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Abstract
In our note, we present a very simple and short proof of a new interesting fact about
the faces of an integer hull of a given rational polyhedron. This fact has a complete
analog in linear programming theory and can be useful to establish new constructive
upper bounds on the number of vertices in an integer hull of a �-modular polyhedron,
which are competitive for small values of � and can be useful for integer linear maxi-
mization problems with a convex or quasiconvex objective function. As an additional
corollary, we show that the number of vertices in an integer hull is bounded by O(n)n

for � = O(1). As a part of our method, we introduce the notion of deep bases of a
linear program. The problem to estimate their number by a non-trivial way seems to
be quite challenging.

Keywords Linear programming · Integer linear programming · Number of vertices ·
�-modular

1 Basic Definitions and Notations

Let A ∈ Z
m×n be an integer matrix. For sets I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n},

the symbol AI J denotes the sub-matrix of A, which is generated by all the rows with
indices in I and all the columns with indices in J . If I or J is replaced by ∗, then all
the rows or columns are selected, respectively. For the sake of simplicity, we denote
AJ := AJ ∗, or, in other words, AJ denotes the sub-matrix induced by the rows with
indices inJ . The maximum absolute value of entries of a matrix A (also known as the
matrix max-norm) is denoted by ‖A‖max = maxi, j |Ai j |. The number of non-zero
components of a vector x is denoted by ‖x0‖ = |{i : xi �= 0}|. For v ∈ R

n , by supp�(v)

and zeros�(v), we denote {i : |vi | ≥ �} and {1, . . . , n} \ supp�(v), respectively.
Denote supp(v) := supp0(v) and zeros(v) := zeros0(v). Clearly, ‖v0‖ = |supp(v)|.
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For a matrix B ∈ R
m×n , conv.hull(B) = {Bt : t ∈ R

n≥0,
∑n

i=1 ti = 1} is the convex
hull spanned by the columns of B.

Definition 1 For a matrix A ∈ Z
m×n, by

�k(A) = max
{|det(AI J )| : I ⊆ {1, . . . ,m}, J ⊆ {1, . . . , n}, |I| = |J | = k

}
,

we denote the maximum absolute value of determinants of all the k × k sub-matrices
of A. Additionally, denote�(A) = �rank(A)(A). A matrix A with�(A) ≤ �, for some
� > 0, is called �-modular. Note that �1(A) = ‖A‖max.

2 A Simple Connection Between1-Modular ILP and LP

Let A ∈ Z
m×n , rank(A) = n, b ∈ Z

m , and P be a polyhedron defined by the system
Ax ≤ b. Additionally, we assume that dim(P) = n, which is justified by the following
reasoning. Assume that dim(P) ≤ n − 1, which is equivalent to the existence of an
index j ∈ {1, . . . ,m} such that A j x = b j , for all x ∈ P . Note that such j could be
found by a polynomial-time algorithm. W.l.o.g. assume that j = 1 and gcd(A1) = 1,
then there exists an unimodular matrix Q ∈ Z

n×n such that A1 = (1 0n−1)Q. After
the unimodular map x → Q−1x , the system Ax ≤ b transforms to the integrally
equivalent1 system (

1 0n−1
h B

)

x ≤ b,

where h ∈ Z
m−1 and B ∈ Z

(m−1)×(n−1). Note that �(B) = �(A). Since the first
inequality always holds as an equality on the solutions set, we can just substitute
x1 = b1. As a result, we achieve a new integrally equivalent system with n − 1
variables Bx ≤ b′, where b′ = b{2,...,m} − b1 · h.

Let F be a t-dimensional face of P . It is a known fact from the theory of linear
inequalities that there exist n − t linearly independent inequalities of Ax ≤ b that
become equalities on F . More precisely, there exists a set of indices J ⊆ {1, . . . ,m},
such that |J | ≥ n − t , rank(AJ ) = n − t , and

AJ x = bJ , for x ∈ F , (1)

and, consequently,

|supp(Ax − b)| ≤ m − n + t, for x ∈ F .

We are going to prove a similar fact for the polyhedron P I = conv.hull
(P ∩Z

n).
To help the reader see the close connection of the new result with the fact (1) from LP,
we introduce the following notation:

we write x
�= y ⇐⇒ ‖x − y‖∞ < �.

