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The Data-Correcting (DC) Algorithm is a recursive branch-and-bound type algorithm, in
which the data of a given problem instance are “heuristically corrected” at each branching

in such a way that the new instance will be as close as possible to polynomially solvable and
the result satisfies a prescribed accuracy (the difference between optimal and current
solution). In this paper the DC algorithm is applied to determining exact or approximate
global minima of supermodular functions. The working of the algorithm is illustrated by an
instance of the Simple Plant Location (SPL) Problem. Computational results, obtained for the
Quadratic Cost Partition Problem (QCP), show that the DC algorithm outperforms a
branch-and-cut algorithm, not only for sparse graphs but also for nonsparse graphs (with
density more than 40%), often with speeds 100 times faster.
(Data-Correcting Algorithm; Supermodular Function; Global Minimum)

1. Introduction
Many combinatorial optimization problems have as
an underlying model the minimization of a super-
modular (or, equivalently, maximization of a sub-
modular) function, among them being the simple
plant location (SPL) problem, generalized transporta-
tion problems, the max-cut problem with nonnegative
edge weights, set covering, and other well known
problems involving the minimization of Boolean func-
tions (Nemhauser et al. 1978, Lovasz 1983, Barahona et
al. 1988).

Although the general problem of the minimiza-
tion of a supermodular function is known to be
NP-hard, there has been a sustained research effort
aimed at developing practical procedures for solv-

ing medium and large-scale problems in this class.
Often the approach taken has been problem specific,
and supermodularity of the underlying objective
function has been only implicit to the analysis. For
example, Barahona et al. (1988) have addressed the
max-cut problem from the point of view of polyhe-
dral combinatorics and developed a branch-and-cut
algorithm, suitable for applications in statistical
physics and circuit layout design. Beasley (1993)
applies Lagrangean heuristics to several classes of
location problems including SPL problems and re-
ports results of extensive experiments on a Cray
supercomputer. Recently, Lee et al. (1996) have
made a study of the quadratic cost partition prob-
lem (QCP) of which max-cut with nonnegative edge
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weights is a special case, again from the standpoint
of polyhedral combinatorics.

There have been fewer published attempts to de-
velop algorithms for minimization of a general super-
modular function. We believe that the earliest attempt
to exploit supermodularity is the work of Petrov and
Cherenin (1948), who identified a supermodular struc-
ture in their study of railway timetabling. Their pro-
cedure was subsequently published by Cherenin
(1962) as the “method of successive calculations.”
Their algorithm however is not widely known in the
West (Babayev 1974) where, as far we are aware of, the
only general procedures that have been studied in
depth are the greedy approximation algorithm from
Nemhauser et al. (1978), and the algorithm for maxi-
mization of submodular functions subject to linear
constraints (Nemhauser and Wolsey 1981). Another
greedy approach can be found in Minoux (1977),
where an efficient implementation is proposed,
known as the “accelerated greedy algorithm” (Rober-
tazzi and Schwartz 1989); it uses a bound already
formulated in Khachaturov (1968). For solving the
so-called experimental optimal design problem, an
accelerated greedy algorithm is applied in Robertazzi
and Schwartz (1989), while in Ko et al. (1995) an exact
branch and bound type algorithm is developed, which
is improved in Lee (1998). In Genkin and Muchnik
(1990) an optimal algorithm is constructed with expo-
nential time complexity for the well-known Shannon
max-min problem. This algorithm is applied to the
maximization of submodular functions subject to a
convex set of feasible solutions, and to the problem of
what is known as decoding monotonic boolean func-
tions.

In this paper we propose a branch-and-bound pro-
cedure for minimizing a general supermodular func-
tion that is based on a generalization of an exclusion
principle first established in Cherenin (1962). The
proposed procedure improves on the greedy algo-
rithm in finding either an exact or an approximate
solution to within a prescribed accuracy bound. The
approach we take is to develop what we term Data-
Correcting (DC) algorithms, which form a class of
algorithms, introduced in Goldengorin (1983, 1995) for
the solution of NP-hard problems. Crucial in these

algorithms is the fact that the data of a given problem
instance is “corrected,” to obtain a new problem
instance belonging to a polynomially solvable class.
Actually, the polynomially solvable classes that we
use are algorithmically determined.

For example, let us consider the DC algorithm
applied to the Traveling Salesman Problem (TSP) with
the following algorithmically defined polynomially
solvable class. A nonnegative square n � n-matrix H
� �h(i, j)� is called a Hungarian matrix if the Hungar-
ian Algorithm (Nering and Tucker 1993) with input
H results in an optimal Hamiltonian cycle; notation
H � �. If a nonnegative square n � n-matrix C
� �c(i, j)� is not Hungarian, then by correcting some
entries of C we will try to find a Hungarian matrix H
that is as close as possible to C for some proximity
measure �(C, H) � min{�(C, H), �(C, H)} of C and H,
with �(C, H) � ¥ i�1

n max {�c(i, j) � h(i, j)� : j
� 1, . . . , n}, and �(C, H) � ¥ j�1

n max {�c(i, j) � h(i,
j)� : i � 1, . . . , n}. We use the proximity measure �(C,
H) in the framework of the DC algorithm for finding,
by means of a heuristic procedure, an instance H � �

that is as “close” as possible to C. Usually, this
heuristic can be easily constructed by a simple modi-
fication of a polynomial algorithm by which we define
a polynomially solvable class. In case of the Hungar-
ian algorithm we obtain the so-called Hungarian ma-
trix by patching the subcycles (Lawler et al. 1985).

