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Abstract

An algebraic variety X is called a homogeneous variety if the automorphism group
Aut(X ) acts on X transitively, and a homogeneous space if there exists a transitive action
of an algebraic group on X . We prove a criterion of smoothness of a suspension to
construct a wide class of homogeneous varieties. As an application, we give criteria for
a Danielewski surface to be a homogeneous variety and a homogeneous space. Also,
we construct affine suspensions of arbitrary dimension that are homogeneous varieties
but not homogeneous spaces.
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1 Introduction
Let X be an algebraic variety over an algebraically closed fieldK of characteristic zero and
G be a group acting on X . Recall that the action of G on X is transitive if for any points
x, y ∈ X there is an element g ∈ G such that gx = y. The variety X is called a homogeneous
variety if the automorphism group Aut(X) acts on X transitively. The variety X is called
a homogeneous space if there exists a transitive action of an algebraic group G on X . In
this case, X can be identified with the variety of left cosets G/H , where H is the stabilizer
in G of a point in X . Homogeneous spaces are classical mathematical objects with rich
structural theory and many applications, see, e.g., [6,7,17,18,26,29,31].
Clearly, any homogeneous space is a homogeneous variety. In general case Aut(X) is

not an algebraic group. Moreover, there exist homogeneous varieties that are not homo-
geneous spaces. Any smooth quasi-affine toric variety is homogeneous, see [4, Theo-
rem 0.2(2)] and [5, Theorem 4.3(a)]. In [4, Example 2.2], an example of a quasi-affine toric
variety that is a homogeneous variety but not a homogeneous space is given, and in [5] the
question is raised whether there exists an example in the class of affine varieties. There
is no such affine toric variety since any homogeneous variety is smooth, and any smooth
affine toric variety is isomorphic to the direct product (K)s × (K×)r , s, r ∈ Z�0, which is a
homogeneous space. In this paper, we give series of affine surfaces and higher-dimensional
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varieties that are homogeneous varieties but not homogeneous spaces. For this purpose,
we use the construction of suspension.
In Sect. 2, we notice that any smooth suspension over a flexible affine variety is a

homogeneous variety and study when a suspension is smooth. Namely, the suspension
Susp(Y, f ) = {uv = f (y)} ⊆ A

2 × Y over an affine variety Y with f ∈ K[Y ]\K is proved
to be smooth if and only if the variety Y and the scheme SpecK[Y ]/(f ) are smooth. This
gives a criterion of smoothness of iterated suspensions and a construction of a class of
homogeneous varieties.
In Sect. 3, we prove that the Danielewski surface xzn = f (y) is a homogeneous variety

but not a homogeneous space if and only if n = 1, the polynomial f has no multiple roots
and deg f � 3. The condition n = 1 means that the Danielewski surface is a suspension
over the affine line.
We conclude Sect. 3 with a discussion of Gizatullin and Danilov–Gizatullin surfaces.

This leads to one more infinite series of affine homogeneous surfaces that are not homo-
geneous spaces.
In Sect 4, we obtain an upper bound on the rank of the Picard group of an affine homo-

geneous space and calculate the Picard group of some smooth affine suspensions. This
allows to provide a family of affine varieties of arbitrary dimension that are homogeneous
varieties but not homogeneous spaces.
The work was carried out within the contest of mathematical projects of the Euler

International Mathematical Institute.

2 Regular suspensions
LetK be an algebraically closed field of characteristic zero andGa = (K,+) be the additive
group of the ground fieldK. LetGa×X → X be a regular action on an algebraic varietyX .
The corresponding subgroup of the automorphism group Aut(X) is called aGa-subgroup
in Aut(X). By the special automorphism group SAut(X) of a varietyX , we call the subgroup
of the automorphism group Aut(X) generated by all Ga-subgroups in Aut(X). Denote by
Xreg the set of smooth points in X .

Definition 1 A smooth point x of a variety X is called flexible if the tangent space to X at
the point x is generated by tangents to orbits ofGa-subgroups passing through the point x.
A variety X is called flexible if any smooth point x ∈ X reg is flexible.

In [3, Theorem 0.1], it is proved that the following conditions are equivalent for an
irreducible affine variety X :

(a) the variety X is flexible;
(b) the group SAut(X) acts on Xreg transitively.

Moreover, if the variety X has dimension at least 2, then these conditions are equivalent
to

(c) the group SAut(X) acts on X reg infinitely transitive.

