Faster algorithms for sparse ILP and hypergraph multi-packing/multi-cover problems

Dmitry Gribanov ${ }^{1}$ (1) \cdot Ivan Shumilov ${ }^{2}$. Dmitry Malyshev ${ }^{1} \cdot$ Nikolai Zolotykh 3

Received: 9 May 2023 / Accepted: 27 February 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

In our paper, we consider the following general problems: check feasibility, count the number of feasible solutions, find an optimal solution, and count the number of optimal solutions in $\mathcal{P} \cap \mathbb{Z}^{n}$, assuming that \mathcal{P} is a polyhedron, defined by systems $A x \leq b$ or $A x=b, x \geq 0$ with a sparse matrix A. We develop algorithms for these problems that outperform state-of-theart ILP and counting algorithms on sparse instances with bounded elements in terms of the computational complexity. Assuming that the matrix A has bounded elements, our complexity bounds have the form $s^{O(n)}$, where s is the minimum between numbers of non-zeroes in columns and rows of A, respectively. For $s=o(\log n)$, this bound outperforms the state-of-the-art ILP feasibility complexity bound $(\log n)^{O(n)}$, due to Reis \& Rothvoss (in: 2023 IEEE 64th Annual symposium on foundations of computer science (FOCS), IEEE, pp. 974-988). For $s=\phi^{o(\log n)}$, where ϕ denotes the input bit-encoding length, it outperforms the state-of-the-art ILP counting complexity bound $\phi^{O(n \log n)}$, due to Barvinok et al. (in: Proceedings of 1993 IEEE 34th annual foundations of computer science, pp. 566-572, https://doi.org/10. 1109/SFCS.1993.366830, 1993), Dyer, Kannan (Math Oper Res 22(3):545-549, https://doi. org/10.1287/moor.22.3.545, 1997), Barvinok, Pommersheim (Algebr Combin 38:91-147, 1999), Barvinok (in: European Mathematical Society, ETH-Zentrum, Zurich, 2008). We use known and new methods to develop new exponential algorithms for Edge/Vertex Multi-Packing/Multi-Cover Problems on graphs and hypergraphs. This framework consists of many

[^0]different problems, such as the Stable Multi-set, Vertex Multi-cover, Dominating Multi-set, Set Multi-cover, Multi-set Multi-cover, and Hypergraph Multi-matching problems, which are natural generalizations of the standard Stable Set, Vertex Cover, Dominating Set, Set Cover, and Maximum Matching problems.

Keywords Integer linear programming • Counting problem • Parameterized complexity • Multipacking • Multicover • Stable set • Vertex cover • Dominating set • Multiset multicover • Hypergraph matching • Sparse matrix

1 Introduction

Let a polyhedron \mathcal{P} be defined by one of the following ways:
(i) System in the canonical form:

$$
\mathcal{P}=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}, \quad \text { where } A \in \mathbb{Z}^{m \times n} \text { and } b \in \mathbb{Q}^{m} ; \quad \text { (Canon-Form) }
$$

(ii) System in the standard form:

$$
\mathcal{P}=\left\{x \in \mathbb{R}_{\geq 0}^{n}: A x=b\right\}, \quad \text { where } A \in \mathbb{Z}^{k \times n} \text { and } b \in \mathbb{Q}^{k} . \quad \text { (Standard-Form) }
$$

If \mathcal{P} is defined by a system in the form Standard-Form with an additional constraint $x \leq u$, for given $u \in \mathbb{Z}_{\geq 0}^{n}$, we call such a system as the system in the standard form with box constraints. We consider the following problems:
Problem 1 (Feasibility)
Find a point x inside $\mathcal{P} \cap \mathbb{Z}^{n}$ or declare that $\mathcal{P} \cap \mathbb{Z}^{n}=\emptyset$.
(Feasibility-IP)
Problem 2 (Counting)
Compute the value of $\left|\mathcal{P} \cap \mathbb{Z}^{n}\right|$ or declare that $\left|\mathcal{P} \cap \mathbb{Z}^{n}\right|=+\infty$.
(Count-IP)
Problem 3 (Optimization) Given $c \in \mathbb{Z}^{n}$, compute some $x^{*} \in \mathcal{P} \cap \mathbb{Z}^{n}$, such that

$$
\begin{equation*}
c^{\top} x^{*}=\max \left\{c^{\top} x: x \in \mathcal{P} \cap \mathbb{Z}^{n}\right\} \tag{Opt-IP}
\end{equation*}
$$

Or declare that $\mathcal{P} \cap \mathbb{Z}^{n}=\emptyset$ or that the maximization problem is unbounded.
Problem 4 (Optimization and Counting) Given $c \in \mathbb{Z}^{n}$, compute the number of x^{*}, such that

$$
c^{\top} x^{*}=\max \left\{c^{\top} x: x \in \mathcal{P} \cap \mathbb{Z}^{n}\right\}, \quad \text { (Opt-And-Count-IP) }
$$

and find an example of x^{*}, if such exists. Or declare that $\mathcal{P} \cap \mathbb{Z}^{n}=\emptyset$ or that the maximization problem is unbounded.

In our work, we analyze these problems under the assumption that the matrix A is sparse. To estimate the sparsity of A, it is convenient to use the maximum number of non-zero elements in rows and columns of A :

$$
\operatorname{rs}(A):=\max _{i}\left\|A_{i *}\right\|_{0} \quad \text { and } \quad \operatorname{cs}(A):=\max _{j}\left\|A_{* j}\right\|_{0} .
$$

here $\|x\|_{0}=\left|\left\{i: x_{i} \neq 0\right\}\right|$ denotes the number of non-zeros in a vector x and $A_{i *}, A_{* j}$ denote the i-th row and the j-th column of A, respectively. Additionally, we define the total sparsity of A as the minimum of the above parameters:

$$
\operatorname{ts}(A)=\min \{\operatorname{rs}(A), \operatorname{cs}(A)\} .
$$

For our purposes, we sometimes need to use slightly weaker parameters that estimate the number of non-zero elements in non-degenerate square sub-matrices. The reason is that the matrix A can have duplicate rows and columns in some problem definitions. We want to avoid these multiplicities, estimating the sparsity of the matrices. For arbitrary $A \in \mathbb{Z}^{m \times n}$, we define

$$
\overline{\mathrm{rs}}(A):=\max \{\mathrm{rs}(B): B \text { is non-degenerate sub-matrix of } A\}
$$ $\overline{\mathrm{cs}}(A):=\max \{\operatorname{cs}(B): B$ is non-degenerate sub-matrix of $A\}$ and

$$
\overline{\mathrm{ts}}(A)=\min \{\overline{\mathrm{rs}}(A), \overline{\mathrm{cs}}(A)\}
$$

Clearly, the new sparsity parameters are more general than the standard $\mathrm{rs}(A)$ and $\operatorname{cs}(A)$:

$$
\overline{\mathrm{ts}}(A) \leq \operatorname{ts}(A)
$$

Other parameters that are useful in expressing our results and have some connections with sparsity are matrix norms. We recall the definitions. The maximum absolute value of entries of a matrix A (also known as the matrix max-norm) is denoted by $\|A\|_{\max }=\max _{i, j}\left|A_{i j}\right|$. For a matrix A, by $\|A\|_{p}$ we denote the matrix norm, induced by the l_{p} vector norm. It is known that

$$
\begin{array}{r}
\|A\|_{1}=\max _{i}\left\|A_{i *}\right\|_{1}=\max _{i} \sum_{j}\left|A_{i j}\right| \quad \text { and } \\
\|A\|_{\infty}=\max _{j}\left\|A_{* j}\right\|_{1}=\max _{j} \sum_{i}\left|A_{i j}\right| .
\end{array}
$$

Again, we need a similar definition of a norm with respect to non-degenerate sub-matrices B of A :

$$
\gamma_{p}(A)=\max \left\{\|B\|_{p}: B \text { is a non-degenerate sub-matrix of } A\right\} .
$$

Surprisingly, the maximum number of vertices in polyhedra defined by systems in the canonical or the standard forms with a fixed A and varying b is also closely connected with sparsity parameters of the matrix A (see Lemma 4). The corresponding matrix parameter is denoted by $v(A)$:

$$
\begin{aligned}
& \mathcal{v}(A)=\max _{b \in \mathbb{Q}^{n}}|\operatorname{vert}(\mathcal{P}(A, b))|, \quad \text { where } \\
& \mathcal{P}(A, b)=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\} \quad \text { or } \quad \mathcal{P}(A, b)=\left\{x \in \mathbb{R}_{\geq 0}^{n}: A x=b\right\} .
\end{aligned}
$$

The last important matrix parameters that will be used in our paper are the values of matrix sub-determinants. These parameters are related to sparsity via the Hadamard's inequality.

Definition 1 For a matrix $A \in \mathbb{Z}^{m \times n}$, by

$$
\Delta_{k}(A)=\max \left\{\left|\operatorname{det}\left(A_{\mathcal{I} \mathcal{J}}\right)\right|: \mathcal{I} \subseteq\{1, \ldots, m\}, \mathcal{J} \subseteq\{1, \ldots, n\},|\mathcal{I}|=|\mathcal{J}|=k\right\}
$$

we denote the maximum absolute value of determinants of all the $k \times k$ sub-matrices of A. Here, the symbol $A_{\mathcal{I} \mathcal{J}}$ denotes the sub-matrix of A, which is generated by all the rows with indices in \mathcal{I} and all the columns with indices in \mathcal{J}. Note that $\Delta_{1}(A)=\|A\|_{\text {max }}$. The maximum absolute value of sub-determinants of all orders is denoted by $\Delta_{\text {tot }}(A)$, i.e. $\Delta_{\text {tot }}(A)=$ $\max _{k} \Delta_{k}(A)$. By $\Delta_{\mathrm{gcd}}(A, k)$, we denote the greatest common divisor of determinants of all the $k \times k$ sub-matrices of A. Additionally, let $\Delta(A)=\Delta_{\operatorname{rank}(A)}(A)$ and $\Delta_{\mathrm{gcd}}(A)=$ $\Delta_{\mathrm{gcd}}(A, \operatorname{rank}(A))$. The matrix A with $\Delta(A) \leq \Delta$, for some $\Delta>0$, is called Δ-modular.