In the following theorem, which is first published in
Goldengorin (1995), it is formulated that the proximity
measure is an upper bound for the difference of the
lengths of shortest Hamiltonian cycles of C and H,
denoted by OPTTSP(C) and OPTTSP(H), respectively.

Let C, H � R n�n. Then the following holds:
�OPTTSP(C) � OPTTSP(H)� � �(C, H). If �(C, H) is
smaller than a prescribed accuracy �0, then the TSP
solution with respect to H is also a solution with
respect to C. Otherwise, the DC algorithm decreases
the current value of �(C, H) by means of a branching
procedure.

Another example can be described as follows. Let �

be a function defined on a set S and let � belong to a
polynomially solvable class of functions which is a
subclass of a given class of functions � defined also on
S, and let �(�, �) � max {��(s) � �(s)�: s � S} be the
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proximity measure. If we denote the optimal values of
� and � on S by �*(S) and �*(S), respectively, then
an analogue of the above mentioned inequality is read
as follows. Let � and � be functions on the set S with
optimal values �*(S) and �*(S). Then the following
holds: ��*(S) � �*(S)� � �(�, �).

Again, if �(�, �) is smaller than a prescribed
accuracy �0, then the problem of finding �*(S) with
the given prescribed accuracy �0 is solved by �*(S).
More information about DC algorithms (general
scheme, comparison with branch-and-bound type al-
gorithms, steps of construction, methods, etc.) can be
found in Goldengorin (1983, 1995). In this paper we
present the DC algorithm for the minimization of
supermodular functions.

We have organized our paper as follows. In § 2 we
establish two symmetric upper bounds for subprob-
lems of the original problem (Theorem 1) which are
the base for constructing two preservation rules (Cor-
ollary 1) similar to the ones in Cherenin (1962). We
extend the preservation rules to the case where the
conditions of Corollary 1 are violated. Corollary 2 is an
attempt to explain what we can do in the case when
the preservation rules are not applicable. We present
the so-called Preliminary Preservation (PP) algorithm,
which originally was constructed by Cherenin (1962),
and we use it for determining the relevant polynomial
solvable class of supermodular functions.

Based on Khachaturov (1968), we are able to present
an interesting property of the algorithmically defined
polynomially solvable class that is used in the DC
algorithm of this paper; this property is in terms of
strict local minima of supermodular functions.

In § 3 we describe the main idea of the DC
algorithm. Together with Lemma 1 and Theorem 4,
we obtain upper bounds for the current accuracy
between an optimal and an �-optimal value. The
upper bound from Theorem 4 can be incorporated
into any branch-and-bound type algorithm. For the
supermodular functions case, we introduce a spe-
cific correction and show how an upper bound for
the difference between �-optimal and optimal val-
ues can be calculated. In § 4 we describe the DC
algorithm for determining either an exact global
minimum or an approximation of a global minimum

with prescribed accuracy. In § 5 we illustrate the
working of the DC algorithm by means of the SPL
problem. We compare our computational results to
results from Lee et al. (1996) in § 6. Computer
experiments on random instances of the QCP show
an improvement upon published results from Lee et
al. (1996), particularly when the data correspond to
nonsparse graphs. We give some empirical classifi-
cation on “easy” and “hard” instances of the QCP by
using the concept of diagonal dominance. Section 7
gives a number of concluding remarks.

2. Supermodular Functions and the
Preliminary Preservation (PP)
Algorithm

Let � be a real-valued function defined on the power
set 2 I0 of I 0 � {1, 2, . . . , m}; m � 1. For each � 1, � 2

� 2 I0 with �1 � �2, define [� 1, � 2] � {� � 2 I0�� 1

� � � � 2}. Note that [A, I 0] � 2 I0. The interval [�, I]
is called a subinterval of [A, I 0] if A � � � I � I 0; we
make use of the notation [�, I] � [A, I 0]. In this paper
we mean by an interval always a subinterval of
[A, I 0]. Throughout this paper, it is assumed that �

attains a finite minimum value on [A, I 0]. The mini-
mum value of the function � on the interval [�, I] is
denoted by �*[�, I]. For � � 0, the problem of
�-minimizing the function � on [�, I] is to find an
element 	 � [�, I] such that �(	) � �*[�, I] � �; 	

is called an �-minimum of � on [�, I].
The function � is called supermodular on [�, I] if for

each 	, 
 � [�, I] it holds that �(	) � �(
) � �(	
� 
) � �(	 � 
). Expressions of the form I�{k} and �

� {k} will for conciseness be written as I � k and �

� k. Let [�, I] be an interval and k � I��. The
following theorem establishes a relationship between
the unknown optimal values of � on the two parts of
the partitioning [�, I � k], [� � k, I] of [�, I]. Note
that [�, I � k] � [� � k, I] � A. The theorem can be
used to decide in which part of the partition [�, I � k],
[� � k, I] of [�, I] a global minimum of � is located.

Theorem 1. Let � be a supermodular function on the
interval [�, I] � [A, I 0] and let k � I��. Then the
following assertions hold.
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(a). �*[�, I � k] � �*[� � k, I] � �(�) � �(�

� k).
(b). �*[� � k, I] � �*[�, I � k] � �(I) � �(I

� k).

Proof. (a) Let 
 � [�, I � k], with �(
 � k)
� �*[� �k, I]. It then follows from the definition of
supermodularity that �(� � k) � �(
) � �(
 � k)
� �(�), which implies that �(
) � �(
 � k) � �(�)
� �(� � k). Hence, �*[�, I � k] � �(
 � k) � �(�)
� �(� � k). Thus �*[�, I � k] � �*[� � k, I]
� �(�) � �(� � k). The proof of (b) is similar. �

Theorem 1 establishes the conditions for con-
structing the following rules for detecting subinter-
vals containing at least one global minimum of � on
[�, I].