Recall that an action of a groupG on a set S is called infinitely transitive if it ism-transitive
for any m ∈ Z>0, i.e., for any pairwise distinct points x1, . . . , xm ∈ S and any pairwise
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distinct points y1, . . . , ym ∈ S there exists an element g ∈ G such that gxi = yi for all
1 � i � m.
Now we recall the notion of suspension. In the context of automorphism groups, sus-

pensions were considered for the first time in [19].

Definition 2 Let Y be an affine variety and f ∈ K[Y ] be a nonconstant regular function
on Y . Then the hypersurface Susp(Y, f ) that is given in the direct product A2 × Y by the
equation uv = f (y), where y ∈ Y and A

2 = SpecK[u, v], is called a suspension over Y .

We are interested in suspensions since this construction produces flexible varieties
from flexible varieties [4]; for the case of the ground field R, see [22]. Let us formulate the
corresponding result.

Theorem 1 [4, Theorem 0.2(3)] Suppose that an irreducible affine variety X of positive
dimension is flexible. Then any suspension over X is flexible as well.

So we come to the following source of homogeneous varieties.

Proposition 1 Any smooth suspension over a flexible irreducible affine variety is a homo-
geneous irreducible affine variety.

Proof Let X = Susp(Y, f ) be a smooth suspension over a flexible irreducible affine vari-
etyY . SinceY is irreducible, the varietyX is irreducible aswell according to [4, Lemma3.1].
By Theorem 1 and [3, Theorem 0.1], the subgroup SAut(X) ⊆ Aut(X) acts on X reg tran-
sitively. Thus, the variety X is homogeneous since X = X reg. ��

To apply Proposition 1, we have to investigate whether a suspension is smooth. First let
us fix some definitions and notations.
Suppose X ⊆ A

s is an affine variety and I(X) ⊆ K[As] = K[T1, . . . , Ts] is the ideal of all
polynomials that are zero on X . Let I(X) = (F1, . . . , Ft ). Consider the Jacobian matrix

JX (x) =
⎛
⎜⎝

∂F1
∂T1

(x) . . . ∂F1
∂Ts

(x)
. . . . . . . . .

∂Ft
∂T1

(x) . . . ∂Ft
∂Ts

(x)

⎞
⎟⎠ , x ∈ X.

It is known that the tangent space TxX to the variety X at a point x can be identified
with the kernel of the linear map defined by the matrix JX (x), see e.g. [21, Remark 5.2]. In
particular,

dimTxX = s − rk JX (x). (1)

It can be generalized to schemes, see [32, Sect. 13.1.7]. Namely, let

X = SpecK[T1, . . . , Ts]/(F1, . . . , Ft )

be an affine K-scheme. In the reduced sense, X can be thought as a subvariety of As

defined by equations F1 = . . . = Ft = 0. Then the tangent space TxX to the scheme X
at a closed point x is the kernel of the linear map defined by the matrix JX (x) and Eq. (1)
holds as well.
A variety (a scheme) is smooth at a point if the dimension of the variety (the scheme)

coincides with the dimension of the tangent space at this point, and singular otherwise.
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Lemma 1 Let Y ⊆ A
d be anaffine variety and f ∈ K[Y ] be anonconstant regular function

on Y . Consider the suspension X = Susp(Y, f ) ⊆ A
d+2. Let I(Y ) = (f1, . . . , fm), fi ∈ K[Ad].

Then for any polynomial f̂ ∈ K[Ad] which restricts to the function f on Y we have

I(X) = (uv − f̂ , f1, . . . , fm) ⊆ K[Ad+2].

Proof By definition, X is the zero set of the ideal I = (uv− f̂ , f1, . . . , fm) in the polynomial
algebra K[Ad+2] = K[u, v, y], where y = (y1, . . . , yd). We have to check that I is radical.
Let gk ∈ I for some g ∈ K[u, v, y]. Consider the lexicographic order on K[u, v, y] with

u � v � y1 � . . . � yd . The division of the polynomial g by the polynomial uv − f̂ with
respect to this order gives a decomposition

g = (uv − f̂ )h + r, (2)

where h, r ∈ K[u, v, y] and r is a polynomial that has no terms divisible by the leading term
uv of the polynomial uv − f̂ .
Substitute in y coordinates of a point y ∈ Y in Eq. (2). We obtain

g(y) = (uv − f̂ (y))h(y) + r(y), (3)

where g(y), h(y), r(y) ∈ K[u, v], f̂ (y) ∈ K. Still the remainder r(y) has no terms divisible by
uv. Since gk ∈ I = (uv − f̂ , f1, . . . , fm) ⊆ K[u, v, y] and f1(y) = . . . = fm(y) = 0, it follows
that

g(y)k ∈ (uv − f̂ (y)) ⊆ K[u, v]. (4)