Due to the Hadamard's inequality and since $\operatorname{det}(B)=\operatorname{det}\left(B^{\top}\right)$ and $\|x\|_{2} \leq\|x\|_{1}$, for any $B \in \mathbb{R}^{n \times n}$ and $x \in \mathbb{R}^{n}$, the following inequalities connect $\Delta_{k}(A)$, the matrix norms, and ts(A):

$$
\begin{align*}
& \Delta_{k}(A) \leq \min \left\{\gamma_{1}(A), \gamma_{\infty}(A)\right\}^{k} \leq \min \left\{\|A\|_{1},\|A\|_{\infty}\right\}^{k}, \tag{1}\\
& \Delta_{k}(A) \leq\left(\|A\|_{\max }\right)^{k} \cdot \overline{\mathrm{ts}}(A)^{k / 2} \leq\left(\|A\|_{\max }\right)^{k} \cdot \operatorname{ts}(A)^{k / 2} . \tag{2}
\end{align*}
$$

Denoting $\gamma_{1, \infty}(A)=\min \left\{\gamma_{1}(A), \gamma_{\infty}(A)\right\}$, the inequality (1) becomes

$$
\begin{equation*}
\Delta_{k}(A) \leq \gamma_{1, \infty}(A)^{k} . \tag{3}
\end{equation*}
$$

For the reader's convenience, we have put all the notations used in our work into the separate Table 1. Additionally, for the sake of simplicity, in the remainder of the paper we will use the following short notations with respect to the definitions Canon-Form and Stan-dard-Form: $\Delta:=\Delta(A), \Delta_{i}:=\Delta_{i}(A)$, for $i \in\{1, \ldots, n\}, \Delta_{\text {tot }}:=\Delta_{\text {tot }}(A), v:=v(A)$, $\Delta_{\mathrm{gcd}}:=\Delta_{\mathrm{gcd}}(A), \gamma_{p}:=\gamma_{p}(A)$, for $p \in\{1, \ldots,+\infty\}, \gamma_{1, \infty}:=\gamma_{1, \infty}(A), \overline{\mathrm{rs}}:=\overline{\mathrm{rs}}(A)$, $\overline{\mathrm{cs}}:=\overline{\mathrm{cs}}(A), \overline{\mathrm{ts}}:=\overline{\mathrm{ts}}(A)$.

2 Results on sparse ILP problems and the related work

2.1 General ILP problems

Very recently a major breakthrough has been achieved in the ILP complexity theory: based on the works [1-3] due to Dadush, Peikert \& Vempala and [4] due to Regev \& StephensDavidowitz, V. Reis and T. Rothvoss have proven in [5] that the problem Opt-IP can be solved in $\log (n)^{O(n)} \cdot \operatorname{poly}(\phi)^{1}$-time beating the previous $O(n)^{n} \cdot \operatorname{poly}(\phi)$-time state-of-theart algorithm due to Dadush, Peikert \& Vempala [1, 2]. Note that the complexity results of the works [1, 2, 5] are valid for even more general IP problems, where one needs to optimize a convex function defined by the subgradient oracle on a convex region defined by the strict hyperplane separation oracle. Surprisingly, due to Basu \& Oertel [6], the ILP complexity in the oracle-model is $2^{O(n)} \cdot \operatorname{poly}(\phi)$. There exist some more general formulations of IP problems that allow polynomial algorithms in fixed dimension, see for example [7-9]. It is a long-standing open problem to provide a $2^{O(n)} \cdot \operatorname{poly}(\phi)$-time ILP algorithm.

The asymptotically fastest algorithm for the problem Count-IP in a fixed dimension can be obtained, using the approach of A. Barvinok [10] with modifications, due to Dyer \& Kannan [11] and Barvinok \& Pommersheim [12]. A complete exposition of Barvinok's approach can be found in [12-16], additional discussions and connections with "dual"-type counting algorithms could be found in the book [17], due to J. Lasserre. An important notion of the half-open sign decomposition and other variants of Barvinok's algorithm that is more efficient in practice is given by Köppe \& Verdoolaege in [18]. The paper [14] of Barvinok \& Woods gives important generalizations of the original techniques and adapts them to a wider range of problems to handle projections of polytopes. Using the fastest deterministic Shortest Lattice Vector Problem (SVP) solver by Micciancio \& Voulgaris [19], the computational complexity of Barvinok's algorithm can be upper bounded by

$$
\begin{equation*}
v \cdot 2^{O(n)} \cdot\left(\log _{2}(\Delta)\right)^{n \log (n)} . \tag{4}
\end{equation*}
$$

[^1]Table 1 Global and specific notations

Notation	Description				
rs (A)	Maximum number of non-zeroes in rows of A $\operatorname{rs}(A)=\max _{i}\left\\|A_{i *}\right\\|_{0}$				
$\operatorname{cs}(A)$	Maximum number of non-zeroes in columns of A $\operatorname{rs}(A)=\max _{j}\left\\|A_{* j}\right\\|_{0}$				
ts (A)	The total sparsity of A defined as $\operatorname{ts}(A)=\min \{\operatorname{rs}(A), \operatorname{cs}(A)\}$				
$\overline{\mathrm{rs}}(A)$	Maximum number of non-zeroes in rows of non-degenerate sub-matrices of A $\overline{\mathrm{rs}}(A)=\max \{\operatorname{rs}(B): B$ is a non-degenerate sub-matrix of $A\}$				
$\overline{\mathrm{cs}}(A)$	Maximum number of non-zeroes in columns of non-degenerate sub-matrices of A $\overline{\mathrm{cs}}(A)=\max \{\operatorname{cs}(B): B$ is a non-degenerate sub-matrix of $A\}$				
$\overline{\mathrm{ts}}(A)$	The total sparsity of A with respect to non-degenerate sub-matrices of A defined as $\overline{\operatorname{ts}}(A)=\min \{\overline{\mathrm{rs}}(A), \overline{\mathrm{cs}}(A)\}$				
$\gamma_{p}(A)$	The maximum $\\|\cdot\\|_{p}$-norm of non-degenerate sub-matrices of A $\gamma_{p}(A)=\max \left\{\\|B\\|_{p}: B\right.$ is a non-degenerate sub-matrix of $\left.A\right\}$				
$\gamma_{1, \infty}(A)$	$\gamma_{1, \infty}(A)=\min \left\{\gamma_{1}(A), \gamma_{\infty}(A)\right\}$				
$\nu(A)$	The maximum number of vertices in polyhedra with a fixed matrix A and a varying right-hand side b $\nu(A)=\max _{b \in \mathbb{Q}^{m}}\|\operatorname{vert}(\mathcal{P}(A, b))\|$, where				
	$\mathcal{P}(A, b)=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ or $\mathcal{P}(A, b)=\left\{x \in \mathbb{R}_{\geq 0}^{n}: A x=b\right\}$				
$\Delta_{k}(A)$	The maximum absolute value of $k \times k$ sub-determinants of A $\Delta_{k}(A)=\max \left\{\left\|\operatorname{det}\left(A_{\mathcal{I} \mathcal{J}}\right)\right\|: \mathcal{I} \subseteq\{1, \ldots, m\}, \mathcal{J} \subseteq\{1, \ldots, n\},\|\mathcal{I}\|=\|\mathcal{J}\|=k\right.$				
$\Delta(A)$	The maximum absolute value of rank-order sub-determinants of A $\Delta(A)=\Delta_{\operatorname{rank}(A)}(A)$				
$\Delta_{\text {tot }}(A)$	The maximum absolute value of all sub-determinants of A $\Delta_{t o t}(A)=\max _{k} \Delta_{k}(A)$				
$\Delta_{\operatorname{gcd}}(A)$	The greatest common divisor of rank-order sub-determinants of A				
ϕ	The input bit-encoding length of a corresponding computational problem				
$\operatorname{disc}(A)$	The discrepancy of A $\operatorname{disc}(A)=\min _{z \in\{-1 / 2,1 / 2\}^{n}}\\|A z\\|_{\infty}$				
herdisc (A)	The hereditary discrepancy of A $\operatorname{herdisc}(A)=\max _{\mathcal{I} \subset\{1, \ldots, n\}} \operatorname{disc}\left(A_{\mathcal{I}}\right)$				
$\operatorname{detlb}(A)$	$\operatorname{detlb}(A)=\max _{t} \sqrt[t]{\Delta_{t}(A)}$				
\mathfrak{n}	The number of vertices in a corresponding hypergraph i.e. $\mathfrak{n}=\|\mathcal{V}\|$, for a hypergraph $\mathcal{H}=(\mathcal{V}, \mathscr{E})$				
\mathfrak{m}	The number of hyperedges in a corresponding hypergraph i.e. $\mathfrak{m}=\|\mathscr{E}\|$, for a hypergraph $\mathcal{H}=(\mathcal{V}, \mathscr{E})$				
\mathfrak{d}	The maximum vertex degree of a corresponding hypergraph $\mathfrak{d}=\max _{v \in \mathcal{V}} \operatorname{deg}(v)$, for a hypergraph $\mathcal{H}=(\mathcal{V}, \mathscr{E})$				

Table 1 continued

Notation	Description
r	where $\operatorname{deg}(v)$ counts only unique (non-parallel) edges that are incident to v The maximum hyperedge cardinality of a corresponding hypergraph i.e. $\mathfrak{r}=\max _{\mathcal{E} \in \mathscr{E}}\|\mathcal{E}\|$, for a hypergraph $\mathcal{H}=(\mathcal{V}, \mathscr{E})$
$\Delta, \Delta_{i}, \Delta_{\text {tot }}, \nu, \Delta_{\mathrm{gcd}}$,	The short notations with respect to the corresponding matrix A
$\gamma_{p}, \gamma_{1, \infty}, \overline{\mathrm{rs}}, \overline{\mathrm{cs}}, \overline{\mathrm{ts}}$	$\begin{aligned} & \Delta:=\Delta(A), \Delta_{i}:=\Delta_{i}(A), \Delta_{\text {tot }}:=\Delta_{\text {tot }}(A) \\ & v:=v(A), \Delta_{\operatorname{gcd}}:=\Delta_{\operatorname{gcd}}(A), \gamma_{p}:=\gamma_{p}(A), \gamma_{1, \infty}:=\gamma_{1, \infty}(A) \\ & \overline{\mathrm{rs}}:=\overline{\mathrm{rs}}(A), \overline{\mathrm{cs}}:=\overline{\mathrm{cs}}(A), \overline{\mathrm{ts}}:=\overline{\mathrm{ts}}(A) \end{aligned}$

Here we can parameterize by v, because any polyhedron can be transformed to an integerequivalent simple polyhedron, using a slight perturbation of the right-hand side vector b (see, for example, Theorem 9, due to Megiddo \& Chandrasekaran [20] and Remark 3). Let us assume that \mathcal{P} is defined by the form Canon-Form. Due to the seminal work of P. McMullen [21], the number of vertices attains its maximum at the class of polytopes, which is dual to the class of cyclic polytopes. Together with the formula from [22, Section 4.7] for the number of facets of a cyclic polytope, it follows that the maximum number of vertices in an n-dimensional polyhedron with m facets is bounded by

$$
\xi(n, m)=\left\{\begin{array}{l}
\frac{m}{m-s}\binom{m-s}{s}, \text { for } n=2 s \\
2\binom{m-s-1}{s}, \text { for } n=2 s+1
\end{array}=O\left(\frac{m}{n}\right)^{n / 2} .\right.
$$