Corollary 1. Let � be a supermodular function on the
interval [�, I] � [A, I 0], and let k � I��. Then the
following assertions hold.

(a). First Preservation (FP) Rule:
If �(� � k) � �(�), then �*[�, I] � �*[�, I � k]

� �*[� � k, I].
(b). Second Preservation (SP) Rule:
If �(I � k) � �(I), then �*[�, I] � �*[� � k, I]

� �*[�, I � k].

Proof. (a). From Theorem 1 we have that �*[�, I
� k] � �*[� � k, I] � �(�) � �(� � k). By
assumption �(�) � �(� � k) � 0. Hence, �*[�, I]
� �*[�, I � k] � �*[� � k, I]. The proof of 1(b) is
similar. �

In Corollary 2 we present an extension of the rules
from Corollary 1, appropriate to �-minimization.

Corollary 2. Let � be a supermodular function on the
interval [�, I] � [A, I 0], and k � I��. Then the following
assertions hold.

(a). First �-Preservation (�-FP) Rule: If �(�) � �(�

� k) � � � 0, then �*[�, I � k] � �*[�, I] � �, which
means that [�, I � k] contains a �-minimum of [�, I].

(b). Second -Preservation (-SP) Rule: If �(I) � �(I
� k) �  � 0, then �*[� � k, I] � �*[�, I] � ,
which means that [� � k, I] contains a -minimum of
[�, I].

Proof. The proof of Part (a) is as follows.

Case 1. If �*[�, I] � �*[�, I � k], then �*[�, I � k]
� �*[�, I � k] � � or �*[�, I � k] � �*[�, I] � �.

Case 2. If �*[�, I] � �*[� � k, I], then from
Theorem 1(a) follows that �*[�, I � k] � �*[� � k,
I] � � or �*[�, I � k] � �*[�, I] � �. The proof of
(b) is similar. �

By means of Corollary 1 it is often possible to
exclude a large part of [A, I 0] from consideration
when determining a global minimum of � on [A, I 0].
The so called Preliminary Preservation (PP) algorithm
determines a subinterval [�, I] of [A, I 0] that certainly
contains a global minimum of �, whereas [�, I]
cannot be made smaller by using the preservation
rules of Corollary 1.

Let [�, I] be an interval. For each i � I��, define
��(�, I, i) � �(I) � �(I � i) and ��(�, I, i) � �(�)
� �(� � i); moreover, define �min

� (�, I) � min{��(�,
I, i)�i � I��}, r�(I, �) � min{r���(�, I, r) � � min

� (�,
I)}. Similarly, for ��(�, I, i) define �min

� (�, I)
� min{��(�, I, i)�i � I��}, r�(I, �) � min {r���(�, I,
r) � � min

� (�, I)}. If no confusion is likely, we simply
write r�, r�, ��, �� instead of r�(I, �), r�(I, �), � min

� (�,
I), and �min

� (�, I), respectively.

The Preliminary Preservation Algorithm

Procedure PP(�, �; �, I)
Input: A supermodular function � on the subinterval

[�, �] of [A, I 0].
Output: A subinterval [�, I] of [�, �] such that �*

[�, I] � �*[�, �], �(�) � �(� � i) and �(I)
� �(I � i) for each i � I��.

begin � :� �; I :� �;
Step 1: if � � I

then goto Step 4;
Step 2: Calculate �� and r�;

if �� � 0 {Corollary 1b}
then begin call PP(� � r�, I; �, I);

goto Step 4;
end;

Step 3: Calculate �� and r�;
if �� � 0 {Corollary 1a}
then begin call PP(�, I � r�; �, I);

goto Step 4;
end;
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Step 4:
end;

Each time either � or I are updated during the
execution of the PP algorithm, the conditions of Cor-
ollary 1 remain satisfied, and therefore the invariant
�*[�, I] � �*[�, �] remains valid at each step. At the
end of the algorithm we have that min{��, ��} � 0,
which shows that �(�) � �(� � i) and �(I) � �(I
� i) for each i � I��. Hence Corollary 1 cannot be
applied for further reduction of the interval [�, I]
without violating �*[�, I] � �*[�, �]. Note that this
remark shows the correctness of the PP algorithm.

In §4 we will use Corollary 1 to make the interval
[�, I] � [�, �] even smaller by relaxing the condi-
tion �*[�, I] � �*[�, �]; namely, for a prescribed
accuracy � we will allow �*[�, I] � �*
[�, �] � �.

The following theorem can also be found in Gold-
engorin (1982). It provides an upper bound for the
worst case complexity of the PP algorithm; the com-
plexity function is dependent only on the number of
comparisons of values for �(�).

Theorem 2. The time complexity of the PP algorithm is
at most O(m 2).

Note that if the PP algorithm terminates with � � I,
then � is a global minimum of � on [�, �]. Any
supermodular function � on [�, �] for which the PP
algorithm returns a global minimum of � is called a
PP-function. Note that PP-functions are “algorithmi-
cally” determined. In Goldengorin (1982, 1995) an
interesting property of PP-functions can be found; it
will be explained here shortly.

A subset L � [A, I 0] is called a local minimum of �
if for each i � I 0 �(L) � min{�(L � i), �(L � i)}. We
will use the Hasse diagram (Grimaldi 1994) as the
ground graph G � (V, E) in which V � [A, I 0] and a
pair (I, J) is an edge iff either I � J or J � I, and �I�J�
� �J�I� � 1. The graph G � (V, E) is called �-weighted
if the weight of each vertex I � V is equal to �(I);
notation G � (V, E, �).

