
syntax analyzer. Under the semantic analyzer in the future
will be understood analyzer of static semantics given by the
set of so-called context conditions, as an example of which is
the enforcement that all used variables should be declared in
the program code.

Thus, in accordance to the aforesaid, task of compiler
verification may be divided into the following subtasks:

1. Syntax analyzer verification.

2. Semantic analyzer verification.

In the case of automated testing, these tasks can be
formulated as follows:

1. Syntax analyzer automated testing.

2. Semantic analyzer automated testing.

II. SYNTAX ANALYZERS AUTOMATED TESTING
The syntax analyzer is one of the core modules of any

compiler and its incorrectness makes futile testing the rest of
the modules. Therefore, verification of the syntax analyzer is
one of the most important tasks of compiler verification.

Positive tests generation
Since the 60's of the 20th century, many authors have

investigated the grammar-based test generation for syntax
analyzers.

One of the first works in the field was the work of
Hanford [6], who proposed a method based on using
“dynamic” grammar for generating test data for PL/1
compiler. Its drawbacks are the lack of any coverage metrics
and non-deterministic nature of the method.

Purdom’s work [15] considered fundamental. It contains
one of the first coverage criteria for positive test sets: in a
whole variety of tests for each grammar rule there must be
language sentence, which is used in the derivation of this
rule. In addition, in the same paper, the author proposed an
algorithm for constructing a minimal test set that would
satisfy this criterion.

Lämmel [10] showed that the Purdom’s criterion is
inadequate: tests that are constructed by this algorithm fail to
detect the simplest errors. Stronger criterion proposed by
Lämmel avoids this disadvantage and consisted in the fact
that the test should cover each pair of rules, one of which can
be applied directly after the other.

Many authors ([11], [12], [13]) proposed probabilistic
methods of test generation. But in any case, this means that
there is no guarantee that the algorithm has finished for the
end time and thereby violates one of the basic principles that
we have tried to follow, is consistency.

Negative tests generation
The above-described methods devoted exclusively to the

generation of positive tests. At this time works, which would
have offered methods for generating negative tests, are
virtually absent.

A so-called “mutation testing” method is proposed in [7].
The basis of this method is the assumption that after the
adding to the original grammar a number of changes
(mutations) it can be used to generate potentially negative
tests. However this approach entails the following problems:

1. Grammar-mutant can be equivalent to the original
grammar.

2. Tests, generated on the basis of grammar-mutant,
which is not equivalent to the source, may not be
valid.

Test
suite

Formal
specification

Requirements System
model

Testing
report

Documentation
analysis

Requirements
formalization

Test
generation

Result
analysis

In [19] authors described methods for generating positive
and negative tests and their coverage criteria. The authors
embodied developed methods in the tool SynTESK. Using of
this tool for testing industrial compilers confirmed the
practical applicability of the developed approaches.

SynTESK main advantages are:

1. It is made under a unified methodology UniTESK,
which formalizes the process of testing not only
syntax analyzers, but also any other software.

2. Mechanisms of its work are based on the formal
theory having a clear rationale.

3. It has open nature and is distributed with source
code.

4. SynTESK allows to store together with tests their
descriptive metadata (for example, the parse tree),
which can be used for subsequent analysis.

5. Tool’s functionality can be expanded through the
development of specialized plugins.

6. The tool has real-world examples of successful
application in practice.

But SynTESK has the following disadvantages:

1. SynTESK allows using as a meta-language for the
grammar formally describing only one certain type
of EBNF. Users who use specialized tools to
generate the syntax analyzer (Lex/Flex, SableCC,
ANTLR, etc.) will be forced to perform translation
from tool’s meta-language to SynTESK meta-
language.

2. It does not contain any specialized tools for
managing sets of tests and their analysis. SynTESK
provides no opportunities to work with the
generated tests (e.g., edit or delete), and the user is
forced to use for this a file system, which greatly
complicates the tests processing. In addition, it is
often necessary to analyze a set of generated tests
(for example, to estimate the coverage metrics or
determine the number of tests for a certain grammar
rules, etc.), but SynTESK also provides no any
special features for this and the user is forced to
perform these operations manually.