The polynomial uv − f̂ (y) ∈ K[u, v] is square-free, so from Eq. (4) it follows that g(y) ∈
(uv − f̂ (y)) as well. Then according to (3) we also have r(y) ∈ (uv − f̂ (y)). Since r(y) has
no terms divisible by uv, it follows that r(y) = 0. Since y ∈ Y is an arbitrary point of Y , we
obtain r ∈ I(Y ) = (f1, . . . , fm). Then by Eq. (2) we have g ∈ I . Thus, the ideal I is radical. ��

Theorem 2 Let Y be an affine variety and f ∈ K[Y ] be a nonconstant regular function
on Y . Then the suspension X = Susp(Y, f ) is singular at a point x = (u, v, y) ∈ X if and
only if at least one of the following conditions holds:

(a) the variety Y is singular at the point y ∈ Y ;
(b) u = v = 0 and the scheme Z = SpecK[Y ]/(f ) is singular at the point y ∈ Z .

Remark 1 In the reduced sense, Z can be thought as the subvariety {f = 0} ⊆ Y .

Remark 2 In [4, Lemma 3.2], it is proved that if π : X → Y is the restriction of the
projection A

2 × Y → Y , then π (Xreg) = Y reg.

Proof Let Y ⊆ A
d and K[Ad] = K[y], where y = (y1, . . . , yd). Let I(Y ) = (f1, . . . , fm),

fi ∈ K[y], and a polynomial f̂ ∈ K[y] restricts to the function f on Y . By Lemma 1,

I(X) = (uv − f̂ (y), f1(y), . . . , fm(y)) ⊆ K[u, v, y].
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Let us calculate the Jacobian matrix at a point x = (u, v, y) ∈ X :

JX (x) =

⎛
⎜⎜⎜⎜⎝

v u − ∂ f̂
∂y1 (y) . . . − ∂ f̂

∂yd (y)
0 0 ∂f1

∂y1 (y) . . .
∂f1
∂yd (y)

. . . . . . . . . . . . . . .

0 0 ∂fm
∂y1 (y) . . .

∂fm
∂yd (y)

⎞
⎟⎟⎟⎟⎠

Notice that the deleting of the first two columns and the first row gives the Jacobianmatrix
of Y at y. Then rk JX (x) � rk JY (y) + 1. For the dimensions of tangent spaces, it means
d + 2 − dimTxX � d − dimTyY + 1, i.e.,

dimTxX − 1 � dimTyY. (5)

We also know that

dimTyY � dim Y = dimX − 1. (6)

It follows that dimTxX = dimX if and only if both inequalities in (5) and (6) turn into
equalities. So the condition that the varietyX is singular at a point x, i.e., dimTxX 	= dimX ,
is equivalent to one of the following:

(a) the inequality in (6) is strict, i.e., Y is singular at the point y;
(b) Y is smooth at y, but inequality (5) is strict, i.e., rk JX (x) = rk JY (y).

Consider the second case. The first row of the Jacobian matrix JX (x) has to be a linear
combination of other rows. It follows that u = v = 0. Since uv = f̂ (y), we obtain that
y ∈ Z . Notice that the deleting of the first two columns of JX (x) gives the Jacobian
matrix of Z in y. Since rk JX (x) and rk JY (y) coincide, they also equal rk JZ (y). Then
dimTyZ = dimTyY = dim Y , but dimZ = dim Y − 1. Thus, Z is singular at the point
y ∈ Z in the second case. ��
This result motivates the following definition.

Definition 3 Let Y be an affine variety and f ∈ K[Y ] be a nonconstant regular func-
tion on Y . The suspension Susp(Y, f ) is called regular if the variety Y and the scheme
Z = SpecK[Y ]/(f ) are smooth.

We obtain several corollaries of Theorem 2.

Corollary 1 Let Y be an affine variety and f ∈ K[Y ] be a nonconstant regular function
on Y . The suspension Susp(Y, f ) is smooth if and only if it is regular.