Let V 0 be the subset of V consisting of all local
minima of �. Let H 0 � (V 0, E 0, �) be the subgraph of
G induced by V 0. This subgraph consists of at least
one connected component. We denote the connected

components by H 0
j � (V 0

j , E 0
j , �) with j � 1, 2, . . . , r.

Note if L 1 and L 2 are vertices in the same component,
then �(L 1) � �(L 2). A component H 0

j is called a
component of strict local minima (in short, STC) if for
each I � V�V 0

j , for which there is an edge (I, L) with
L � V 0

j , it holds that �(I) � �(L).
A local minimum � is called a lower local mini-

mum if there does not exist another local minimum
L with L � �. Similarly, an upper local minimum
can be defined. It can be easily seen that an STC is a
maximal connected set of intervals whose end
points are lower and upper local minima. Note that
two vertices I and J with (I, J) � E and �(I) � �( J)
are in one STC, if at least one of these vertices is in
the STC. In Khachaturov (1968) it is shown that any
global minimum is in an STC. This observation
implies that we may restrict ourselves to STCs when
searching a global minimum of a supermodular
function. The following theorem gives a property of
PP-functions in terms of STCs; the proof is in
Goldengorin (1982).

Theorem 3. If � is a supermodular PP-function on
[�, �] � [A, I 0], then [�, �] contains exactly one STC.

Note that not each supermodular function with
exactly one STC on [A, I 0] is a PP-function. For
example, let m � 3 and �(I) � 1 for any I � [A, {1,
2, 3}]�({A} � {1, 2, 3}) and �(I) � 2 for any I
� ({A} � {1, 2, 3}). Thus the vertex set of the
unique STC defined by this supermodular function
can be presented as [{1}, {1, 2}] � [{1}, {1, 3}] � [{2},
{1, 2}] � [{2}, {2, 3}] � [{3}, {1, 3}] � [{3}, {2, 3}], and
the PP-algorithm terminates with [�, I] � [A, {1, 2,
3}]. So, � is not a PP-function. The supermodular
function �, of the Simple Plant Location problem in
§ 5 with the two trivial STCs {1, 3}, {1, 4}, is another
example of a supermodular function that is not a
PP-function.

3. The Main Idea of the DC
Algorithm; An Extension of the
PP Algorithm

Recall that if a supermodular function � is not a
PP-function, then the PP algorithm terminates with a
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subinterval [�, I] of [A, I 0] with � � I that contains a
minimum of � without knowing its exact location in
[�, I]. In this case, the conditions

� �	�, I, i
 � 0 for i � I��, (1)

and

� �	�, I, i
 � 0 for i � I�� (2)

are satisfied at termination of the PP algorithm. The
basic idea of the DC algorithm is that if a situation
occurs for which both (1) and (2) hold, then the data of
the current problem will be “corrected” in such a way
that a corrected function � violates at least one of the
Conditions (1) or (2).

In this paper we will restrict ourselves to the situa-
tion for which the supermodularity of the corrected
function is easy to prove. Hence a situation is studied
for which there is an element i � I�� such that either
�(I � i) � �(I) or �(� � i) � � (�) holds. Now
Corollary 1 can be applied again, and we are in the
situation that the PP algorithm can be applied. For all
possible elements i, we try to choose one for which the
correction procedure maintains a solution within the
prescribed bound �0. If such an element i does not
exist, we choose an arbitrary i � I�� and branch the
current problem into two subproblems, one on [� � i,
I] and one on [�, I � i]. We should in any case find
answers to the following questions:

• How should the difference between the values of
global minima of the corrected and the uncorrected
functions be estimated, and how does this difference
depend on the specific corrections?

• How should the above mentioned difference be
decreased in case it does not satisfy the prescribed
accuracy �0?

The answers to these questions can be found below.
To preserve the supermodularity we will use the
following correcting rules.

Let A � � � I � I 0, and r�, r� � I��. Moreover, let
� be a supermodular function on [A, I 0]. For each �

� [�, I] define the following two correcting rules.

Correcting Rule 1:

�	�
 � � �	�
 � � �	�, I, r �
, if � � ��, I � r ��;
�	�
, otherwise.

Correcting Rule 2:

�	�
 � � �	�
 � � �	�, I, r �
, if � � �� � r �, I�;
�	�
, otherwise.

It can be easily seen that if � is supermodular on a
certain interval, then so is �.

An extension of the PP algorithm is based on the
statements of the following lemma.

Lemma 1. Let � be a supermodular function on the
interval [�, I] � [A, I 0] and let i � I��. Then

(a). If �(�) � �(� � i) � 0 and �(�) � �*[�, I
� i] � 
 � �, then �(�) � �*[�, I] � 
 � �.

(b). If �(I) � �(I � i) � 0 and �(�) � �*[� � i,
I] � 
 � �, then �(�) � �*[�, I] � 
 � �.

(c). If 0 � � � �(�) � �(� � i) � �, and �(�)
� �*[�, I � i] � 
 � � � �, then �(�) � �*[�, I]
� 
 � � � �.

(d). If 0 � � � �(I) � �(I � i) � �, and �(�)
� �*[� � i, I] � 
 � � � �, then �(�) � �*[�, I]
� 
 � � � �.