3. SynTESK does not provide any special features to
perform syntax analyzers profiling. For example,
changing of string handling internal mechanisms in
the syntax analyzer can strongly affect both the
value of consumed memory and performance.

4. The tool interprets negative tests as a self-checking.
However, apart from establishing the fact of error
there must also ensure that the syntax analyzer
correctly identifies the type of error and its location.
Because application developers will use exactly this
information when working with the compiler.

III. SEMANTIC ANALYZERS AUTOMATED TESTING
In their works Hanford [6] and Purdom [15] described

the methods used to generate a positive tests for the syntax
analyzers of procedural languages compilers, but these
methods does not take into account any contextual
conditions.

In [17] Wichmann and Jones proposed a method for
constructing test sets, which would take into account some
contextual conditions such as a correct processing of
restrictions on the depth of nesting blocks, procedures
blocks, cycles, etc. However, this method does not allow
checking other simple rules of static semantics, for example,
concerning the using of variable names.

Celentano et al in [3] described the practical application
of approach, which allows partially automate the testing of
Pascal compiler. They used Purdom’s algorithm to generate
positive tests. To generate the test programs, which correct
from the standpoint of static semantics, they used a
specialized module with a grammar, augmented with a code
for converting syntactically correct programs to semantically
correct. The authors noted that the description of the context
conditions in this way requires considerable effort and it is
unlikely that this approach would be viable for testing
modern programming language analyzers.

In [5] authors offer to use attribute grammars as a
formalism to describe contextual conditions. The resulting
test suite, generated in accordance with the method proposed
by Duncan and Hutchison, should contain only syntactically
correct tests satisfying the context conditions. This is
achieved by sequential scanning of all grammar production
rules, which are executed only if it’s permitted by contextual
conditions. The tests generated by this method, should cover
all grammar production rules and all described contextual
conditions. However, this approach leads to a large number
of empty runs of the generator, because of necessity to
interrupt the process of generation due to unfulfilled
contextual conditions. Furthermore, this approach leads to
the construction of large numbers of semantically
uninteresting tests [5].

In [16] Sirer and Bershad described language Lava.
Grammar defined on Lava reminds EBNF-grammar
augmented by Java code describing the contextual
conditions. The authors used Lava to generate a small
number of tests (approximately 6 tests) with large size
(approximately 60,000 instructions). These tests allowed
making some resistance checks of Java Virtual Machine.
Unfortunately, the paper does not give any estimates of test
coverage.

In [1] author provides a method for constructive
description of static semantics, as well as the method of
generating both positive and negative tests. In addition, the
author proposed a set of coverage criteria. The SemaTESK
tool is the practical embodiment of proposed approaches.

SemaTESK as a SynTESK was developed in accordance
with the methodology UniTESK and therefore inherits many
advantages of this tool. Its other advantages are:

1. The tool uses an algorithm of semantically controlled
generation. This algorithm makes it possible to
systematically generate test data.

1. The performance of this tool is significantly higher
compared to the other instruments (both real and
hypothetical) [2]. It is achieved through the use of
constructive test generation techniques.

Many SynTESK disadvantages, listed above, are also
present in the SemaTESK. Its other disadvantages are:

1. One of necessary steps when working with the tool is
the stage of creating a TreeDL representation of AST.
However, in the case of using of specialized tools for
the generation of syntax analyzers, this representation
may be generated by this tool. For example, ANTLR
generates a similar representation together with
generation of grammar listener or visitor.

2. Users of the tool must create a specialized Java code
intended for translation TreeDL representation into
the text.

Common SynTESK and SemaTESK problem is that for
the user they look like two completely different programs,
each of which has its own characteristics and specific
sequence of actions. For example, SynTESK user only has to
run the program, passing to the input a formal description of
the grammar and generation parameters. In the case of tool
SemaTESK sequence of actions is much more difficult. In
addition to formal description of context conditions user
should also create TreeDL representation and develop Java
code that performs mapping from TreeDL representation into
the text. In the first case, a tester without any programming
skills could handle the task of generating. In the second case,
the requirements for the qualification of the tool’s user are
significantly higher.