1 Saying “integrally equivalent”, we mean that the sets of integer solutions of both systems are connected
by a bijective unimodular map.
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Theorem 1 Let F be a t-dimensional face of P I and � = �(A). Then, there exists a
set of indices J ⊆ {1, . . . ,m}, such that |J | ≥ n − t , rank(AJ ) = n − t , and

AJ x
�= bJ , for anyx ∈ F ∩Z

n,

and, consequently,

|supp�(Ax − b)| ≤ m − n + t, for anyx ∈ F ∩Z
n .

Proof Let us consider a point v ∈ Z
n , lying on a t-dimensional face F of P I , and the

corresponding slacks vector u = b − Av. Let S = supp�(u) and Z = zeros�(u).
Suppose to the contrary that r := rank(AZ ) < n − t . We have

(
AZ
AS

)

v +
(
uZ
uS

)

=
(
bZ
bS

)

.

There exists an unimodular matrix Q ∈ Z
n×n , such that AZ = (

H 0
)
Q, where

(
H 0

)
is the Hermite normal form of AZ and H ∈ Z

|Z |×r . The zero sub-matrix of(
H 0

)
has n − r > t columns. Let y = Qv, then

(
H 0
C B

)

y +
(
uZ
uS

)

=
(
bZ
bS

)

,

where
(
C B

) = ASQ−1 and B ∈ Z
|S |×(n−r). The matrix B has a full column rank

n − r , has at least t columns, and is �-modular. Consider the last |S | equalities of
the previous system. They can be written out as follows:

Bz + uS = bS − Cy{1,...,r},

where z = y{(r+1),...,n} is composed of last n − r components of y.
From the definition of S, it follows that (uS)i ≥ �, for any i ∈ {1, . . . , |S |}.

W.l.o.g. assume that B is reduced to the Hermite normal form. Hence, due to Gribanov
et al. [1, Lemma 1], ‖B‖max ≤ �. Let h1, h2, . . . , hn−r be the columns of B, and
let e1, e2, . . . , en represent the coordinate vectors of the standard basis in Rn . Conse-
quently, any point of the type z ± e j , for j ∈ {1, . . . , n − r}, with its corresponding
slack vector uS ± h j is feasible. Since n − r > t , the last fact contradicts the fact that
the original point v lies on the t-dimensional face of P I .

The following corollary describes how our relation looks like for polyhedra defined
by systems in the standard form. Let P be defined by a system Ax = b, x ≥ 0 with
A ∈ Z

k×n , b ∈ Z
k and rank(A) = k.

Corollary 2 Let F be a t-dimensional face of P I and � = �(A). Then, there exists a
set of indices J ⊆ {1, . . . , n}, such that |J | ≥ dim(P) − t = n − k − t , rank(A∗J )

= k + t (where J = {1, . . . , n} \ J ), and
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xJ
�= 0, for anyx ∈ F ∩Z

n .

and, consequently,

|supp�(x)| ≤ k + t, for anyx ∈ F ∩Z
n .

The proof can be directly deduced from Theorem 1 and Lemma 5 of [2].

3 The Number of Integer Vertices

Before we present our main result on | vert(P I )|, let us make a small survey. Let
ξ(n,m) denote the maximum number of vertices in n-dimensional polyhedron with
m facets. Due to the seminal paper [3] of P. McMullen, the value of ξ(n,m) attains its
maximum on the class of polytopes that are dual to cyclic polytopes with m vertices.
Due to the book of Grünbaum [4, Section 4.7], we have

ξ(n,m) =
{

m
m−s

(m−s
s

)
, forn = 2s

2
(m−s−1

s

)
, for n = 2s + 1

= O
(m

n

)n/2
.

The following bound on | vert(P I )| is due to Chirkov and Veselov [5] (see [6] for
the refined analysis; for a survey, see [7–9]):

|vert(P I )| ≤ (n + 1)n+1 · n! · ξ(n,m) · logn−1
2 (2

√
n + 1 · �ext ) =

= m
n
2 · O(n)

3
2 n+1.5 · logn−1(n · �ext ),

(2)

Here, �ext = �(
(
A b

)
) is the maximal absolute value of n × n sub-determinants

of the augmented matrix
(
A b

)
.