Therefore, $v \leq \xi(n, m)$ and $v=O(m / n)^{n / 2}$. Due to [23, Chapter 3.2, Theorem 3.2], we have $\Delta=2^{O(\phi)}$. Using the notation ϕ, the bound (4) becomes

$$
\begin{equation*}
O\left(\frac{m}{n}\right)^{n / 2} \cdot\left(\log _{2}(\Delta)\right)^{n \log (n)}=O\left(\frac{m}{n}\right)^{n / 2} \cdot \phi^{n \log (n)} \tag{5}
\end{equation*}
$$

which gives a polynomial-time algorithm in a fixed dimension for the problem Count-IP.
The papers [24-27] deal with the parameter Δ to give pseudo-polynomial algorithms, which will be more effective in a varying dimension. Recently, it was shown by Gribanov and Malyshev in [25] that the Count-IP problem can be solved with an algorithm whose computational complexity is polynomial in v, n, and Δ. Unfortunately, the paper [25] contains an inaccuracy, which makes its main conclusion incorrect. This inaccuracy was eliminated in [28]. The main result of [28] (and [25]) is represented by the following

Theorem 1 (Gribanov, Shumilov \& Malyshev [28]) Let \mathcal{P} be a polytope, ${ }^{2}$ given by a system in the standard or the canonical forms and $d:=\operatorname{dim}(\mathcal{P})$. Then, the problem Count-IP can be solved by a randomized algorithm with the expected arithmetic complexity bound

$$
O\left(v^{2} \cdot d^{4} \cdot \Delta^{4} \cdot \log _{2}(\Delta)\right)
$$

We improve the last result in Theorem 2 of our paper, and it will be our main tool for sparse problems. A fully self-contained proof of this theorem will be given in Sect. 5.3. Wherever it will be necessary to refer to the original article with an inaccuracy, we will cite the full proof of the relevant statement in Appendix.

[^2]Theorem 2 Under assumptions of Theorem 1, the problem Count-IP can be solved by a randomized algorithm with the expected arithmetic complexity bound:

$$
O\left(v^{2} \cdot d^{4} \cdot \Delta^{3}\right)
$$

Using Theorem 1 and different ways to estimate v, the paper [25] gives new interesting arithmetic complexity bounds for the Feasibility-IP and Count-IP problems. Let us present them, taking into account the improvement made in the Theorem 2:

- The bound

$$
O\left(\frac{m}{n}\right)^{n} \cdot n^{4} \cdot \Delta^{3}
$$

for systems in the form Canon-Form that is polynomial in m and Δ, for any fixed n. In comparison with the bound (5), this bound has a much better dependence on n, considering Δ as a parameter. For example, taking $m=O(n)$ and $\Delta=2^{O(n)}$, the above bound becomes $2^{O(n)}$, which is even faster, than the state-of-the-art algorithm for the problem Feasibility-IP, due to Reis \& Rothvoss [5], with the complexity bound $\log (n)^{O(n)} \cdot \operatorname{poly}(\phi)$;

- The general bound, for systems in the canonical or the standard forms,

$$
O(n)^{4+n} \cdot \Delta^{3+2 n}
$$

that is polynomial on Δ, for any fixed n;

- The bound

$$
\begin{equation*}
O(n / k)^{2 k} \cdot n^{4} \cdot \Delta^{3} \tag{6}
\end{equation*}
$$

for systems in the form Standard-Form, which is also valid for systems in the form CanonForm with $k=m-n$, that is polynomial on n and Δ, for $k=O(1)$. Taking $k=1$, it gives an $O\left(n^{6} \cdot \Delta^{3}\right)$-algorithm to compute the number of integer points in a simplex. The last result can be used to count solutions of the Unbounded Subset-Sum problem, which is formulated as follows. Given numbers w_{1}, \ldots, w_{n} and W, we need to count the number of ways to exchange the value W by the values w_{i}, assuming that each value w_{i} can be used unlimitedly. It can be done by algorithms with the arithmetic complexity bound

$$
O\left(n^{6} \cdot w_{\max }^{3}\right)
$$

Moreover, this result can be used to handle the k-dimensional variant of the Unbounded Subset-Sum problem, when the costs w_{i} and W are represented by k-dimensional vectors. Using the Hadamard's bound, it gives the following arithmetic complexity bound:

$$
O(n)^{2(k+2)} \cdot k^{-k / 2} \cdot w_{\max }^{3 k},
$$

where $w_{\max }=\max _{i}\left\|w_{i}\right\|_{\infty}$. Note that the earlier paper of Lasserre \& Zeron [29] also gives a counting FPT-algorithm for the Unbounded Subset-Sum problem, parameterized by $w_{\text {max }}$, but an exact complexity bound was not given.

In the current work, we try to estimate the value of v in a different way, to handle ILP problems with sparse matrices. Additionally, we generalize Theorem 2 to work with the problem Opt-And-Count-IP. The resulting theorem is the following:

Table 2 The complexity bounds for the problems Feasibility-IP, Count-IP, Opt-IP, and Opt-And-Count-IP in the form Canon-Form

Problems	Time $^{\mathrm{a}}$	References				
Feasibility-IP and Opt-IP	$\log (n)^{O(n)}$	Reis \& Rothvoss [5]				
Count-IP	$O(m / n)^{n / 2} \cdot \phi^{n \log (n)}$	Barvinok et al. [10-12]				
Feasibility-IP and Count-IP	$\left(\gamma_{1, \infty}\right)^{5 n} \cdot 4^{n}$	This work				
	$\left(\\|A\\|_{\max }\right)^{5 n} \cdot \overline{\mathrm{ts}}(A)^{3.5 n} \cdot 4^{n}$					
Opt-And-Count-IP	$\left(\gamma_{1, \infty}\right)^{7 n} \cdot(\\|c\\| \infty)^{3} \cdot 2^{4 n}$	This work				
	$\left(\\|A\\|_{\max }\right)^{7 n} \cdot\left(\\|c\\|_{\infty}\right)^{3} \cdot(\overline{\mathrm{ts}})^{5.5 n} \cdot 2^{4 n}$					

${ }^{\text {a }}$ The multiplicative factor $\operatorname{poly}(\phi)$ is skipped

Theorem 3 Let \mathcal{P} be a polyhedron, defined by the system in Canon-Form. Then, the problems Feasibility-IP and Count-IP can be solved by an algorithm, whose complexity can be estimated by the following formulas

$$
\begin{aligned}
& \left(\gamma_{1, \infty}\right)^{5 n} \cdot 4^{n} \cdot \operatorname{poly}(\phi) \\
& \left(\|A\|_{\max }\right)^{5 n} \cdot(\overline{\mathrm{ts}})^{3.5 n} \cdot 4^{n} \cdot \operatorname{poly}(\phi)
\end{aligned}
$$

The problem Opt-And-Count-IP can be solved by an algorithm, whose complexity can be estimated by the following formulas (under the assumption that $c \neq \mathbf{0}$)

$$
\begin{aligned}
& \left(\gamma_{1, \infty}\right)^{7 n} \cdot\left(\|c\|_{\infty}\right)^{3} \cdot 2^{4 n} \cdot \operatorname{poly}(\phi), \\
& \left(\|A\|_{\max }\right)^{7 n} \cdot\left(\|c\|_{\infty}\right)^{3} \cdot(\overline{\mathrm{ts}})^{5.5 n} \cdot 2^{4 n} \cdot \operatorname{poly}(\phi) .
\end{aligned}
$$

The theorem's proof is given in Sect. 5.5. This new complexity bounds, applied to the problems in the form Canon-Form, are emphasized in Table 2. As the reader could see, with respect to the problem Feasibility-IP, under the assumptions $\gamma_{1, \infty} \leq \log ^{\varepsilon}(n)$ or $\|A\|_{\max } \leq \log ^{\varepsilon}(n)$ and $\overline{\mathrm{ts}} \leq \log ^{\varepsilon}(n)$, for some $\varepsilon>0$, our complexity bounds outperform the state-of-theart complexity bound $\log (n)^{O(n)} \cdot \operatorname{poly}(\phi)$. With respect to the problem Count-IP, under the assumption $\|A\|_{\max }=n^{o(\log (n))}$, our complexity bounds outperform the state-of-the-art complexity bound $O(m / n)^{n / 2} \cdot \phi^{n \log (n)}$.

The following corollary, which is a straightforward consequence of Theorem 3, shows that, under some assumptions, the Count-IP and Opt-And-Count-IP problems can be solved by a faster algorithm than the complexity bound (5) gives.

Corollary 1 In the notation of Theorem 3, assuming that $\|A\|_{\max }=n^{O(1)}$ and $\|c\|_{\infty}=$ $n^{O(n)}$, the problems Count-IP and Opt-And-Count-IP can be solved by algorithms with the complexity bound $n^{O(n)} \cdot \operatorname{poly}(\phi)$.

2.1.1 About our method

The current paper continues the series of works [25, 27, 28], which are aimed to present efficient pseudopolynomial algorithms for the problems Count-IP and Opt-And-Count-IP, based on using rational generating functions together with the seminal Brion's theorem. As it was already mentioned, this approach was used by Barvinok in his seminal work [10] to present the first polynomial-time in a fixed dimension algorithm for the problems Count-IP and Opt-And-Count-IP.

The most important feature of a new approach, introduced in [25, 28], is that we do not compute the rational generating function of the set $\mathcal{P} \cap \mathbb{Z}^{n}$. Instead of doing this, we directly compute a compact generating function of the exponential series $\mathfrak{f}(\mathcal{P} ; \tau)=\sum_{z \in \mathcal{P} \cap \mathbb{Z}^{n}} e^{\langle c, z\rangle}$ that depends only on a single variable τ. The exponential generating function can be obtained from the original rational generating function, substituting $x_{i}=e^{c_{i} \tau}$, for some $c \in \mathbb{R}^{n}$. The new function forgets the structure of the set $\mathcal{P} \cap \mathbb{Z}^{d}$, but it is still useful for counting. For example, two monomials $x_{1}^{1} x_{2}^{2}$ and $x_{1}^{2} x_{2}^{1}$ glue to one exponential term $2 e^{3 \tau}$ after the map $x_{i}=e^{c_{i} \tau}$ with $c=(1,1)^{\top}$. Our method to compute $\mathfrak{f}(\mathcal{P} ; \tau)$ is based on the Brion's theorem and a novel dynamic programming technique that processes tangent cones of \mathcal{P}. The dynamic programming table is indexed by the dimensionality of the subproblems and the elements of the Gomory group associated with a corresponding tangent cone.