IV. ANOTHER COMPILER TESTING SUITE
Our goal is to develop a system that would combine the

advantages of the above-described tools and thus would be
deprived of their disadvantages. First of all, the system must
meet the following requirements:

1. Unified approach to test generation for syntax and
semantic analyzers.

2. Presence of specialized tools designed to manage test
sets and to analyze them.

3. Ability for integration with existing development
tools using to automate the development process of
syntax and semantic analyzers.

The system was called ACTS (Another Compiler Testing
Suite) and its schematic representation is shown in Fig. 2.

Fig. 2. Automated testing system scheme

Components of this system are:

1. Test generator is the main component of the system.
It is designed to automate the process of developing
test sets.

2. Test warehouse is storage for test suites and their
metadata. This component contains special tools for
analyzing the warehouse content.

3. Test runner is a component, the main purpose of
which is to automatically run test suites and collect
the results of testing.

A. Test Generator
Test generator should use a unified approach to the

generation of tests for both the syntax and semantic
analyzers. To implement this requirement, we suggest the
following:

1. To use for grammar formal description a meta-
language used in some of the most popular tools for
generating syntax analyzers (for example, ANTLR).

2. To eliminate the need for intermediate TreeDL
representation and use as a representation for the
parse tree grammar classes generated by ANTLR
tool. This, in turn, saves us from having to write
additional code that performs the mapping from
TreeDL representation into the text.

Schematic representation of the test generator is shown in
Fig. 3.

Fig. 3. Test generator scheme

Input data for the test generator are the formal
specification of interesting language constructs and user-
defined generation parameters. User may specify tests kind
(syntax/semantic, positive/negative), test generation method
kind, coverage metric, etc.

Currently there are many different methods for
generating test data for syntax and semantic analyzers. Many
of them are interesting from a practical point of view. That is
why the test generator must provide the ability to use
different methods of generation.

To implement this requirement, it is proposed to use the
plugin-based architecture. Plugin is an abstraction of a
method for generating tests and describes a generalized
software interface that is used by the generator. Any
particular method of generation may be implemented as a
separate plugin.

Test generator

Plugin manager
Generation
parameters

Test suiteFormal
specification

Metadata

Test
warehouse

Test runner Test generator

To control the individual plugins it is proposed to use
specific module, called “plugin manager”. It allows viewing
a list of available plugins, adding new or deleting an existing
one. Test generator has access to a specific plugin only
through the plugin manager. To select a specific plugin, the
user must specify the appropriate information in the list of
parameters passed to the input of the generator.

Schematic representation of the plugin manager is shown
in Fig. 4.

Fig. 4. Test generator plugin manager scheme

In addition to testing compliance of a developed analyzer
to a formal specification, ACTS can be used to test analyzers
efficiency and productivity. To do this, for example, ACTS
can use specialized plugins designed for generation of tests
with a very large number of instructions. These tests can be
used for analyzers load testing. It is worth noting that these
plugins do not have to be a stand-alone product and can use
existing plugins for test generation.

The results of the test generator are test suite, which is a
set of programs for a particular programming language, and
set of metadata representing a formalized description of the
test suite.

Such metadata can be extremely diverse. For example,
such metadata can be a subset of the Dublin Core properties
or the information of the tests structure.

B. Test Warehouse
Test suite and its metadata are placed in test warehouse.

Testing reports are also stored in warehouse. Its schematic
representation is shown in Fig. 5.

Fig. 5. Test warehouse scheme

In addition to direct physical storage warehouse should
provide to the user with a convenient tools to control and
analyze its content:

1. Test warehouse should provide a special opportunity
to examine the contents of test suites and its
metadata. For example, the user may need
information on statistical information of existing
tests: the number of positive/negative tests, the
number of tests for a certain grammar rules, etc.

2. Warehouse must provide the ability to retrieve tests
that meet certain criteria (for example, tests that
verify the correctness of the implementation of a
compiler module).

3. User should be able to view statistical information
on the test results: the total number of uncorrected
errors, common errors, etc.

4. Test warehouse may need also functions of version
control system. At the case of new language
development old tests can be an important historical
material, showing the path of language development.

To implement this requirement, we propose to use
warehouse’s structure, schematically depicted in Fig. 6.