Let φ be the bit-encoding length of Ax ≤ b. Due to the book of Schrijver [10,
Chapter 3.2, Theorem 3.2], we have �ext = 2O(φ). In notation with φ, the last bound
(2) becomes

m
n
2 · O(n)

3
2 n+1.5 · (φ + log n)n−1,

which outperforms the more known bound

m ·
(
m − 1

n − 1

)

· (5n2 · φ + 1)n−1 = mn · O(n)n−1 · φn−1, (3)

due to Cook et al. [11], becausem ≥ n and (2) depends onm asmn/2. Due to Chirkov
and Veselov [9], the previous inequality (2) could be combined with the sensitivity
result of Cook et al. [12] to construct a bound that depends on � instead of �ext :

|vert(P I )| ≤ (n + 1)n+1 · n! · ξ(n,m) · ξ(n, 2m) · logn−1
2 (2 · (n + 1)2.5 · �2) =

= mn · O(n)n+1.5 · logn−1(n · �),

(4)
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which again is better than the bound (3) due to Cook et al., because (4) depends only
from the bit-encoding length of A, while (3) depends on the length of both A and b.
In our work, we will prove the bound:

|vert(P I )| ≤ 2 ·
(
m

n

)

· �n−1 , (5)

which outperforms the state of the art bound (4) for � = O(n2). The bounds are
compared in Table 1:

As an additional corollary, we show that

for � = O(1), |vert(P I )| = O(n)n . (6)

Note that our bound is constructive, which is a straightforward consequence of our
analysis. Theoretically, it can be used in integer convex/quasiconvex maximization
problems on polyhedra with � = O(n2). Fastest algorithms for higher values of �

are given by the bounds of Chirkov and Veselov.

4 Other RelatedWork

Assume that P is defined by a system in the standard form

{
Ax = b

x ∈ R
n≥0,

where A ∈ Z
k×n , b ∈ Z

k and rank(A) = k. It is natural to call the value of k as the
co-dimension of A orP . The next bounds on | vert(P I )| assume that the co-dimension
of P is bounded. Let �1 = �1(A), then, due to Aliev et al. [13]:

|vert(P I )| = (n · k · �1)
O(k2·log(√k·�1)). (7)

Table 1 Bounds on |vert(P I )|

mn · O(n)n−1 · φn−1 Due to Cook et al. [11]

m
n
2 · O(n)

3
2 n+1.5 · logn−1(n · �ext ) =

= m
n
2 · O(n)

3
2 n+1.5 · (φ + log n)n−1 Due to Chirkov and Veselov [5]

mn · O(n)n+1.5 · logn−1(n · �) Due to Chirkov and Veselov [9]

2 · (m
n
) · �n−1 =

mn · �(n)−n · �n−1 This work
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It is possible to improve the last bound. Let s = max
{‖v‖0 : v ∈ vert(P I )

}
be the

sparsity parameter of P I . Due to Berndt et al. [14], we have

|vert(P I )| = nk+s · s · O(k)s−k · logs(k · �1). (8)

The following improvement of (8) was proposed in the work [2], due to Gribanov
et al.:

|vert(P I )| = ns · O(s)s+1 · O(k)s−1 · logs−1(k · �1). (9)

Since s = O
(
k · log(k�1)

)
, due to Aliev et al. [13], we substitute s to both bounds

(8) and (9), and get

|vert(P I )| = (
n · k · log(k�1)

)O
(
k·log(k�1)

)

,

which outperforms the bound (7), due to [13]. The last equality was proposed in Berndt
et al. [14]. Due to Gribanov et al. [2], it holds s = O(k + log(�)), where � = �(A).
Consequently, the bound (9) could be used to estimate |vert(P I )| with respect to the
� parameter instead of �1:

|vert(P I )| = (
n · k · log(�)

)O
(
k+log(�)

)

. (10)

Note that, due to [2], the bounds (9) and (10) can be used to work with the systems
Ax ≤ b havingm = n+k rows. Therefore, for the case whenP is defined by Ax ≤ b,
it is also convenient to call k as the co-dimension of P . The bounds with respect to
the co-dimension are compared in Table 2.

5 Proof of the Bound (5)

First of all, let us formulate some definitions.