Now we can consider an iterated suspension over an affine variety Y , i.e., the variety Yk
obtained by a series of suspensions

Y1 = Y,

Y2 = Susp(Y1, f1),

. . .

Yk = Susp(Yk−1, fk−1),

(7)

where fi ∈ K[Yi]\K, 1 � i � k − 1.



   27 Page 6 of 13 I. Arzhantsev, Y. Zaitseva Res Math Sci          (2024) 11:27 

Corollary 2 Let Yk be an iterated suspension over an affine variety Y . Then Yk is smooth if
and only if the variety Y and the schemesZi = SpecK[Yi]/(fi), 1 � i � k − 1, are smooth.

Proof By Corollary 1, Yk is smooth if and only if any suspension in (7) is regular. ��

The following corollary gives a wide class of affine homogeneous varieties.

Corollary 3 Let Y be a smooth flexible irreducible affine variety of positive dimension
and Yk be an iterated suspension over Y . Then Yk is a homogeneous variety if and only if
the schemes Zi = SpecK[Yi]/(fi), 1 � i � k − 1, are smooth.

Proof According to Corollary 2, the variety Yk is smooth if and only if the schemes
Zi, 1 � i � k − 1, are smooth. Any homogeneous variety is smooth, so it is a necessary
condition.Conversely, ifY is smooth, thenbyProposition 1 the varietyYk is homogeneous.

��

Example 1 Suspensions over SL2(K) can be considered as iterated suspensions over A2.
For example, the suspension Y3 = Susp(Y2, x3z + yt2) over the variety

Y2 = SL2(K) =
{
det

(
x z
t y

)
= 1

}

is the iterated suspension over Y1 = A
2 = SpecK[x, y] given by the system of equations

{
zt = xy − 1

uv = x3z + yt2

Let us apply Corollary 3 to prove that the variety Y3 is homogeneous. The hyperbola
Z1 = SpecK[x, y]/(xy − 1) is smooth. Consider

Z2 = SpecK[SL2(K)]/(x3z + yt2) = SpecK[z, t, x, y]/(zt − xy + 1, x3z + yt2).

If the Jacobian matrix of Z2

J =
(
t z −y −x
x3 2yt 3x2z t2

)

at a point of Z2 has rank 1, then 2yt2 − x3z = 0. Taking into account x3z + yt2 = 0, we
obtain x3z = yt2 = 0, whence according to zt − xy + 1 = 0 we see that either x = y = 0,
z, t 	= 0, or z = t = 0, x, y 	= 0. This contradicts the condition t3 + x4 = 0, which follows
from rk J = 1.

Let us consider the case Y = A
n.

Corollary 4 Let X = Susp(An, f ) and f = p1 . . . pk ∈ K[y1, . . . , yn], where pi are irre-
ducible polynomials. Then X is homogeneous if and only if pi 	= pj for i 	= j and the
subvarieties {pi = 0} ⊆ A

n are smooth and do not intersect pairwise.

Proof According to Corollary 3, the suspension X is homogeneous if and only if the
scheme SpecK[An]/(f ) is smooth.
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A closed point y of SpecK[An]/(f ) is singular if and only if ∂f
∂y1 (y) = . . . = ∂f

∂yn (y) = 0.
We may assume, without loss of generality, that p1(y) = 0. Since

∂f
∂yi

= ∂p1
∂yi

p2 . . . pk + . . . + p1 . . . pk−1
∂pk
∂yi

,

the condition of singularity is equivalent to ∂p1
∂yi (y)p2(y) . . . pk (y) = 0 for any 1 � i � n,

i.e., the point y belongs to some {pj = 0} for j 	= i or y is a singular point of {p1 = 0}. ��

Example 2 The affine hypersurface

{x2y + x + uv = 0} ⊆ A
4

is homogeneous according to Corollary 4. It is the suspension Susp(A2, f ), where the poly-
nomial f (x, y) = −x(xy+1) has simple irreducible factors, and the subvariety {f = 0} ⊆ A

2

has smooth irreducible components {x = 0} and {xy = −1} that do not intersect.