Fig. 6. Test warehouse extended scheme

Warehouse High Level API is a high-level programming
interface for managing warehouse content (adding new test
or test suite, changing, or deleting an existing one) and for
managing its different versions. The main purpose of this
programming interface is abstracting from low-level
operations like creating new repository, adding new file to
repository, committing changes, etc., which would assumed
working with specific version control system.

All low-level operations are performed by Warehouse
Low Level API, which delegates the execution of these
operations to a particular version control system. For
example, Maven SCM API or specialized software interfaces
used in different IDE (e.g., NetBeans VCS API).

Query API is a high-level programming interface for
executing queries that retrieve various information from the
warehouse (for example, statistical information mentioned
above).

Reporting API is a specialized programming interface for
reporting. For example, this report is in addition to the

Metadata Test suite Testing report

Test warehouse

Warehouse Low Level API

Warehouse
High Level API

Query API Reporting API

Metadata Test suite Testing report

Test warehouse

Plugin manager

Syntax plugins

Purdom SynTesK SemaTesK

Semantic plugins

Test plugins Profiling plugins

MemoryTime Johns

standard information on the number of tests performed
successfully or unsuccessfully, may also contain information
extracted from the version control system (for example,
information about what changes were made in the analyzer
source code for a certain time period, by whom they were
made and when).

C. Test Runner
Fig. 7 shows a schematic representation of the module

running test suites. It is also based on the abstract program
interface describing the runner, which can be used to run the
tests in any programming language that are stored in the test
warehouse.

Fig. 7. Test runner scheme

Required possibility of extension, as in the case of the
test generator, achieved through the use of plugin-based
architecture, where modules designed to run tests on a
particular programming language acts as a plugins.

To work with plugins as well as in test generator test
runner uses a specialized plugin manager, schematic
representation of which is shown in Fig. 8.

Fig. 8. Test plugin manager

In addition to plugins designed for running test suites and
recording the results, ACTS must contain specialized plugins
designed to perform profiling analyzers (for example, to
determine the number of used RAM or to measure the total
execution time).

The result of the test runner is the test report, which
contains information on which of the tests have been passed,
and which are not, as well as any other information that may
be needed for further analysis.

VIII. INTEGRATION WITH DEVELOPMENT
INSTRUMENTS

As noted above, currently there are many tools designed
to automate the development process of syntax and semantic
analyzers: Lex\Flex, Yacc\Bison, SableCC, ANTLR, GOLD
Parsing System, etc.

Pretty interesting scenario is the integration of tools that
automates the creation of separate compiler modules and
tools that automate the process of testing them. In this case,
the resulting instrument would almost completely automate
the entire process of developing a compiler or its individual
modules and greatly facilitate the work of both developers
and testers.

For example, in practice, it is not a rare case when one
developed language is similar in many ways to others.
“Language” at the same time may not necessarily mean a
programming language (although in this case there are many
examples of similarity of different languages, for example,
C# and Java), but the description languages of different data
structures, protocols, etc., or DSL languages. For example,
the syntax grammar of the new DSL language may be based
on the grammar of existing language, which has already been
added to the warehouse. Thus the developer can create a new
grammar, which includes existing rules and also the tests
checking these rules. So with the help of a minimum set of
actions developer can build not only a working analyzer, but
also a set of tests that can be used to check how well the
implementation meets the requirements.

For example, the ease of warehouse integration with
different development environments provide a specialized
abstraction level Warehouse High Level API which allows
you to use any version control APIs that exists in modern
IDEs (for example, Maven SCM API, NetBeans VCS API,
etc.).

Using ANTLR in test generator should ensure ACTS
easy integration in such a development environment like
ANTLR Works or any ANTLR plugins, existing for other
IDEs (IntelliJ IDEA, Eclipse and Visual Studio).

IX. CONCLUSION

In this paper it is introduced the concept of a system
designed to automate the testing of syntax and semantic
analyzers. The main advantage of this system compared to
existing competing solutions:

1. Unified approach to test generation for syntax and
semantic analyzers.

2. Presence of specialized tools designed to manage test
sets and to analyze them.

3. Ability for integration with existing development
tools using to automate the development process of
syntax and semantic analyzers.