Proof. The proof of (a) is as follow. From � � 0
and Corollary 1(a) we obtain �*[�, I] � �*[�, I � i].
Hence �(�) � �*[�, I] � �(�) � �*[�, I � i] � 


� �. Since the proof of (b) is similar to that of (a) we
conclude with a proof of (c). From � � 0 and Corollary
2(a) we obtain �*[�, I � i] � �*[�, I] � � or � �*[�,
I] � ��*[�, I � i] � � or �(�) � �*[�, I] � �(�)
� �*[�, I � i] � � � 
 � � � � � � � � � �. �

The following theorem defines the branching step,
and shows how a current value of 
 can be decreased.

Theorem 4. Let � be an arbitrary function defined on
a finite set S and let S � � t � P S t with min{�(�)�� � S t}

� �*(S t), for t � P � {1, . . . , p}. Then for any � � 0
the following assertion holds.

If �(� t) � �*(S t) � 
 t � � for some � t � S and for
all t � P, then min{�(� t)�t � P} � �*(S)
� min{�(� t)�t � P} � min{�(� t) � 
 t�t � P} � 


� max {
 t�t � P} � �.

Proof. min{�(� t)�t � P} � �*(S) � min {�(� t)�t
� P} � min{�*(S t)�t � P} � min{�(� t)�t � P}
� max{��*(S t)�t � P} � min{�(� t)�t � P} � max{
 t

� �(� t)�t � P} � min{�(� t)�t � P} � min{�(� t)
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� 
 t�t � P} � 
 � min{�(� t)�t � P} � min{�(� t)�t
� P} � max{
 t�t � P} � max{
 t�t � P} � �. �

Note that � need not be supermodular in Theorem
4. It is clear from the proof of Theorem 4 that 
 is
independent on the order in which we combine pairs
of {�(� t), 
 t}.

Let us show now that 
 may attain max{
 t�t � P}.
For sake of simplicity, in case of binary branching,
Theorem 4 can be formulated as follows. If �(��)
� �*[�, I � k] � 
� � �, and �(��) � �*[� � k, I]
� 
� � �, for some ��, �� � [A, I 0] and some 
� and

�, then min{�(��), �(��)} � �*[�, I] � min
{�(��), �(��)} � min{�(��) � 
�, �(��) � 
�} � 


� max{
�, 
�} � �.
Now we can construct an example for which �*

[�, I] � min{�(��) � 
�, �(��) � 
�}, and therefore
we can assert that the 
 in Theorem 4 is best possible.
For example, suppose that � � 12, �(��) � 16, 
�

� 9, �*[�, I � k] � 7, �(��) � 15, 
� � 8, and �*[�

� k, I] � 10. Then, �(��) � �*[�, I � k] � 16 � 7
� 9 � 
� � 9  �, and �(��) � �*[� � k, I] � 15
� 10 � 5  
� � 8  �. Moreover, �*[�, I] � 7
� min{16 � 9, 15 � 8} and 
 � min{16, 15} � min
{16 � 9, 15 � 8} � 8  max{
�, 
�} � max{9, 8}
� 9.

The main step of the DC algorithm, to be formulated
in § 4, is called Procedure DC�. The input parameters
of Procedure DC� are an interval [�, I], and a
prescribed value of �; the output parameters are � and

, with � � [A, I 0], and �(�) � �*[�, I] � 
 � �. The
value of 
 is an upper bound for the accuracy of �(�)
� �*[�, I], and may sometimes be smaller than the
prescribed accuracy �. The procedure starts with try-
ing to make the interval [�, I] as small as possible by
using Corollary 1(a) and 1(b). If this is not possible, the
interval is partitioned into two subintervals. Then,
with the help of Lemmas 1(c) and 1(d) it may be
possible to narrow one of the two subintervals. If this
is not possible, the Procedure DC� will use the
following branching rule.

Branching Rule. For k � argmax{max [��(�, I, i),
��(�, I, i)]�i � I��}, split the interval [�, I] into two
subintervals, [� � k, I] and [�, I � k], and use the
prescribed accuracy � of [�, I] for both subintervals.

Our choice for the branching variable k � I�� is

motivated by the observation that ��(�, I, r�) � ��(�,
I � k, r�) and ��(�, I, r�) � ��(� � k, I, r�),
following straightforwardly from the supermodular-
ity of �. Hence, the values of ��, ��, for given r�, r�,
are seen to decrease monotonically with successive
branchings. Our choice is aimed at making the right
hand sides ��, �� as small as possible after branching
(and if possible nonpositive), with the purpose of
increasing the “probability” of satisfying the preser-
vation rules (see Corollary 1). Moreover, this branch-
ing rule makes the upper bound for the difference
between a 
-minimum and a global minimum as small
as possible.

Note that in Procedure DC� � need not be in the
interval [�, I]. Notice that in most branch and bound
algorithms a solution for a subproblem is searched
inside the solution space of that subproblem. From the
proofs of Lemma 1 and Theorem 4 it can be seen that
this is not necessary here. For any prescribed accuracy
� the Procedure DC� reads now as follows.

Procedure DC(�, I, �; �, 
)

Input: A supermodular function � on the interval
[�, I], � � 0.