Remark 3 The condition on irreducible components in Corollary 4 can be checked via
computer algebra methods. Namely, for p1, p2 ∈ K[y1, . . . , yn] the hypersurfaces {p1 = 0}
and {p2 = 0} do not intersect if and only if the Gröbner basis of the ideal (p1, p2) contains
a constant. Alternatively, this condition holds if and only if the resultant of p1 and p2 is
a nonzero constant, where p1, p2 are considered as polynomials in y1 with coefficients in
K[y2, . . . , yn]. The component {p = 0} is smooth if and only if the Gröbner basis of the
ideal (p, ∂p

∂y1 , . . . ,
∂p
∂yn ) contains a constant.

3 The case of surfaces
In this section, we provide a series of explicit examples of affine surfaces that are homo-
geneous varieties but not homogeneous spaces.
Let x, y, z be coordinates inA3. ADanielewski surface is a surface inA3 given by equation

xzn = f (y), where n ∈ Z>0 and f ∈ K[y]. It is known that two Danielewski surfaces with
parameters n1, n2 ∈ Z>0 and polynomials f1(y), f2(y) are isomorphic if and only if n1 = n2
and

f1(y) = af2(by + c) (8)

for some a, b ∈ K
×, c ∈ K, see [8, Lemma 2.10].

Let us formulate the result.

Theorem 3 Let X be an affine surface given in A
3 with coordinates x, y, z by equation

xzn = f (y), where f is a nonconstant polynomial. Then

(i) X is a homogeneous variety if and only if deg f = 1 or n = 1 and the polynomial f
has no multiple roots;

(ii) X is a homogeneous space if and only if deg f = 1 or n = 1, the polynomial f has no
multiple roots and deg f = 2.

Remark 4 Statement (i) of Theorem 3 is known, but for convenience of the reader we
recall the corresponding references in the proof.

We use the following statement to prove Theorem 3(ii). An algebraic variety is called
quasihomogeneous with respect to an algebraic group if it admits an action of an algebraic
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group with an open orbit such that the complement to this orbit is finite. In [15], all
smooth irreducible quasihomogeneous with respect to an algebraic group affine surfaces
are found. They are the following:

(a) A
2;

(b) A
1 × K

×, where K× = K\{0};
(c) (K×)2;
(d) X1 = P

2\C , where C is a smooth quadric;
(e) X2 = P

1 × P
1\ diag P1, where diag is the diagonal in the direct product.

In [27], both smooth and singular irreducible quasihomogeneous with respect to an alge-
braic group affine surfaces are classified. It is known that the surface X1 in item (d) is
isomorphic to the homogeneous space SL2 /N , and a surface X2 in item (e) is isomorphic
to the homogeneous space SL2 /T , where T is the one-dimensional subgroup of diagonal
matrices in SL2 and N is the normalizer of the torus T , see [27, Lemma 2].

Proof of Theorem 3 If deg f = 1 then X is isomorphic to the affine plane A
2 and is a

homogeneous space. Hereafter, deg f � 2.

(i) In [24], generators of the automorphism group of X for n > 1 are found:

ξλ : x 
→ λ−1x, y 
→ y, z 
→ λz, where λ ∈ K
×;

θq : x 
→ x + f (y + znq(z)) − f (y)
zn

, y 
→ y + znq(z),

z 
→ z, where q(z) ∈ K[z];

x 
→ λdx, y 
→ λy, z 
→ z, where λ ∈ K
×, if f (y) = yd ;

x 
→ μdx, y 
→ μy, z 
→ z,

where μm = 1, if f (y) = ydp(ym), p(y) ∈ K[y].

One can notice that the set of points with z = 0 in X is invariant with respect to
Aut(X), so X is not homogeneous. Note that a generic orbit of the group SAut(X) is
one-dimensional, and the group Aut(X) has an open orbit {z 	= 0}. Indeed, automor-
phisms θq with q(z) ∈ K

× connect points with fixed z 	= 0, and automorphisms ξλ

connect these orbits. See also [11, Example 2.23] for a relation withMakar–Limanov
invariant and Gizatullin surfaces.
For the case n = 1, we apply Corollary 4 and obtain that X = {xz = f (y)} is
homogeneous if and only if f has no multiple roots. Indeed, X is a suspension over
the affine line Y = A

1 and irreducible components of the subvariety {f = 0} ⊆ A
1

are distinct points. Also, transitivity of the action of the group Aut(X) on X can be
extracted from the description of the automorphism group given in [23]; see also
[11, Example 2.23] and [3, Example 2.3] for different proofs of transitivity on an open
subset of X .