Together with instruments designed to automate the
creation of separate compiler modules the system could
almost completely automate the entire process of developing

Plugin manager

C Java C#

Run plugins Profiling plugins

MemoryTime …

Test runner

Plugin manager
Run

parameters

Testing
report

Test suite

a compiler or its individual modules and greatly facilitate the
work of both developers and testers.

A deep integration of testing tools and development tools
can provide the high quality of the final product.

REFERENCES
[1] Аrkhipova M.V. “Аvtomaticheskaya generatsiya testov dlya

semanticheskikh analizatorov translyatorov”, Dissertatsiya na
soiskanie stepeni kandidata fiziko-matematicheskikh nauk. Moscow.
2006. ISP RАS (in Russian).

[2] Аrkhipova M.V. “Generatsiya testov dlya semanticheskikh
analizatorov”, Vychislitel'nye metody i programmirovanie, Vol. 7,
2006. pp. 55-70 (in Russian).

[3] Celentano A., Reghezzi C.S., Della V.P., Granata G., and Savoretti F.,
"Compiler Testing using a Sentence Generator," Software - Practice
and Experience, Vol. 10, No. 11, 1980. pp. 897-913.

[4] CMMI for Systems Engineering/Software Engineering, Version 1.02
(CMMI-SE/SW, V1.02) CMU/SEI-2000-TR-018 ESC-TR-2000-018.
2000. pp. 598.

[5] Duncan A.G., Hutchinson J.S. Using Attributed Grammars to Test
Designs and Implementation // In Proceedings of the 5th international
conference on Software engineering. Piscataway, NJ, USA. 1981. pp.
170-178.

[6] Hanford K.V., "Automatic generation of test cases," IBM Systems
Journal, Vol. 9, No. 4, 1970. pp. 242 - 257.

[7] Harm J., Lammel R., "Two-dimensional Approximation Coverage,"
Informatica Journal, Vol. 2029, 2000. pp. 201-216.

[8] Kulyamin V.V., "Integratsiya metodov verifikatsii programmnykh
sistem," Programmirovanie, 2009.

[9] Lämmel R., Verhoef C., "Cracking the 500-Language Problem,"
IEEE Software, Vol. 18, No. 6, 2001. pp. 78-88.

[10] Lämmel R. Grammar Testing // Fundamental Approaches to Software
Engineering. 2001. pp. 201-216.

[11] Maurer P.M., "Generating test data with enhanced context-free
grammars," IEEE Software, Vol. 7, No. 4, 1990. pp. 50 - 55.

[12] Maurer P.M., "The design and implementation of a grammar-based
data generator," Software: Practice and Experience, Vol. 22, No. 3,
1992. pp. 223–244.

[13] McKeeman W., "Differential testing for software," Digital Technical
Journal, Vol. 10, No. 1, 1998. pp. 101-107.

[14] Posypkin M.А. “Primenenie formal'nykh metodov dlya testirovaniya
kompilyatorov”, Trudy Instituta sistemnogo programmirovaniya
RАN, 2004 (in Russian).

[15] Purdom P., "A sentence generator for testing parsers," BIT Numerical
Mathematics, 1972. pp. 366-375.

[16] Sirer E., Bershad B.N. Using production grammars in software testing
// In Proceedings 2nd conference on Domain-specific languages. New
York, NY, USA. 1999. pp. 1-13.

[17] Wichmann B.A., Jones B., "Testing ALGOL 60 compilers," Software
- Practice and experience, Vol. 6, No. 2, 1976. pp. 261-270.

[18] Yang X., Chen Y., Eide E., and Regehr J. Finding and understanding
bugs in C compilers // Proceeding PLDI '11 Proceedings of the 32nd
ACM SIGPLAN conference on Programming language design and
implementation. 2011. pp. 283-294.

[19] Zelenov S.V., Zelenova S.А. “Аvtomaticheskaya generatsiya
pozitivnykh i negativnykh testov dlya testirovaniya fazy
sintaksicheskogo analiza”, Trudy Instituta sistemnogo
programmirovaniya RАN, 2004, Vol. 8 (in Russian).

[20] Zelenov S.V., Pakulin N.V. “Verifikatsiya kompilyatorov –
sistematicheskij podkhod”, Trudy Instituta sistemnogo
programmirovaniya RАN, 2007 (in Russian).