Output: � � [A, I 0] and 
 � 0 such that �(�) � �*
[�, I] � 
 � �.

begin Step 1: if � � I
then begin � :� �; 
 :� 0;

goto Step 7;
end

Step 2: Calculate �� and r�;
if �� � 0
then begin call DC(� � r�, I, �; �, 
);
{Lemma 1b} goto Step 7;

end
Step 3: Calculate �� and r�;

if �� � 0
then begin call DC(�, I � r�, �; �, 
);
{Lemma 1a} goto Step 7;

end
Step 4: if �� � �

then begin call DC(� � r�, I, � � ��; �, 
);

 :� 
 � �� {Lemma 1d};

goto Step 7;
end
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Step 5: if �� � �

then begin call DC(�, I � r�,
� � ��; �, 
);


 :� 
 � �� {Lemma 1c};
goto Step 7;

end
Step 6: Select k � I�� (Branching Rule)

call DC(� � k, I, �; ��, 
�)
call DC(�, I � k, �; ��, 
�)
� :� argmin{�(��), �(��)} {Theorem 4}

 :� min{�(��), �(��)} � min{�(��) � 
�,
�(��) � 
�}

Step 7: {�(�) � �*[�, I] � 
 � �}
end;

In § 5 we will illustrate this algorithm by solving a
Simple Plant Location (SPL) problem.

4. The Data-Correcting (DC)
Algorithm

The DC algorithm is a branch-and-bound type algo-
rithm, and is presented as a recursive procedure.

The Data-Correcting Algorithm

Input: A supermodular function � on [A, I 0] and a
prescribed accuracy �0 � 0.

Output: � � [A, I 0] and 
 � 0 such that �(�) �
�*[A, I 0] � 
 � � 0.

begin call DC(A, I 0, � 0; �, 
)
end;

The correctness of the DC algorithm is shown in the
following theorem.

Theorem 5. For any supermodular function � defined
on the interval [A, I 0] and for any accuracy � 0 � 0, the DC
algorithm constructs an element � � [A, I 0] and an
element 
 � 0 such that �(�) � �*[A, I 0] � 
 � � 0.

Proof. We only need to show that each step of the
DC algorithm is correct. The correctness of Step 1
follows from the fact that if � � I then the interval [�,
I] contains a unique solution and � satisfies the
prescribed accuracy �0 (i.e., �(�) � �*[�, I] � �(�)
� �(�) � 0 � 
 � � 0). The correctness of Steps 2 and
3 follow from Lemma 1(b) and Lemma 1(a), respec-

tively; the correctness of Steps 4 and 5 follow from
Lemma 1(d) and Lemma 1(c), respectively; the correct-
ness of Step 6 follows from Theorem 4. So, if the
Procedure DC� is called with the arguments A, I 0,
and �0, then, when it is finished, �(�) � �*[A, I 0]
� 
 � � 0 holds. �

It is possible to make the DC algorithm more
efficient if we fathom subproblems by using lower
bounds. For subproblems of the form min{�(�)��
� [�, I]} � �*[�, I], the following lemma, due to
Khachaturov (1968) and Minoux (1977), provides two
lower bounds.

Lemma 2. If �(�) � �(� � i) � 0 and �(I) � �(I
� i) � 0 for all i � I��, then lb 1 � �(�) � ¥ i�I�� [�(�)
� �(� � i)] � �*[�, I], and lb 2 � �(I) � ¥ i�I�� [�(I)
� �(I � i)] � �*[�, I].

We next explain how to incorporate such a lower
bound into the DC algorithm. During the running of
the DC program we keep a global variable 	 in the
subset of I 0 that has the lowest function value found so
far. Then we can include a Step 3a after Step 3 in
Procedure DC�.

Step 3a: Calculate lb :� max{lb 1, lb 2};
if �(	) � lb � �

then begin � :� 	; 
 :� �(	) � lb;
goto Step 7;

end
It is obvious that � and 
 satisfy �(�) � �*[�, I]

� �(	) � lb � 
 � �. Note that in this case, 	 is, in
general, not an element of the interval [�, I].

The DC algorithm can also be used as a fast
greedy heuristic. If the prescribed accuracy �0 is
very large, branchings never occur at Step 6; the
interval [�, I] is halved in every recursive call of the
algorithm until � � I, and a “greedy” solution is
found. Moreover, the calculated accuracy 
 gives
insight into the quality of the solution obtained, as it
is an upper bound for the difference in value of the
solution obtained and an optimal solution. Note
that, thanks to Steps 2 and 3, the “greedy” solution
found by the DC algorithm when a large � is
specified, is in general better than one obtained by a
standard or accelerated greedy algorithm like the
ones described in Minoux (1977).
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5. The Simple Plant Location
Problem: An Illustration

The DC algorithm is used for the determination of a
global minimum (0-minimum) and a 2-minimum for
the SPL problem of which the data are presented in
Table 1. This example is borrowed from Boffey
(1982).

For solving the SPL problem it suffices to solve the
problem min{�(�)�� � [A, I 0]} � �*[A, I 0] � �(�)
with I 0 � {1, 2, 3, 4}, n � 5 and �(�) � ¥ i�� r i � ¥ j�1

n

min i�� c ij.
As usual for the SPL problem, r i is the fixed cost

of opening a plant at location i, and c ij is the cost of
satisfying the demand of customer j by plant i. The
recursive solution trees for the cases �0 � 0 and �0

� 2 are depicted in Figure 1 and Figure 2, respec-
tively. Each subproblem is represented by a box in
which the values of the input and the output
parameters are shown. At each arc of the trees the
corresponding steps of the Procedure DC� are
indicated. In Figure 1 the prescribed accuracy �0 � 0
is not yet satisfied at the second level of the tree, so
that a branching is needed. In the case of �0 � 2, the
DC algorithm applies the branching rule at the third
level because after the second level the value of the
current accuracy is equal to 1 (� � 1).