(ii) Any homogeneous space is a homogeneous variety, so we consider only n = 1 and
the polynomial f without multiple roots.

Let us show that the surface X1 in item (d) from the above list is isomorphic to the
Danielewski surface given by the equation

xz = y2 − 1.
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Since X1 is the homogeneous space SL2 /T , the algebra of regular functionsK[X1] equals
the algebra of invariantsK[SL2]T with respect to the action of the torus T on SL2 by right
multiplication. Since

(
a b
c d

) (
t 0
0 t−1

)
=

(
at bt−1

ct dt−1

)
,

we see that the algebra K[SL2]T is generated by monomials ab, ad, bc, cd. Denote

x = ab, z = cd, y = ad + bc
2

.

Taking into account the equation ad − bc = 1, we obtain

K[SL2]T = K[ab, ad, bc, cd] = K[x, y + 1, y − 1, z].

So, the algebra of regular functions of the surface X1 = SL2 /T is isomorphic to the
quotient algebra K[x, y, z]/(xz − (y − 1)(y + 1)) as claimed. Since the degree of the poly-
nomial y2 − 1 equals 2 and all polynomials of degree 2 are equivalent with respect to
transformations (8), all Danielewski surfaces with deg f = 2 are homogeneous spaces
from item (d).
The equation xz = f (y) with the polynomial f (y) of degree 1 is isomorphic to the affine

plane A2 in item (a), so all Danielewski surfaces with deg f = 1 are homogeneous spaces.
Notice that a smooth flexible variety X admits no nonconstant invertible regular func-

tions since it is the image of an affine space via the orbit map H1 × H2 × . . . × Hm → X
for some Ga-subgroups H1, H2, . . . , Hm in Aut(X), see [3, Proposition 1.5]. It follows that
a homogeneous Danielewski surface X is not isomorphic to the surfaces (b) and (c).
Let us show that the surface X2 = SL2 /N in item (e) is not isomorphic to any

Danielewski surface. Since Pic(SL2) = 0, the Picard group Pic(X2) equals the charac-
ter group X(N ) = Z/2Z of N by [28, Corollary of Theorem 4]. It is sufficient to prove
that the Picard group of any Danielewski surface X = {xz = f (y)} equals Z

d , where
d = deg f − 1, see also [1, Example 3.3]. Denote f (y) = α(y − y0) . . . (y − yd), α, yi ∈ K.
Let

h = x
α(y − y1) . . . (y − yd)

= y − y0
z

∈ K(X).

Consider the divisor D = {z = 0, y = y1} ∪ . . . ∪ {z = 0, y = yd}. Notice that h is regular
on the open subsetU = X \D, which is affine by Nagata et al. [25, Lemma 3.3]. Moreover,
x = hα(y − y1) . . . (y − yd) and y = y0 + hz on U , so the algebra K[U ] is generated by h
and z. This implies, together with dimU = 2, thatU ∼= A

2. It is easy to see that if an open
subset U of a smooth variety X is isomorphic to an affine space, then the group Pic(X)
is freely generated by classes of prime divisors of D = X \ U . In our case, subvarieties
{z = 0, y = yi} ⊆ X , 1 � i � d, are isomorphic to A

1 and whence are prime components
of D, so Pic(X) = Z

d .
To sum up, we obtain the following in the case n = 1. If deg f = 1, then X is the homo-

geneous space A2. If deg f = 2, then X is the homogeneous space SL2 /T . If deg f � 3,
then X is not isomorphic to surfaces in items (a)–(e). Thus, the surface X is a homoge-
neous variety but not a quasihomogeneous variety with respect to an algebraic group; in
particular, it is not a homogeneous space. ��
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Example 3 According to Theorem 3, the Danielewski surface xzn = f (y) is a homoge-
neous variety but not a homogeneous space if and only if n = 1 and deg f � 3. For
example,

{xz = y(y + 1)(y + a)} ⊆ A
3,

a ∈ K \ {0, 1}, is a class of such surfaces. The surfaces with parameters a, b are not
isomorphic if b 	= a, 1−a, 1a ,

a−1
a , a

a−1 ,
1

1−a , see Eq. (8). Sowe have infinitelymany pairwise
non-isomorphic examples.