Let us discuss a secondary part of a new method that may also have an independent interest. For a given set \mathcal{A} of m non-zero vectors in \mathbb{Q}^{n}, let us consider the problem to compute a vector $z \in \mathbb{Z}^{n}$, such that $a^{\top} z \neq 0$, for all $a \in \mathcal{A}$. Preferably, the value of $\|z\|_{\infty}$ should be as small as possible. Due to the original work of A. Barvinok [10], the vector z could be found by a polynomial-time algorithm as a point on the moment curve. The paper [18] of Köppe \& Verdoolaege gives an alternative method, based on "irrational decompositions" from the work [30] of Köppe. These polynomial-time methods can generate z with the only guaranty $\|z\|_{\infty} \leq M^{n}$, for some constant $M \geq m$. However, due to De Loera, Hemmecke, Tauzer \& Yoshida [31], the vector z with sufficiently small components can be effectively chosen by a randomized algorithm. Unfortunately, the paper [31] does not give exact theoretical bounds that are needed to develop pseudopolynomial algorithms. In turn, the paper [28] presents a new and very simple randomized polynomial-time algorithm that generates the desired vector z with $\|z\|_{\infty} \leq|\mathcal{A}|$. The precise description of this fact is emphasized in Theorem 10.

Compared to the previous papers [25, 28] in the series, the current paper gives a more efficient dynamic programming computational scheme. Additionally, we give a new bound on the number of vertices of a rational polyhedron that is helpful to prove our complexity bounds and can have an independent interest.

2.1.2 Other related work on sparse and Δ-modular ILPs

Due to Kratsch [32], the sparse ILP problems attain a polynomial kernalization with respect to the parameter $n+u$, where u is the maximum variable range. More precisely, it was shown that any ILP can be reduced to an equivalent ILP with $O\left(u^{r} \cdot n^{r}\right)$ variables and constraints with the coefficients bit-encoding length $O(\log (n u))$, where $r:=\mathrm{rs}(A)$. On the contrary, if the range u is unbounded, then r-row-sparse ILP problems do not admit a polynomial kernelization unless $N P \subseteq \operatorname{coN} P /$ poly.

There are many other interesting works about the ILP's complexity with respect to the parameter Δ. Since a good survey is given in the work [26], we mention only the most remarkable results. The first paper that discovers fundamental properties of the bimodular ILP problem $(\Delta=2)$ is [33], due to Veselov \& Chirkov. Using results of [33], a strong polynomial-time solvability of the bimodular ILP problem was proved by Artmann, Weismantel \& Zenklusen in [34]. Unfortunately, not much is known for $\Delta \geq 3$. Very recently, it was shown by Fiorini, Joret, Weltge \& Yuditsky in [35] that the ILP problem is polynomialtime solvable, for any fixed Δ, if the matrix A has at most 2 non-zeros per row or per column. Previously, a weaker result, based on the same reduction, was known, due to Alekseev \& Zakharova [36]. It states that any ILP with a $\{0,1\}$-matrix A, which has at most two non-zeros per row and a fixed value of $\Delta\left(\begin{array}{c}\mathbf{1}^{\top}\end{array}\right)$, can be solved by a linear-time algorithm.

Additionally, we note that, due to Bock, Faenza, Moldenhauer \& Ruiz-Vargas [37], there are no polynomial-time algorithms for the ILP problems with $\Delta=\Omega\left(n^{\varepsilon}\right)$, for any $\varepsilon>0$, unless the ETH (the Exponential Time Hypothesis) is false. The last fact is the reason why we need to use both parameters v and Δ. Due to [37], the complexity bound poly (Δ, ϕ) is unlikely to exist, while the bound $\operatorname{poly}(\nu, \Delta, \phi)$ is presented in Theorem 2, which is used in Theorem 3 to develop efficient algorithms for sparse problems.

2.2 ILP problems with a bounded co-dimension

In this subsection, we consider ILP problems in the form Standard-Form. Since in our definition $k=\operatorname{rank}(A)$, it is essential to call the parameter k as the co-dimension of \mathcal{P}. We are interested in the complexity bounds for bounded values of k. Let us survey some remarkable results. The following result, due to Gribanov et al. [26, see Theorem 8 and Corollary 9], gives a parameterization by k and Δ.

Theorem 4 (Gribanov et al. [26]) Assume that some $k \times k$ non-degenerate sub-matrix B of A is given and $\eta=\Delta /|\operatorname{det}(B)|$. Then, the problem Opt-IP can be solved by an algorithm with the arithmetic complexity bound

$$
O(k)^{k+1} \cdot \eta^{2 k} \cdot \Delta^{2} \cdot \log \left(\Delta_{\mathrm{gcd}}\right) \cdot \log (k \cdot \Delta)
$$

As it was noted in [26], due to [38], we can assume that $\eta=O(\log (k))^{k}$, and the previous complexity bound becomes

$$
O(\log (k))^{2 k^{2}} \cdot k^{k+1} \cdot \Delta^{2} \cdot \log \left(\Delta_{\mathrm{gcd}}\right) \cdot \log (k \cdot \Delta)
$$

For the case when A only has non-negative elements, the basic dynamic-programming scheme from [39] can be used to derive an algorithm, parameterized by $\|b\|_{\infty}$ and k. Using fast (min, +)-convolution algorithms (see, for example, [40] or [41]), the same complexity bound can be used for systems in the Standard-Form form with box constraints. We emphasize it in the following statement:

Proposition 1 The problem Opt-IP in the form Standard-Form with box constraints can be solved by an algorithm with the arithmetic complexity bound

$$
O\left(n \cdot\left(\|b\|_{\infty}+1\right)^{k}\right)
$$

Due to the works [42] and [43] of Cunningham \& Geelen and Fomin et al., the parameter k in the term $\left(\|b\|_{\infty}+1\right)^{k}$ can be replaced by stronger parameters 2ω or $\rho+1$, where ω is the branch-width and ρ is the path-width of the column matroid of A.

The approach, which is most important for us in this Subsection, is based on the notion of the hereditary discrepancy of A.

Definition 2 For a matrix $A \in \mathbb{R}^{k \times n}$, its discrepancy and its hereditary discrepancy are defined by the formulas

$$
\begin{array}{r}
\operatorname{disc}(A)=\min _{z \in\{-1 / 2,1 / 2\}^{n}}\|A z\|_{\infty}, \\
\text { herdisc }(A)=\max _{\mathcal{I} \subset\{1, \ldots, n\}} \operatorname{disc}\left(A_{* \mathcal{I}}\right) .
\end{array}
$$

The paper [44], due to Jansen and Rohwedder, gives a powerful ILP algorithm, parameterized by herdisc (A) and k, which will be our second main tool.

Theorem 5 (Jansen \& Rohwedder [44]) Let $H=\operatorname{herdisc}(A)$ and assume that there exists an optimal solution x^{*} of the problem Opt-IP with $\left\|x^{*}\right\|_{1} \leq K$. Then, the problem Opt-IP can be solved by an algorithm with the complexity bound

$$
O(H)^{2 k} \cdot \log (K)
$$

Different bounds on herdisc (A) can be used to develop different complexity bounds for ILP problems. Due to the works [45] and [46] of Lovász, Spencer, \& Vesztergombi, and Spencer, it is known that

$$
\begin{equation*}
\operatorname{herdisc}(A) \leq 2 \operatorname{disc}(A) \leq \eta_{k} \cdot\|A\|_{\max }, \quad \text { where } \quad \eta_{k} \leq 12 \cdot \sqrt{k} . \tag{7}
\end{equation*}
$$

Due to Beck and Fiala [47], the value of herdisc (A) is bounded by the l_{1}-norm of columns. More precisely,

$$
\begin{equation*}
\operatorname{herdisc}(A)<\|A\|_{\infty} \tag{8}
\end{equation*}
$$

Additionally, Beck and Fiala conjectured that herdisc $(A)=O\left(\sqrt{\|A\|_{\infty}}\right)$ and settling this has been an elusive open problem. The best known result in this direction is due to Banaszczyk [48]:

$$
\begin{equation*}
\operatorname{herdisc}(A)=O\left(\sqrt{\|A\|_{\infty} \cdot \log (n)}\right) \tag{9}
\end{equation*}
$$

The important matrix characteristic that is closely related to herdisc (A) is $\operatorname{detlb}(A)$. Due to Lovász, Spencer, \& Vesztergombi [45], it can be defined as follows:

$$
\operatorname{detlb}(A)=\max _{t \in\{1, \ldots, k\}} \sqrt[t]{\Delta_{t}(A)}
$$

and it was shown in [45] that herdisc $(A) \geq(1 / 2) \cdot \operatorname{detlb}(A)$. Matoušek in [49] showed that $\operatorname{detlb}(A)$ can be used to produce tight upper bounds on herdisc (A). The result of Matoušek was improved by Jiang \& Reis in [50]:

$$
\begin{equation*}
\operatorname{herdisc}(A)=O(\operatorname{detlb}(A) \cdot \sqrt{\log (k) \cdot \log (n)}) \tag{10}
\end{equation*}
$$

Next, let us consider the problems Count-IP and Opt-And-Count-IP. Clearly, the number of vertices in a polyhedron, defined by a system in the Canon-Form, can be estimated by $\binom{n}{k}=$ $O(n / k)^{k}$. The last fact in combination with Theorem 2 results in the following corollary, which gives a parameterization by Δ and k.

Corollary 2 Assume that \mathcal{P} is bounded, then the problem Count-IP can be solved by an algorithm with the arithmetic complexity bound $O(n / k)^{2 k} \cdot(n-k)^{4} \cdot \Delta^{3}$.

Remark 1 Note that if we already know an optimal solution x^{*} of the problem Opt-IP, we can solve the problem Opt-And-Count-IP, using Corollary 2 just by adding the equality $c^{\top} x=c^{\top} x^{*}$ to the problem's definition. Clearly, the resulting arithmetic complexity bound is

$$
\begin{equation*}
O(n / k)^{2(k+1)} \cdot(n-k)^{4} \cdot\left(\|c\|_{\infty}\right)^{3} \cdot \Delta^{3} \tag{11}
\end{equation*}
$$

The next theorem considers the ILP problems in the standard form with sparse A. In this theorem, we just summarize the combinations of Theorem 5 with the different bounds on herdisc (A). Additionally, we use Corollary 2 to solve the counting-type problems. Note that the 5 -th complexity bound of the next theorem has already been proven in [44], we put it here for the sake of completeness.