6. The Quadratic Cost Partition
Problem: Computational
Experiments

For given real numbers p i and nonnegative real num-
bers q ij with i, j � I 0, the Quadratic Cost Partition
Problem (QCP) is the problem of finding a subset T of
I 0 such that the weight ¥ i�T p i � 1

2 ¥ i, j�T q ij is as large

as possible. Let I 0 be the vertex set, E � I 0 � I 0 the
edge set of the edge-weighted graph G � (I 0, E) with
w ij � 0 the edge weights. For each T � I 0, the cut �(T)
is defined as the edge set for which each edge has one
end in T and the other one in I 0�T. It is easy to see that
the max-cut problem with nonnegative edge weights
is a QCP where p i � ¥ j�I0 w ij and q ij � 2w ij, for i, j
� I 0.

We have obtained computational results using ran-
domly generated connected graphs with the number
of vertices varying from 40 to 80 and edge density d
varying from 10% to 100% (i.e., d � [0.1, 1.0]). Here

Table 1 The Data of the SPL Problem

Location Delivery Cost to Site

i r i j � 1 j � 2 j � 3 j � 4 j � 5

1 7 7 15 10 7 10
2 3 10 17 4 11 22
3 3 16 7 6 18 14
4 6 11 7 6 12 8

Figure 1 The Recursive Solution Tree for � 0 � 0

Figure 2 The Recursive Solution Tree for � 0 � 2
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the edge density is d � �E�/( 2
m), �E� is the number of

random generated edges and ( 2
m) is the number of

edges in the corresponding simple complete graph.
The values of p i and q ij are uniformly distributed in
the intervals [0, 100] and [1, 100], respectively. The
computational results are summarized in Table 2. We
have tested the DC algorithm on the QCP test prob-
lems from Lee et al. (1996), and have made a compar-
ison between our results and those from Lee et al.
(1996).

Each problem set is labeled by the number of
vertices of the graph together with their densities d.
For example, problem 50/7 refers to graphs with 50
vertices and density d � 0.7 (or 70%), problem 40
refers to complete graphs with 40 vertices. For each
combination of density and number of vertices, five
random problems were solved. The column labeled
“Lee et al.” in Table 2 contains the average computa-

tional times for the problems on a RISC 6000 worksta-
tion as given in Lee et al. (1996). The DC algorithm
was coded by means of Turbo Pascal 6.0 and was
executed on a PC with a 133 Mhz processor. Cells with
“min.,” “avg.,” and “max.” in Table 2 show minimum,
maximum, and average performances of two statistics
for the DC algorithm: “the number of generated
subproblems” solved, and “the number of fathomed
subproblems” indicating the number of subproblems
discarded by means of the lower bounds lb 1 and lb 2

from Lemma 2. When the graph has at most 40
vertices, the problem is very easy, and the calculation
times are less than 0.05 seconds. For problems with at
least 40 vertices the average calculation times grow
exponentially with decreasing values of the density d
(see Figure 3) for all values of �0. This behavior differs
from the results of the algorithm from Lee et al. (1996);
their calculation times grow with increasing densities.

Table 2 The Comparison of Computational Results

Prob.

Time Average, Sec # of Generated Subpr. # of Fathomed Subpr.

Lee et al. DC min. avg. max. min. avg. max.

40/2 0.97 0.10 618 797 972 306 396 481
40/3 2.09 0.08 470 640 793 235 313 385
40/4 6.79 0.05 430 539 735 204 258 354
40/5 6.63 0.028 428 497 584 201 231 278
40/6 8.62 0.038 340 387 434 153 173 192
40/7 11.40 0.030 204 216 267 85 100 116
40/8 14.57 0.028 217 261 292 80 95 103
40/9 8.46 0.012 107 154 223 34 42 56
40 13.89 0.004 119 160 213 33 38 48

50/1 0.56 0.29 1354 1885 2525 686 945 1258
50/2 5.36 0.45 2100 2778 3919 1042 1393 1971
50/3 16.19 0.27 1671 2074 2565 814 1019 1268
50/4 95.32 0.18 1183 1576 1976 576 755 950
50/5 38.65 0.08 870 943 1051 414 447 502
50/6 43.01 0.07 646 725 798 291 321 345
50/7 48.07 0.05 610 648 714 245 270 294

60/2 12.11 1.56 5470 8635 11527 2718 4303 5744
60/3 183.02 0.71 3481 5069 7005 1736 2519 3478
60/4 150.50 0.39 2450 3037 3895 1221 1503 1917
60/5 137.22 0.22 1701 2080 2532 825 1012 1236

70/2 437.74 4.89 15823 23953 34998 7909 11971 17486
70/3 367.50 1.91 9559 11105 13968 4769 5540 6967

80/1 20.87 28.12 55517 92836 132447 27771 46418 66228
80/2 864.27 17.10 64261 66460 68372 32102 33202 34160

GOLDENGORIN, SIERKSMA, TIJSSEN, AND TSO
The Data-Correcting Algorithm

1548 Management Science/Vol. 45, No. 11, November 1999

Copyright © 1999. All rights reserved.



For problems with density of more than 10%, our
algorithm is faster than the algorithm from Lee et al.
For one problem (80/1) with density equal to 10% our
algorithm uses more time.

Some typical properties of the behavior of the DC
algorithm are shown in Figures 3, 4, and 5. In Figure 4
it can be seen that the calculation time of the DC
algorithm grows exponentially when the number of
vertices increases. This is to be expected since general
QCPs are NP-hard. Figure 5 shows how the calcula-
tion times of the DC algorithm depend on the value of
�0. We have used different prescribed accuracies vary-
ing from 0% to 5% of the value of the global minimum.