Let us recall that a normal affine surface X is a Gizatullin surface if the automorphism
group Aut(X) acts on X with an open orbit such that the complement to this orbit is
a finite set. It is proved in [14] in the smooth case and in [11] in the normal case that
a normal affine surface X that is not isomorphic to (K×)2 is a Gizatullin surface if and
only if X admits a smooth compactification by a smooth zigzag D. The latter means that
X = Y \ D, where Y is a complete surface smooth along D and D is a linear chain of
smooth rational curves with simple normal crossings.
Smooth Gizatullin surfaces were conjectured to be homogeneous varieties, see [14,

Conjecture 1]. However, counter-examples were found in [20]. Danielewski surfaces of
the form xz = f (y) that we use in this paper are examples of Gizatullin surfaces. The
question which smooth Gizatullin surfaces are homogeneous is still open.
A smooth affine surface X is a Danilov–Gizatullin surface if X = Y \ D, where Y is

a complete smooth surface and D is a smooth irreducible rational curve. From [13], we
know that every Danilov–Gizatullin surface is a homogeneous variety.
It is shown in [16] that every Danilov–Gizatullin surface X is either P2 \H , whereH is a

line, or P2\C , where C is a conic, or Fa \ S, where Fa is the Hirzebruch surface and S is an
ample divisor in Fa. In the first case, we denote X ∼= A

2 by V ′. In the second case, we use
notation V ′′ = P

2 \C . Finally, let us say that for n � 2 the nth Danilov–Gizatullin surface
is the affine surface Vn := Fa\S, where S ⊆ Fa is an ample divisor in the Hirzebruch
surface Fa with the intersection index n := (S, S). The isomorphism class of Vn indeed
depends only on n; see [16, Theorem 5.8.1] or [12]. Moreover, for different n the surfaces
Vn are not isomorphic, see, e.g., [12, Remark 2.10.2].
Consider the affine hypersurface Fn := V (T1T4 − Tn−1

2 T3 − 1) ⊆ A
4, where n � 2.

It is a smooth affine factorial 3-fold with K[Fn]× = K
×, which is the spectrum of the

Cox ring of Vn; see [2, Exercise 4.18]. In the framework of the Cox construction, the
variety Vn is obtained as the geometric quotient of Fn with respect to the free action of
the one-dimensional torus

t · z = (t−1z1, tz2, t1−nz3, tz4);

see [10, Proposition 2.1] and [2, Exercise 4.18] for details. In particular, the spectrum of
the Cox ring of the surface Vn has dimension three.
We conclude that the onlyDanilov–Gizatullin surfaces that are homogeneous spaces are

V ′, V ′′ and V2. Indeed, we already know that V ′ ∼= A
2 and V ′′ ∼= SL2 /N . It follows from

the classification of smooth irreducible quasihomogeneous with respect to an algebraic
group affine surfaces that the only such surface with 3-dimensional spectrum of the Cox
ring is SL2/T . Indeed, the spectrum of the Cox ring of A2 is A2 and the spectrum of the
Cox ring of SL2 /N is SL2 /T ; see [2, Example 4.5.1.13]. Finally, the varieties A1 × K

×

and (K×)2 have non-constant invertible regular functions and the Cox ring is not defined
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in this situation. It is easy to see, e.g., from the Cox construction, that the variety V2 is
isomorphic to SL2/T .
As a result, we obtain one more series Vn, n � 3, of affine homogeneous varieties that

are not homogeneous spaces.

4 Homogeneous varieties of higher dimension
In this section, we provide awide class of homogeneous varieties of an arbitrary dimension
that are not homogeneous spaces.
Recall that a polynomial p ∈ K[x1, . . . , xn] is called a variable if there exist polynomials

p2, . . . , pn ∈ K[x1, . . . , xn] such that K[x1, . . . , xn] = K[p, p2, . . . , pn].

Theorem 4 Let a smooth hypersurface X ⊆ A
n+1 be given by an equation of the form

uv = p0(y) . . . pd(y), (9)

where u, v, and y = (y1, . . . , yn−1) denote coordinates in A
n+1, pi ∈ K[y] are irreducible

polynomials, and p0 is a variable in K[y]. Then

(a) Pic(X) = Z
d;

(b) if d > n then X is a homogeneous variety that is not a homogeneous space.

Remark 5 By Corollary 4, the hypersurface X given by Eq. (9) is smooth if and only if
pi 	= pj for 0 � i 	= j � d and the subvarieties {pi = 0} ⊆ A

n−1 are smooth and do not
intersect pairwise.