Theorem 6 Let \mathcal{P} be a polyhedron, defined by the form Standard-Form. The problems Fea-sibility-IP and Opt-IP can be solved by algorithms with the following complexity bounds:

1. $O\left(\gamma_{\infty}\right)^{2 k}=O\left(\|A\|_{\max }\right)^{2 k} \cdot(\overline{\mathrm{cs}})^{2 k}$,
2. $O\left(\gamma_{\infty}\right)^{k} \cdot 2^{k \cdot \log \log (n)}=O\left(\|A\|_{\max }\right)^{k} \cdot(\overline{\mathrm{cs}})^{k} \cdot 2^{k \cdot \log \log (n)}$,
3. $O\left(\gamma_{1}\right)^{2 k} \cdot 2^{k \cdot \log (\log (k) \cdot \log (n))}$,
4. $O\left(\|A\|_{\max }\right)^{2 k} \cdot(\overline{\mathrm{rs}})^{k} \cdot 2^{k \cdot \log (\log (k) \cdot \log (n))}$,
5. $O\left(\|A\|_{\max }\right)^{2 k} \cdot k^{k}$.

The problem Count-IP can be solved by algorithms with the following complexity bounds:
6. $O(n / k)^{2 k} \cdot\left(\gamma_{1, \infty}\right)^{3 k}$,
7. $O(n / k)^{2 k} \cdot\left(\|A\|_{\max }\right)^{3 k} \cdot(\overline{\mathrm{ts}})^{1.5 k}$.

The problem Opt-And-Count-IP can be solved by the same algorithm with the cost of an additional multiplicative term $\left(\|c\|_{\infty}\right)^{3}$ in the complexity bound. Everywhere in the complexity bounds, we skip the poly (ϕ) multiplicative term.

Proof Due to Theorem 5, the problems Feasibility-IP and Opt-IP can be solved by algorithms with the arithmetic complexity bound $O(H)^{2 k} \cdot \log (K)$, where $H=\operatorname{herdisc}(A)$ and $K=$ $\left\|x^{*}\right\|_{1}$, for any optimal solution x^{*}. It is known that the problem has an optimal solution x^{*} with $\operatorname{size}\left(x^{*}\right)=\operatorname{poly}(\phi)$, so $\log (K)=\operatorname{poly}(\phi)$.

Now, the 1 -st bound follows from the inequality (8). The 2 -nd bound follows from the inequality (9). To establish the 3 -rd and the 4 -th bounds, we use the equality (10). Due to the inequalities (2) and (3), we clearly have $\operatorname{detlb}(A) \leq\|A\|_{\max } \cdot \sqrt{\overline{\mathrm{rs}}}, \quad$ and $\quad \operatorname{detlb}(A) \leq\|A\|_{1}$. Putting these bounds to (10), it gives the 3 -rd and the 4 -th complexity bounds. The 5 -th complexity bound directly follows from the inequality (7).

Now, let us consider the problems Count-IP and Opt-And-Count-IP. The 6-th and 7th complexity bounds straightforwardly follow from the bounds (3), (2) respectively and Corollary 2 . To satisfy its prerequisites, \mathcal{P} needs to be bounded. If \mathcal{P} is unbounded, then we can check that $\left|\mathcal{P} \cap \mathbb{Z}^{n}\right|=0$, using the algorithm for the problem Feasibility-IP. As it was already mentioned, its complexity can be estimated by $O\left(\|A\|_{\max }\right)^{2 k} \cdot k^{k}$, which has no effect on the desired bound. In the opposite case, we have $\left|\mathcal{P} \cap \mathbb{Z}^{n}\right|=+\infty$. So, we can assume that \mathcal{P} is bounded, and the result is true. Note additionally that, if $\mathcal{P} \cap \mathbb{Z}^{n} \neq \emptyset$, then we can use the same algorithm for the problem Feasibility-IP to find some $x \in \mathcal{P} \cap \mathbb{Z}^{n}$. Finally, using the same reasoning, the complexity bounds for the problem Opt-And-Count-IP just follows from Corollary 2 and its Remark 1.

2.3 ILP problems in the form Standard-Form with box-constraints

Finally, before we will finish the current section, let us consider ILP problems in the form Stan-dard-Form with box constraints. Using the basic dynamic programming scheme from [51], combined with a linear-time algorithm for the ($\mathrm{min},+$)-convolution (see, for example, [26, Theorem 7], [40] or [41]), it is easy to prove the following proposition.

Proposition 2 The problem Opt-IP in the form Standard-Form with box constraints can be solved by an algorithm with the arithmetic complexity bound

$$
O(\chi+k)^{k} \cdot\left(\|A\|_{\max }\right)^{k}
$$

where χ is a value of the l_{1}-proximity bound. That is

$$
\chi=\max _{x^{*}} \min _{z^{*}}\left\|x^{*}-z^{*}\right\|_{1}
$$

where x^{*} and z^{*} are optimal solutions of the LP relaxation and of the original ILP, respectively.
Different bounds on χ give different algorithms, based on Proposition 2. The paper [51] of Eisenbrand \& Weismantel gives $\chi \leq k \cdot\left(2 k \cdot\|A\|_{\max }+1\right)^{k}$. The paper [52], due to Lee, Paat et al., gives $\chi \leq(2 k+1)^{k} \cdot \Delta$. Recent result of Lee, Paat et al. [53] states that

$$
\chi \leq k \cdot(k+1)^{2} \cdot \Delta^{3}+(k+1) \cdot \Delta=O\left(k^{3} \cdot \Delta^{3}\right) .
$$

The dependence on Δ in the last bound can be reduced by Averkov \& Schymura [54]

$$
\begin{equation*}
\chi=O\left(k^{5} \cdot \Delta^{2}\right) \tag{12}
\end{equation*}
$$

Using Proposition 2 with the bound (12), we see that the ILP in the form Standard-Form with box constraints can be solved by an algorithm with the arithmetic complexity bound

$$
\left(\|A\|_{\max }\right)^{k} \cdot O(\Delta)^{2 k} \cdot k^{5 k}
$$

Using the inequalities (3) and (2), the last bound transforms to the bounds

$$
\begin{align*}
O(k)^{5 k} \cdot\left(\gamma_{1, \infty}\right)^{2 k^{2}} & =O\left(\gamma_{1, \infty}\right)^{2 k^{2}+O(k \log (k))} \\
O(k)^{5 k} \cdot\left(\|A\|_{\max }\right)^{2 k^{2}+k} \cdot(\overline{\mathrm{ts}})^{k^{2}} & =\left(\|A\|_{\max }\right)^{2 k^{2}+k} \cdot(\overline{\mathrm{ts}})^{k^{2}+O(k \log (k))} \tag{13}
\end{align*}
$$

In Table 3, we summarize all the facts, mentioned in the current subsection. The complexity bounds for the problems Feasibility-IP, Opt-IP, Count-IP, Opt-And-Count-IP without box constraints are taken from Theorem 6 and Remark 1. To handle the problems with box constraints, we just take the complexity bound (13). We also mention that the existence of algorithms for the problems Count-IP and Opt-And-Count-IP in the form Standard-Form with box constraints, parameterized by k and polynomial by n, is open, and it is a good direction for further research.

3 Applications: the vertex/edge multi-packing and multi-cover problems on graphs and hypergraphs

To define a hypergraph, we will often use the notation $\mathcal{H}=(\mathcal{V}, \mathscr{E})$, where \mathcal{V} is the set of vertices, represented by an arbitrary finite set, and $\mathscr{E} \subseteq 2^{\mathcal{V}}$ is a set of hyperedges. To denote a single vertex and a single hyperedge of \mathcal{H}, we will use the symbols $v \in \mathcal{V}$ and $\mathcal{E} \in \mathscr{E}$. Additionally, we denote $\mathfrak{n}=|\mathcal{V}|, \mathfrak{m}=|\mathscr{E}|, \mathfrak{d}=\max _{v \in \mathcal{V}} \operatorname{deg}(v)$, and $\mathfrak{r}=\max _{\mathcal{E} \in \mathscr{E}}|\mathcal{E}|$. In other words, the symbols $\mathfrak{n}, \mathfrak{m}, \mathfrak{d}$, and \mathfrak{r} denote the number of vertices, the number of hyperedges, the maximum vertex degree, and the maximum edge cardinality, respectively. We use this notation to avoid ambiguity with the notation n, m, and d from the subsections, considering ILP problems.

In some problem formulations, we need to deal with hypergraphs $\mathcal{H}=(\mathcal{V}, \mathscr{E})$ having parallel hyperedges. That is, \mathscr{E} is a multi-set of sets $\mathcal{E} \in 2^{\mathcal{V}}$. In this case, by $\operatorname{deg}(v)$ we denote the number of unique hyperedges that are incident to v, and \mathfrak{d} denotes the maximum vertex degree with respect to unique hyperedges.

In our work, we consider two types of combinatorial multi-packing/multi-cover problems: vertex-based problems and edge-based problems. In vertex-based problems, we need to pack

Table 3 New complexity bounds for ILP problems in the form Standard-Form

Problems	Time $^{\mathrm{a}}$		
Opt-IP without mult	$O\left(\gamma_{\infty}\right)^{2 k}=O\left(\\|A\\|_{\max }\right)^{2 k} \cdot(\overline{\mathrm{cs}})^{2 k}$		
	$O\left(\gamma_{\infty}\right)^{k} \cdot 2^{k \cdot \log \log (n)}=O\left(\\|A\\|_{\max }\right)^{k} \cdot(\overline{\mathrm{cs}})^{k} \cdot 2^{k \cdot \log \log (n)}$		
	$O\left(\gamma_{1}\right)^{2 k} \cdot 2^{k \cdot \log (\log (k) \cdot \log (n))}$		
	$O\left(\\|A\\|_{\max }\right)^{2 k} \cdot(\overline{\mathrm{rs}})^{k} \cdot 2^{k \cdot \log (\log (k) \cdot \log (n))}$		
	$O\left(\\|A\\|_{\max }\right)^{k} \cdot k^{k}, \quad$ due to Jansen \& Rohwedder [44]		
Count-IP without mult. ${ }^{b}$	$O(n / k)^{2 k} \cdot\left(\gamma_{1, \infty}\right)^{3 k}$		
	$O(n / k)^{2 k} \cdot O\left(\\|A\\|_{\max }\right)^{3 k} \cdot(\overline{\mathrm{ss}})^{1.5 k}$		
Opt-IP with mult	$O\left(\gamma_{1, \infty}\right)^{2 k^{2}+O(k \log k)}$		
Count-IP with mult	$O\left(\\|A\\|_{\max }\right)^{2 k^{2}+k} \cdot(\overline{\mathrm{ts} s})^{k^{2}+O(k \log k)}$		
	open problem		

${ }^{\text {a }}$ The multiplicative factor $\operatorname{poly}(\phi)$ is skipped
${ }^{b}$ To solve the problem Opt-And-Count-IP, we need to pay an additional multiplicative factor $\left(\|c\|_{\infty}\right)^{3}$
vertices into hyperedges or to cover the hyperedges by vertices. In edge-based problems, we need to pack hyperedges or to cover vertices by hyperedges. The word "multi" means that we can choose a multi-set of vertices or edges to satisfy cover constraints or to not violate packing constraints. Before we give formal definitions, we present a few examples. The Stable Multiset problem, which was introduced by Koster and Zymolka in [55] as a natural generalization of the standard Stable Set problem, is an example of a vertex-based multi-packing problem. Similarly, the Vertex Multi-cover problem, which is a natural generalization of the standard Vertex Cover problem, is an example of a vertex-based multi-cover problem. Some properties of the Stable Multi-set problem polyhedron were investigated in [56, 57], which had given a way to construct effective branch \& bound algorithms for this problem. We cannot find a reference to the paper that introduces the Vertex Multi-cover problem, but this problem can be interpreted as a blocking problem for the Stable Multi-set problem (introduction to the theory of blocking and anti-blocking can be found in [58, 59], see also [60, p. 225]).