Definition 2 Let P = P(A, b) be a polyhedron as in the definition of Theorem 1. The
set of indices B ⊆ {1, . . . ,m} is a �-deep base if

1. |B | = n and det(AB) �= 0;

Table 2 Bounds for |vert(P I )| with dependence on the co-dimension k

(n · k · �1)
O(k2·log(√k·�1)) Due to Aliev et al. [13]

nk+s · s · O(k)s−k · logs (k · �1) =
= (

n · k · log(k�1)
)O

(
k·log(k�1)

)

Due to Berndt et al. [14]

ns · O(s)s+1 · O(k)s−1 · logs−1(k · �1) = Due to Gribanov et al. [2] plus

= (
n · k · log(k�1)

)O
(
k·log(k�1)

)

Aliev et al. [13]
(
n · k · log(�)

)O
(
k+log(�)

)

Due to Gribanov et al. [2]
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2. the following system is feasible:

⎧
⎪⎨

⎪⎩

bB − (� − 1) · 1n ≤ AB x ≤ bB
AB x ≤ bB
x ∈ R

n,

B = {1, . . . ,m} \ B.
Let us denote the number of �-deep bases of P by β�(P). Note that any vertex of

P corresponds to some trivial �-deep base, so β�(P) ≥ | vert(P)|.
Definition 3 Let M ⊆ {0, . . . ,� − 1}n be a convex-independent set, i.e., any point
of M can not be expressed as a convex combination of other points from M. Let us
denote the maximal possible cardinality of M by γ (n,�).

Trivially, γ (n,�) ≤ �n . We will use a different, simple bound mentioned by Brass
[15]. It follows by the pigeonhole principle that γ (n,�) ≤ � · γ (n − 1,�). Together
with γ (1,�) = 2, it gives

γ (n,�) ≤ 2 · �n−1. (11)

The lower bound γ (n,�) ≥ 4
n · �n−2 is proposed by Erdős et al. [16].

Lemma 1 Let P = P(A, b) be a polyhedron as in the definition of Theorem 1. Then,
we have:

| vert(P I )| ≤ β�(P) · γ (n,�).

Proof Let us consider the family B of all possible �-deep bases of P . For B ∈ B,
we use the following notation:

VB = {v ∈ vert(P I ) : bB − ABv < � · 1}.

Due to Theorem 1, we have vert(P I ) = ⋃
B∈B VB. Now, we are going to estimate

|VB |. Let UB = {bB − ABv : v ∈ VB}. Clearly, there exists a bijection between UB
and VB. Since VB is a convex-independent set, the same is true for UB. Moreover, 0 ≤
u < � · 1, for u ∈ UB. Consequently, |VB | = |UB | ≤ γ (n,�), and | vert(P I )| ≤
β�(P) · γ (n,�).

Corollary 3 In the assumptions of Theorem 1, the following statements hold:

1. For any v ∈ vert(P I ), there exists a �-deep base B such that ABv
�= bB.

2. |supp�(b − Av)| ≤ m − n.
3. The inequality | vert(P I )| ≤ 2 · (m

n

) · �n−1 holds.

Proof Propositions 1 and 2 are straightforward consequences of Theorem 1. Proposi-
tion 3 is a straight consequence of the trivial inequality β�(P) ≤ (m

n

)
, inequality (11)

and Lemma 1.

Using results of the papers [17] and [18] due toAverkov andSchymura andLee et al.,
we can give bounds that are independent on m:
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Corollary 4 In the assumptions of Theorem 1, the following statements hold:

1. |vert(P I )| = O(n)n · �3n−1.
2. |vert(P I )| = O(n)3n · �2n−1.

Proof Clearly,
(m
n

) = O
(m
n

)n . Due to [17] and [18], we can assume thatm = O(n4 ·�)

or m = O(n2 · �2) respectively.

Consequently, for constant values of �, we have |vert(P I )| = O(n)n , which is
equivalent of (6).

6 Conclusions and Directions for Future Research

Due to Lemma 1, we estimate the integer vertices number of P I by β�(P) · γ (n,�).
Due to Erdös et al. [16], we have γ (n,�) ≥ 4

n ·�n−2, so our bound (5) on | vert(P I )|
cannot be significantly improved, using only improvements on γ (n,�). On the other
hand, we do not know any upper or lower bounds for the number β�(P) of �-deep
bases with respect to P except trivial ones: | vert(P)| ≤ β�(P) ≤ (m

n

)
. We believe

that some significant improvements can be obtained using accurate analysis of β�(P),
which seems to be a quite challenging task.
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