For the proof, we need the following bound on the rank of the Picard group of homoge-
neous spaces.

Lemma 2 Let X be an affine homogeneous space. Then rk Pic(X) � dimX.

Proof One can assume that X = Ĝ/Ĥ , where Ĝ acts on X effectively. Then Ĝ is
an affine algebraic group according to Brion [6, Corollary 3.2.2]. Moreover, we can
assume that Ĝ is connected. According to [28, Theorem 3], there exists a central isogeny
G → Ĝ with Pic(G) = 0. Thus, X = G/H , where G is an affine algebraic group such that
Pic(G) = 0 and G acts on X with a finite kernel of non-effectivity. By Popov [28, Corol-
lary of Theorem 4], the condition Pic(G) = 0 implies that the group Pic(X) equals the
character group X(H ) of the subgroup H .
Denote by H0 the connected component of H . Since H0 is a connected affine algebraic

group, we have a decompositionH0 = (T · S)�Hu, where T is a torus, S is a semisimple
group, Hu is the unipotent radical of H0 and · denotes the almost direct product, see
[26, Sect. 6, Theorem 4]. Since semisimple and unipotent groups have no characters, the
homomorphism of restriction ϕ : X(H0) → X(T ) is injective.
Let us show that the restriction homomorphism ψ : X(H ) → X(H0) has a finite kernel.

Indeed, characters of H that are trivial on H0 are characters of the finite group H/H0.
So ϕ ◦ ψ : X(H ) → X(T ) has a finite kernel, whence rkX(H ) � rkX(T ) = dimT . Since

the torusT ⊆ G acts onX with afinite kernel of non-effectivity, the factor ofT by this finite
subgroup is a torus T̂ of the same dimension acting effectively on X . By [9, Corollary 1],
we have dim T̂ � dimX . Thus, rk Pic(X) = rkX(H ) � dimT = dim T̂ � dimX . ��
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Proof of Theorem 4 (a) After a change of variables in K[y], we can assume that
f (y) = y1p1(y) . . . pd(y), where y = (y1, . . . , yn−1). Let

h = u
p1(y) . . . pd(y)

= y1
v

∈ K(X).

Consider the divisor D = {v = 0, p1 = 0} ∪ . . . ∪ {v = 0, pd = 0}. The function
h is regular on the open subset U = X \ D, which is an affine variety according to
[25, Lemma 3.3]. Note u = hp1(y) . . . pd(y) and y1 = hv on U , whence the algebra
K[U ] is generated by n functions h, v, y2 . . . , yn−1. Since dimU = n, it follows that
U ∼= A

n. Then Pic(X) is freely generated by classes of prime divisors of D = X \ U .
Since {v = 0, pi = 0} ⊆ X is isomorphic to the irreducible variety {pi = 0} ⊆ A

n−1,
1 � i � d, we have Pic(X) = Z

d .
(b) According to Proposition 1, the variety X = Susp(An−1, p0 . . . pd) is homogeneous.

If d > n, then X is not homogeneous space by item (a) and Lemma 2. ��

Example 4 LetX be the direct product of the affine spaceAn−2 and a Danielewski surface
Y = {xz = f (y)} ⊆ A

3 with deg f = n + 2, where f has no multiple roots. Then
Pic(X) = Pic(Y × A

n−2) = Pic(Y ) = Z
n+1 according to [30, Chapter 3, Sect. 1] and

the proof of Theorem 3. Since dimX = n, the variety X is not a homogeneous space by
Lemma 2. This example belongs to the class obtained in Theorem 4(b).

Example 5 Consider the hypersurface

X = {uv = (x + y2)(xy + y3 + 1)(xy + y3 + 2)(xy + y3 + 3)(xy + y3 + 4)} ⊆ A
4 .

Denote p0 = x + y2, pi = xy + y3 + i, 1 � i � 4. Since K[x + y2, y, u, v] = K[x, y, u, v],
the polynomial p0 is a variable. Notice that pi, 1 � i � 4, are not variables since pi − i =
(x + y2)y is reducible. Any curve {pi = 0} ⊆ A

2 is smooth and for any i 	= j subvarieties
{pi = 0} and {pj = 0} do not intersect pairwise, 0 � i, j � 4. So by Corollary 4X is smooth.
According to Theorem 4, we have Pic(X) = Z

4, and X is a homogeneous variety but not
a homogeneous space as 4 > 3.
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