The examples of edge-based problems are the Set Multi-cover, Multi-set Multi-cover, and Hypergraph Multi-matching problems. The Set Multi-cover problem is a natural generalization of the classic Set Cover problem, where we need to choose a multi-set of hyperedges to cover the vertices by a given number of times. In the Multi-Set Multi-Cover problem, the input hypergraph \mathcal{H} can have parallel hyperedges. This problem has received quite a lot of attention in the recent papers [61-66]. An exact $O\left(\left(c_{\max }+1\right)^{\mathfrak{n}} \cdot \mathfrak{m}\right)$ arithmetic complexity algorithm for the Multi-Set Multi-Cover problem, parameterized by \mathfrak{n} and the maximum coverage constraint number $c_{\max }$, is given by Hua, Wang, Yu \& Lau in [64, 65]. A double exponential $2^{2^{O(n \log n)}} \cdot \operatorname{poly}(\phi)$-complexity FPT-algorithm, parameterized by n, is given in Bredereck et al. [61]. The last algorithm was improved to a $\mathfrak{n}^{O\left(\mathfrak{n}^{2}\right)}$. poly (ϕ)-complexity algorithm by Knop, Kouteckỳ \& Mnich in [66]. A polynomial-time approximation algorithm can be found in Gorgi et al. [63]. The Hypergraph Multi-matching problem is a very natural generalization of the Hypergraph Matching problem (see, for example, [67, 68]), which in turn is a generalization of the standard Maximum Matching problem in simple graphs. We cannot find a reference to the paper that formally introduces the Hypergraph Multi-matching
problem, but, again, this problem can be interpreted as a blocking problem for the Multi-set Multi-cover problem. The papers [62,69] give good surveys and contain new ideas to use the ILP theory in combinatorial optimization setting.

Now, let us give some formal definitions. The vertex-based multi-packing/multi-cover problems can easily be modeled, using the following template problem:

Problem 5 (Hypergraph Vertex-Based Multi-packing/Multi-cover) Let $\mathcal{H}=(\mathcal{V}, \mathscr{E})$ be a hypergraph. Given numbers $c_{\mathcal{E}}, p_{\mathcal{E}} \in \mathbb{Z}_{\geq 0}$, for $\mathcal{E} \in \mathscr{E}$, compute a multi-subset of \mathcal{V}, represented by natural numbers x_{v}, for $v \in \mathcal{V}$, such that
(i) $c_{\mathcal{E}} \leq x(\mathcal{E}) \leq p_{\mathcal{E}}$, for any $\mathcal{E} \in \mathscr{E}$;
(ii) $x(\mathcal{V})$ is maximized or minimized.

Here, $x(\mathcal{M})=\sum_{v \in \mathcal{M}} x_{v}$, for any $\mathcal{M} \subseteq \mathcal{V}$. In other words, we need to solve the following ILP:

$$
\begin{aligned}
& \max \left\{\mathbf{1}^{\top} x\right\} \text { or } \min \left\{\mathbf{1}^{\top} x\right\} \\
& \left\{\begin{array}{l}
c \leq A(\mathcal{H})^{\top} x \leq p \\
x \in \mathbb{Z}_{\geq 0}^{\mathcal{V}},
\end{array}\right.
\end{aligned}
$$

(Vertex-Based-ILP)
where $A(\mathcal{H})$ denotes the vertex-hyperedge incidence matrix of \mathcal{H}, and the vectors c and p are composed of the values $p_{\mathcal{E}}$ and $c_{\mathcal{E}}$, respectively. It is natural to think that \mathcal{H} does not contain parallel hyperedges, because the multiple edge-constraints can easily be replaced by a stronger one.

If $c_{\mathcal{E}}=-\infty$, for all $\mathcal{E} \in \mathscr{E}$, and $x(\mathcal{V})$ is maximized, it can be considered as the Stable Multi-set Problem on Hypergraphs, when we need to find a multi-set of vertices of the maximum size, such that each hyperedge $\mathcal{E} \in \mathscr{E}$ is triggered at most $p_{\mathcal{E}}$ times. Similarly, if $p_{\mathcal{E}}=+\infty$, for all $\mathcal{E} \in \mathscr{E}$, and $x(\mathcal{V})$ is minimized, it can be considered as the Vertex Multi-cover Problem on Hypergraphs, when we need to find a multi-set of vertices of the minimum size, such that each hyperedge $\mathcal{E} \in \mathscr{E}$ is triggered at least $c_{\mathcal{E}}$ times.

For the case, when \mathcal{H} is a simple graph, these problems can be considered as very natural generalizations of the classical Stable Set and Vertex Cover problems. Following [55], the first one is called the Stable Multi-set Problem. As it was previously discussed, it is natural to call the second problem as the Vertex Multi-cover Problem.

Definition 3 Given numbers $u_{v} \in \mathbb{Z}_{\geq 0}$, for $v \in \mathcal{V}$, we can add additional constraints $x_{v} \leq u_{v}$ to any of the problems above. We call such a problem as a problem with multiplicities. Similarly, given $w_{v} \in \mathbb{Z}$, for $v \in \mathcal{V}$, we can consider the objective function $\sum_{v \in \mathcal{V}} w_{v} x_{v}$ instead of $x(\mathcal{V})=\sum_{v \in \mathcal{V}} x_{v}$. We call such a problem as a weighted problem. The maximum weight is denoted by $w_{\text {max }}=\max _{v \in \mathcal{V}}\left|w_{v}\right|$.

Similarly, the edge-based multi-packing/multi-cover problems can be modeled using the following template problem:

Problem 6 (Hypergraph Edge-Based Multi-packing/Multi-cover) Let $\mathcal{H}=(\mathcal{V}, \mathscr{E})$ be a hypergraph. Given numbers $c_{v}, p_{v} \in \mathbb{Z}_{\geq 0}$, for $v \in \mathcal{V}$, compute a multi-subset of \mathscr{E}, represented by the natural numbers $x_{\mathcal{E}}$, for $\mathcal{E} \in \mathscr{E}$, such that
(i) $c_{v} \leq x(\delta(v)) \leq p_{v}$, for any $v \in \mathcal{V}$;
(ii) $x(\mathscr{E})$ is maximized or minimized.

Here, $x(\mathscr{M})=\sum_{\mathcal{E} \in \mathscr{M}} x_{\mathcal{E}}$, for any $\mathscr{M} \subseteq \mathscr{E}$, and $\delta(v)=\{\mathcal{E} \in \mathscr{E}: v \in \mathcal{E}\}$ denotes the set of hyperedges that are incident to the vertex v.

The problem can be represented by the following ILP:

$$
\begin{aligned}
& \max \left\{\mathbf{1}^{\top} x\right\} \text { or } \min \left\{\mathbf{1}^{\top} x\right\} \\
& \left\{\begin{array}{l}
c \leq A(\mathcal{H}) x \leq p \\
x \in \mathbb{Z}_{\geq 0}^{\mathscr{E}},
\end{array}\right.
\end{aligned}
$$

(Edge-Based-ILP)
where the vectors c, p are composed of the values c_{v} and p_{v}. Again, it is natural to think that \mathcal{H} does not contain parallel hyperedges, because the multiple edge-variables can be easily glued to one variable.

If $c_{v}=-\infty$, for all $v \in \mathcal{V}$, and $x(\mathscr{E})$ is maximized, it can be considered as the Hypergraph Multi-matching problem, when we need to find a multi-set of hyperedges of the maximum size, such that each vertex $v \in \mathcal{V}$ is triggered at most p_{v} times. Similarly, if $p_{v}=+\infty$, for all $v \in \mathcal{V}$, and $x(\mathscr{E})$ is minimized, it can be considered as the Set Multi-cover problem, when we need to find a multi-set of hyper-edges of the minimum size, such that each vertex $v \in \mathcal{V}$ is triggered at least c_{v} times.

For the case, when \mathcal{H} is a simple graph, these problems can be considered as very natural generalizations of the classical Matching and Edge Cover problems. It seems natural to call these problems as the Maximum Multi-matching and Edge Multi-cover problems. The definition of the Edge Multi-cover problem can be found, for example, in the work [70], due to Cohen and Nutov. For the Maximum Multi-matching problem, we did not find a correct reference.

Similarly, we can introduce the Dominating Multi-set Problem on simple graphs, which is a natural generalization of the classical Dominating Set problem. In this problem, we need to find a multi-set of vertices of the minimal size, such that all the vertices of a given graph will be covered given number of times by neighbors of the constructed vertex multi-set. The Dominating Multi-set Problem can be straightforwardly reduced to the Set Multi-cover Problem. To do that, we just need to construct the set system $\mathcal{H}=(\mathcal{V}, \mathscr{E})$, where \mathcal{V} coincides with the set of vertices of a given graph, and \mathscr{E} is constituted by neighbors of its vertices.

Definition 4 By analogy with Definition 3, we introduce the weighted variants and variants with multiplicities for the all edge-based multi-packing/multi-cover problems discussed above. Note that the presence of parallel edges for these problems is not redundant and makes the corresponding problem more general. The weighted Set Multi-cover with multiplicities is known in literature as the Weighted Multi-set Multi-cover problem, see, for example, [64-66].

Let us explain our motivation with respect to the specified combinatorial problems. The classical Stable Set and Vertex Cover Problems on graphs and hypergraphs admit trivial $2^{O(\mathfrak{n})} \cdot \operatorname{poly}(\phi)$-complexity algorithms. However, the Stable Multi-set and Vertex Multicover Problems do not admit such a trivial algorithm. But, both problems can be modeled as the ILP problem (Edge-Based-ILP) with \mathfrak{n} variables. Consequently, both problems can be solved by the previously mentioned $\log (\mathfrak{n})^{O(\mathfrak{n})} \cdot \operatorname{poly}(\phi)$-complexity general ILP algorithm. Here $\phi=\operatorname{size}(c, p, w, u)$.