In all experiments with �0 � 0 the maximum value
of the calculated 
 (denoted by 
max) is at most 0.01949
� �*[A, I 0], i.e., within 2% of a global minimum.
Moreover, for all test problems with density at least

30% (d � 0.3), we obtained 
max � 0, that is, we found
an exact global minimum with a calculation time of at
most 5 seconds. In Figure 6, 
max is depicted for
various values of �0.

One of the referees of this paper suggested that in
case of the QCP the diagonal dominance of the matrix
might have a great influence on the calculation times.
Assuming that all p i are positive, the diagonal domi-
nance (dd) is defined as dd i � p i/(2 ¥ j�i q ij), i � I 0,
i.e., it is the quotient of the “main diagonal entry” p i

and the sum of the off diagonal entries in the ith row
and column of Q � �q ij�. We have calculated the
diagonal dominance values of the instances from
Table 2. The results of these calculations are presented
in Table 3. The first column shows that 78.8% of the

Figure 3 Average Calculation Time in Secs. against the Density d (case:
m � 80, �0 � 0)

Figure 4 Average Calculation Time in Secs. against the Number of
Vertices m (case: d � 0.3; �0 � 0)

Figure 5 Average Time in Secs. against Precscribed Accuracy �0 (case:
m � 80, d � 0.2)

Figure 6 
max as Percentage of the Value of a Global Minimum
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diagonal elements have values in the interval [0.05,
0.2]; the meaning of Columns 2 and 3 are similar.

We have studied the influence of the diagonal
dominance on the average calculation time of the DC
algorithm for the following randomly generated in-
stances. The number of vertices m varies from 40 to 80,
the edge densities d are chosen in the interval [0.1, 1.0],
and the edge weights are randomly generated from
the interval [1, 100], just as in Table 2. The weights of
the vertices p i however, are calculated from the edge
weights by using a constant dd for all vertices in the
same instance, namely p i � 2dd ¥ j�i q ij, i � I 0. The
results for the case m � 40 are shown in Figure 7.

The calculation times grow exponentially with in-
creasing values of the density d, and for fixed d they
grow exponentially if dd comes close to 0.5. The
maximum calculation time is attained for dd � 0.5
and d � 1.0. This is the case of a “pure” max-cut
problem on a complete graph. Recall that for the
instances from Lee et al. (1996), as shown in Figure 3,
the calculation times decrease by increasing values of
the density. Notice that this phenomenon does not
occur in case of constant dd.

We may conclude that diagonal dominance is a
good “yardstick” for measuring the intractability of
instances of the QCP. For example, our randomly
generated instances with a constant dd for all vertices
from the interval union [0.05, 0.2] � [0.8, 1.0] can be
classified as “easy” instances of the QCP and from the
interval [0.4, 0.6] as “hard” ones. In all our experi-
ments with constant dd, the effect of exponentially
increasing calculation times with increasing values of
m (see Figure 4), and the exponentially decreasing
calculation times with increasing values of �0 (see
Figure 5) is preserved.

7. Conclusions
Theorem 1 can be considered as the basis of our Data
Correcting algorithm. It states that if an interval [�, I]

is split into [�, I � k] and [� � k, I], then the
difference between the supermodular function values
�(�) and �(� � k), or between the values of �(I) and
�(I � k) is an upper bound for the difference of the
(unknown!) optimal values on the two subintervals.
This difference is used for “correcting” the current
data (values of �) in the algorithm.

Another keystone in the paper is Theorem 4. For
any list of subsets S t, t � P that cover the feasible
region, for example, S � �t�PSt, it enables us to
derive a new upper bound between an upper bound
on the optimal value of the objective function on S
and the optimal value. This new and sharper upper
bound, when implemented in the DC algorithm,
yields an increase of the calculated accuracy, and a
decrease in the value of the associated parameter �.
Moreover, this bound can also be built into other
branch-and-bound type algorithms for increasing
the calculated accuracy.

The DC algorithm presented in this paper is a
recursive branch-and-bound type algorithm. This re-
cursion makes it possible to present a short proof of its
correctness; see Theorem 5.

We have tested the DC algorithm on cases of the
QCP, enabling comparison with the results presented
in Lee et al. (1996). The striking computational result is
the ability of the DC algorithm to find exact solutions

Table 3 The Distribution of the Diagonal Dominances

dd [0.05, 0.2] [0.2, 0.8] [0.8, 25]

percentage 78.8 17.2 4.0

Figure 7 Average Time in Secs. against Diagonal Dominance (Cases: m
� 40, d � 0.3, 0.4, . . . , 1.0)
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for instances with densities larger than 30% and with
a prescribed accuracy of 5% within fractions of second.
For example, an exact global optimum of the QCP
with 80 vertices and 100% density, was found within
0.22 seconds on a PC with a 133 Mhz processor. We
point out that when the value of �0 is very large, the
DC algorithm behaves as a greedy algorithm.

One of the referees has proposed a “measure” of
intractability of the QCP in connection with the DC
algorithm, namely the so called diagonal dominance.
Our computational experiments with the DC algo-
rithm show that instances of the QCP with diagonal
dominances from the intervals union [0.05, 0.2] � [0.8,
25] can be classified as “easy” instances, and instances
with diagonal dominances from the interval [0.4, 0.6]
as “hard” to solve.

Finally, we would like to remark that the DC
algorithm can be used for broad classes of combina-
torial optimization problems that are reducible to the
minimization of a supermodular function.1

1 The authors are grateful to the referees for their useful comments
which improved the presentation of the results, especially for the
introduction of the concept of diagonal dominance.
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