Is it possible to give a faster algorithm? Is it possible to give a positive answer to this question, considering a more complex variant with multiplicities? We show that these problems on hypergraphs can be solved by a $\min \{\mathfrak{d}, \mathfrak{r}\}^{O(\mathfrak{n})} \cdot \operatorname{poly}(\phi)$-complexity algorithm. Consequently, the Stable Multi-set and Vertex Multi-cover Problems on simple graphs can be solved by $2^{O(\mathfrak{n})} \cdot \operatorname{poly}(\phi)$-complexity algorithms. Our complexity results for these problems, together with the Multi-set Multi-cover, Hypergraph Multi-matching, and Dominating Multi-set problems, are gathered in Theorem 7.

Theorem 7 Let us consider the Opt-And-Count-IP-variants of the problems Stable Multi-set, Vertex Multi-cover, Set Multi-cover, Hypergraph Multi-matching, and Dominating Multiset with multiplicities (also known as the Multi-set Multi-cover problem). The following complexity bounds hold:

Problems	Time
Stable Multi-set and Vertex Multi-cover on hypergraps	$\min \{\mathfrak{d}, \mathfrak{r}\}^{5.5 \mathfrak{n}} \cdot 2^{4 \mathfrak{n}}$
Stable Multi-set and Vertex Multi-cover on simple graphs	$2^{9 \mathfrak{n}}$
Dominating Multi-set	$\mathfrak{d}^{5.5 \mathfrak{n}} \cdot 2^{4 \mathfrak{n}}$
Set Multi-cover and Hypergraph Multi-matching	$\min \{\mathfrak{d}, \mathfrak{r}\}^{5.5 \mathfrak{m}} \cdot 2^{4 \mathfrak{m}}$

The complexity bounds for the weighted variants of the considered problems contain an additional multiplicative term $w_{\max }^{3}$. Everywhere in the complexity bounds, we skip the poly (ϕ) multiplicative term.

Proof To prove the theorem, we use Theorem 3 for the problems' definitions: 5, 6, 3 and 4. This approach gives us the desired complexity bounds for all the problems, except for the Stable Multiset and Vertex Multicover problems on simple graphs. For these exceptions, we will give a more refined analysis.

We follow the proof of Theorem 3, using a more refined bound for $\Delta_{\mathfrak{n}-1}$ and $\Delta_{\mathfrak{n}}$, where $A:=A(\mathcal{G})$ be the incidence matrix of the corresponding simple graph \mathcal{G}. Due to Grossman, Kulkarni \& Schochetman [71], the absolute values of sub-determinants of a simple graph incidence matrix can be bounded in terms of the odd tulgeity of \mathcal{G}. More precisely, $\Delta_{i} \leq 2^{\tau_{0}}$, where $\tau_{0}=\tau_{0}(\mathcal{G})$ is the odd tulgeity of \mathcal{G}, which is defined as the maximum number of vertex-disjoint odd cycles of \mathcal{G}. Clearly, $\tau_{0} \leq \mathfrak{n} / 3$, so,

$$
\max \left\{\Delta_{\mathfrak{n}-1}, \Delta_{\mathfrak{n}}\right\} \leq 2^{\mathfrak{n} / 3} .
$$

Using this bound in the proof of Theorem 3, it gives the desired complexity bounds for the Stable Multiset and Vertex Multicover Problems.

3.1 The multi-set multi-cover and hypergraph multi-matching problems parameterized by the number of vertices \mathfrak{n}

In Theorem 7, we have presented $\min \{\mathfrak{d}, \mathfrak{r}\}^{5.5 \mathfrak{m}} \cdot 2^{4 \mathfrak{m}} \cdot \operatorname{poly}(\phi)$-complexity algorithms for the Opt-And-Count-IP-variant of the Set Multi-cover and Hypergraph Multi-matching problems with multiplicities. Due to Knop, Kouteckỳ \& Mnich [66], the weighted Opt-IP-variants of these problems admit an $\mathfrak{n}^{O\left(\mathfrak{n}^{2}\right)} \cdot \operatorname{poly}(\phi)$-complexity algorithm, which is faster than our algorithm for $\mathfrak{m}=\Omega\left(\mathfrak{n}^{2+\varepsilon}\right)$ and any $\varepsilon>0$. In other words, our last complexity bound is good only for sufficiently sparse hypergraphs.

So, the motivation of this subsection is to present faster algorithms for the Opt-And-Count-IP- and Opt-IP-variants of the weighted Multi-set Multi-cover and Hypergraph Multi-matching problems with and without multiplicities, parameterized by \mathfrak{n} instead of \mathfrak{m}. Our results for these problems are gathered in Table 4.

Remark 2 Let us have a little discussion about the complexity bounds, presented in Table 4. Firstly, let us consider the problems without multiplicities. As the reader can see, for fixed \mathfrak{r},

Table 4 New complexity bounds for the Set Multi-cover and Hypergraph Multi-matching problems

Version	Time $^{\mathrm{a}}$
Opt-IP, without multiplicities	$O(\mathfrak{r})^{2 \mathfrak{n}}$
	$O(\mathfrak{r})^{\mathfrak{n}} \cdot 2^{\mathfrak{n}} \cdot \log (\mathfrak{r} \log (\mathfrak{n}))$
	$O(\mathfrak{d})^{n} \cdot 2^{\mathfrak{n}} \cdot \log (\log (\mathfrak{d} \mathfrak{n}) \log (\mathfrak{n}))$
Opt-And-Count-IP, without multiplicities	$O(\mathfrak{n})^{\mathfrak{n}}$
	$\min \{\mathfrak{r}, \mathfrak{d}\}^{1.5 \mathfrak{n}} \cdot O(\mathfrak{m} / \mathfrak{n})^{2 \mathfrak{n}} \cdot w_{\max }^{3}$
	$\mathfrak{r}^{1.5 \mathfrak{n}} \cdot O(\mathfrak{n})^{2 \mathfrak{r} \mathfrak{n}+O(\mathfrak{r})} \cdot w_{\max }^{3}$
	$O(\mathfrak{d})^{3.5 \mathfrak{n}} \cdot w_{\max }^{3}$
Opt-IP, with multiplicities	$4^{\mathfrak{n}^{2}+O(\mathfrak{n})} \cdot w_{\max }^{3}$
Opt-And-Count-IP, with multiplicities	$O(\min \{\mathfrak{d}, \mathfrak{r}\})^{\mathfrak{n}^{2}+O(\mathfrak{n} \log \mathfrak{n})}$

${ }^{\text {a }}$ The multiplicative factor poly (ϕ) is skipped
the weighted Opt-IP-variant of the considered problems can be solved by $2^{O(\mathfrak{n})}$-complexity algorithms (the poly (ϕ)-term is ignored). For $\mathfrak{r}=\log (\mathfrak{n})^{O(1)}$, the best complexity bound is $2^{O(\mathfrak{n} \cdot \log \log (\mathfrak{n}))}$. Another interesting case is $\mathfrak{d}=o(\mathfrak{n})$, which gives the $o(\mathfrak{n})^{\mathfrak{n}} \cdot 2^{O(\mathfrak{n} \cdot \log \log (\mathfrak{n}))}$ complexity bound. For other values of parameters, the general $O(\mathfrak{n})^{\mathfrak{n}}$-complexity bound holds.

For the unweighted Opt-And-Count-IP-variant of the considered problems, if \mathfrak{r} is fixed, then the $\mathfrak{n}^{O(\mathfrak{n})}$-complexity algorithm exists. The same is true if $\mathfrak{d}=\mathfrak{n}^{O(1)}$ or $\mathfrak{m}=\mathfrak{n}^{O(1)}$. The complexity $2^{O(n)}$ is possible, if a hypergraph has constant maximum degree $\mathfrak{d}=O(1)$ or, if it is very sparse $\mathfrak{m}=O(\mathfrak{n})$ and has a constant maximum hyperedge cardinality $\mathfrak{r}=O(1)$. For the general values of $\mathfrak{r}, \mathfrak{d}$, and \mathfrak{m}, it is better to use the complexity bound $\min \{\mathfrak{d}, \mathfrak{r}\}^{1.5 \mathfrak{n}} \cdot O(\mathfrak{m} / \mathfrak{n})^{2 \mathfrak{n}}$. Since $\mathfrak{m} \leq 2^{\mathfrak{n}}$, it straightforwardly gives the general $4^{\mathfrak{n}^{2}+O(\mathfrak{n})}$ _ complexity bound. Note that the considered complexity bounds for the problems without multiplicities sufficiently outperform the best complexity bound that we know $n^{O\left(n^{2}\right)}$, due to Knop, Kouteckỳ, and Mnich [66].

Now, let us consider the problems with multiplicities. Note again that the weighted Set Multi-cover problem with multiplicities is also known as the weighted Multi-set Multicover problem. In comparison with the state-of-the-art complexity bound $\mathfrak{n}^{O\left(\mathfrak{n}^{2}\right)}$, our bound $O(\min \{\mathfrak{d}, \mathfrak{r}\})^{\mathfrak{n}^{2}+O(\mathfrak{n} \log \mathfrak{n})}$ has a lower exponent base, and it gives a constant-estimate in the exponent power. Unfortunately, we are not able to present a complexity bound, parameterized by \mathfrak{n}, for the Opt-And-Count-IP-variant, and it seems to be an interesting open problem.

We omit proofs of the results, presented in Table 4, because they straightforwardly follow from the complexity bounds, described in Theorem 6 and Table 3. Indeed, the weighted Multiset Multi-cover and Hypergraph Multi-matching problems with or without multiplicities can be represented by the following ILP's in the standard form:

$$
\begin{aligned}
& \quad \max \left\{w^{\top} x\right\} \\
& \left\{\begin{array}{l}
\left(A(\mathcal{H}) I_{\mathfrak{n} \times \mathfrak{n}}\right) x=p \\
\mathbf{0} \leq x \leq u \\
x \in \mathbb{Z}^{\mathfrak{n}+\mathfrak{m}}
\end{array}\right.
\end{aligned}\left\{\begin{array}{l}
\left(-A(\mathcal{H}) I_{\mathfrak{n} \times \mathfrak{n}}\right) x=-c \\
\mathbf{0} \leq x \leq u \\
\left.x \in \mathbb{Z}^{\top} x\right\} \\
x+\mathfrak{m},
\end{array}\right.
$$

where the constraint $x \leq u$ needs to be omitted for the variants without multiplicities. The co-dimension of these formulations is \mathfrak{n}. Using simple bounds $\mathfrak{m} \leq 2^{\mathfrak{n}}, \mathfrak{m} \leq \mathfrak{d} \mathfrak{n}$, and $\mathfrak{m}=O(\mathfrak{n})^{\mathfrak{r}+1}$ that are valid for the problems without multiplicities, the desired complexity bounds of Table 4 can be easily obtained. Note that the equality $\mathfrak{m}=O(\mathfrak{n})^{\mathfrak{r}+1}$ directly follows from the inequality $\mathfrak{m} \leq \sum_{i=1}^{\mathfrak{r}}\binom{\mathfrak{n}}{i}$.

4 Summary of the paper and open problems

Here we give a summary of results, notes, and implications of our work.

- We show that the problems Count-IP \& Opt-And-Count-IP with respect to sparse instances with bounded elements and their weaker versions Feasibility-IP \& Opt-IP can be solved by algorithms that outperform the general state-of-the-art $\log (n)^{O(n)} \cdot \operatorname{poly}(\phi)$ complexity algorithm for Opt-IP, due to Reis \& Rothvoss [5]. Details can be found in Table 2 and Theorem 3. For example, if the matrix A is an $\{-1,0,1\}$-matrix, and it has constant number of non-zeroes in each row/column, then the corresponding problems Count-IP \& Opt-And-Count-IP can be solved in $2^{O(n)} \cdot \operatorname{poly}(\phi)$-time.
- We show that in the assumptions $\|A\|_{\max }=n^{O(1)}$ and $\|c\|_{\infty}=n^{O(n)}$, the problems Count-IP and Opt-And-Count-IP can be solved by algorithms with the complexity bound $n^{O(n)} \cdot \operatorname{poly}(\phi)$, which outperforms the state bound (5) for the problems Count-IP and Opt-And-Count-IP. For details, see Corollary 1.
- We give an improved arithmetic complexity bound $O\left(v^{2} \cdot n^{4} \cdot \Delta^{3}\right)$ for the problem Coun-t-IP with respect to the older bound $O\left(v^{2} \cdot n^{4} \cdot \Delta^{4} \cdot \log (\Delta)\right)$, see Theorem 2.
- We give new algorithms for the Opt-And-Count-IP-variant of the Stable Multi-set, Vertex Multi-cover, Set Multi-cover, Multi-matching, and Dominating Multi-set problems with respect to simple graphs and hypergraphs, see the definitions 5 and 6 . The weighted variants and the variants with the multiplicities of the above problems are handled, see Definitions 3 and 4. Note that the weighted Set Multi-cover problem with multiplicities is also known as the weighted Multi-set Multi-cover problem. Our algorithms outperform the general state-of-the-art ILP algorithms, applied to these problems. Details can be found in Theorem 7.
- We summarize known results and new methods to give new algorithms for the Feasibili-ty-IP-, Count-IP-, Opt-IP-, Opt-And-Count-IP-variants of ILP problems in the standard form with and without multiplicities, parameterized by $\|A\|_{\max }$ and the co-dimension of $A x=b$. The new complexity bounds outperform general-case bounds on sparse instances. Details can be found in Sect. 2.2, Table 3, and Theorem 6.
- Using our notes for sparse problems in the standard form, we give new algorithms for the Opt-IP- and Opt-And-Count-IP-variants of the Set Multi-cover and Hypergraph Multi-matching problems with and without multiplicities, parameterized by the number of vertices \mathfrak{n}. The weighted variants are handled. Tighter complexity bounds with respect to the parameters $\mathfrak{n}, \mathfrak{m}, \mathfrak{r}$, and \mathfrak{d} are considered.
Unfortunately, we are not able to present a complexity bound, parameterized by \mathfrak{n}, for the Opt-And-Count-IP-variant with multiplicities, it seems to be an interesting open problem. Our complexity bounds for the considered problems outperform the state-of-the-art $\mathfrak{n}^{O\left(\mathfrak{n}^{2}\right)} \cdot \operatorname{poly}(\phi)$-complexity bound, due to Knop, Kouteckỳ, and Mnich [66]. Details can be found in Sect. 3.1 and Table 4. Discussion can be found in Remark 2.

4.1 Open problems

- As it was noted before, we are not able to present an algorithm for the problem Count-IP in the form Standard-Form with multiplicities, which will be polynomial on n, Δ or $\|A\|_{\text {max }}$, for any fixed co-dimension k. More precisely, given $A \in \mathbb{Z}^{k \times n}, b \in \mathbb{Q}^{k}$, and $u \in \mathbb{Z}^{n}$, let us consider the polyhedron \mathcal{P}, defined by the system $A x=b, 0 \leq x \leq u$.
The problem is to develop an algorithm to compute $\left|\mathcal{P} \cap \mathbb{Z}^{n}\right|$, whose complexity will be polynomial on n, Δ or $\|A\|_{\text {max }}$, for any fixed k. Despite considerable effort, we are not able to present such an algorithm. The main difficulty is that our methods work well only in the scenarios, when the value of $|\operatorname{vert}(\mathcal{P})|$ is sufficiently small. But, in the current case, the value of $|\operatorname{vert}(\mathcal{P})|$ can be equal to 2^{n}. Note that the positive solution for this problem can grant new more efficient algorithms for the Multi-set Multi-cover problem and its weighted variant.
- Our general complexity bounds (see Theorems 3 and 6) for sparse variants of the problem Count-IP contain a term of the type $\left(\|A\|_{\max }\right)^{O(n)}$ or of the type $\left(\|A\|_{\max }\right)^{O(k)}$. Could we develop an algorithm, which will be polynomial on $\|A\|_{\max }$ and more efficient for sparse problems with respect to the general state-of-the-art algorithms? Could we do this for the simpler problem Feasibility-IP?
- Our complexity bounds for sparse problems depend mainly on the total number of variables n, which can by significantly bigger than an actual dimension $d=\operatorname{dim}(\mathcal{P})$ of a polyhedron. The known state-of-the-art algorithms can be easily adapted to work with the parameter d instead of n. For example, the state-of-the-art algorithm, due to Reis \& Rothvoss [5], gives the $\log (d)^{O(d)} \cdot \operatorname{poly}(\phi)$ complexity bound. Unfortunately, at the current moment, we can not adapt our methods for sparse problems to work with the parameter d. The difficulty is concentrated in Lemma 4, which estimates the number of vertices of a polyhedron. The proof of such a lemma, based on a parameter d, is an interesting open question, which will guaranty the existence of an algorithm for sparse problems, parameterized by d instead of n.

5 Proofs of the main theorems 2 and 3

5.1 The Smith normal form

Let $A \in \mathbb{Z}^{m \times n}$ be an integer matrix of rank n. It is a known fact (see, for example, [23, 72, 73]) that there exist unimodular matrices $P \in \mathbb{Z}^{m \times m}$ and $Q \in \mathbb{Z}^{n \times n}$, such that $A=$ $P\binom{S}{\mathbf{0}_{d \times n}} Q$, where $d=m-n$ and $S \in \mathbb{Z}_{\geq 0}^{n \times n}$ is a diagonal non-degenerate matrix. Moreover, $\prod_{i=1}^{k} S_{i i}=\Delta_{\mathrm{gcd}}(A, k)$, and, consequently, $S_{i i} \mid S_{(i+1)(i+1)}$, for $i \in\{1, \ldots, n-1\}$. The matrix $\binom{S}{\mathbf{0}_{d \times n}}$ is called the Smith Normal Form (or, shortly, the SNF) of the matrix A. Near-optimal polynomial-time algorithms for constructing the SNF of A are given in the work [72] due to Storjohann \& Labahn.

5.2 Algebra of rational polyhedra and generating functions

Let \mathcal{V} be a Euclidean space with the inner product denoted by $\langle\cdot, \cdot\rangle$. Let $\Lambda \subseteq \mathcal{V}$ be a lattice and Λ° be its dual.

Definition 5 For a polyhedron $\mathcal{P} \subseteq \mathcal{V}$, a vector $c \in \mathcal{V}$ and an abstract variable τ, we denote

$$
\mathfrak{f}(\mathcal{P}, c ; \tau)=\sum_{z \in \mathcal{P} \cap \Lambda} e^{\langle c, z\rangle \tau} .
$$

The polar of \mathcal{P} is denoted by $\mathcal{P}^{\circ}=\{y \in \mathcal{V}:\langle y, x\rangle \leq 1, \forall x \in \mathcal{P}\}$.
Definition 6 Let $\mathcal{A} \subseteq \mathcal{V}$ be a set. The indicator $[\mathcal{A}]$ of \mathcal{A} is the function $[\mathcal{A}]: \mathcal{V} \rightarrow \mathbb{R}$ defined by

$$
[\mathcal{A}](x)=\left\{\begin{array}{l}
1, \text { if } x \in \mathcal{A} \\
0, \text { if } x \notin \mathcal{A} .
\end{array}\right.
$$

Definition 7 The polyhedron $\mathcal{P} \subseteq \mathcal{V}$ is called rational, if it can be defined by a system of finitely many inequalities

$$
\left\langle a_{i}, x\right\rangle \leq b_{i}, \quad \text { where } a_{i} \in \Lambda^{\circ} \text { and } b_{i} \in \mathbb{Z} .
$$

The algebra of rational polyhedra $\mathscr{P}(\mathbb{Q} \mathcal{V})$ is the vector space, defined as the span of the indicator functions of all the rational polyhedra $\mathcal{P} \subseteq \mathcal{V}$.

We recall the following restatement of the theorem proved by Lawrence [74] and independently by Khovanski \& Pukhlikov [75], declared as Theorem 13.8b in [13, Section 13].

Theorem 8 (Lawrence [74], Khovanski \& Pukhlikov [75]) Let $\operatorname{dim}(\mathcal{V})=n$ and $\mathscr{R}(\mathcal{V})$ be the linear space of functions acting from \mathcal{V} to \mathbb{R}, spanned by finite linear combinations of the following functions

$$
c \rightarrow \frac{e^{\langle c, v\rangle}}{\left(1-e^{\left\langle c, u_{1}\right\rangle}\right) \cdot \ldots \cdot\left(1-e^{\left\langle c, u_{n}\right\rangle}\right)},
$$

where $v \in \Lambda$ and $u_{i} \in \Lambda \backslash\{\mathbf{0}\}$, for $i \in\{1, \ldots, n\}$. Then, there exists a linear transformation

$$
\mathcal{F}: \mathscr{P}(\mathbb{Q} \mathcal{V}) \rightarrow \mathscr{R}(\mathcal{V}),
$$

such that the following properties hold:
(1) Let $\mathcal{P} \subseteq \mathcal{V}$ be a non-empty rational polyhedron without lines and let $\mathcal{R}:=\mathcal{R} \mathcal{P} \subseteq \mathcal{V}$ be its recession cone. Then, for all $c \in \operatorname{int}\left(\mathcal{R}^{\circ}\right)$, the series

$$
\sum_{z \in \mathcal{P} \cap \Lambda} e^{\langle c, z\rangle}
$$

converges absolutely to a function $\mathcal{F}([\mathcal{P}])$.
(2) If \mathcal{P} contains a line, then $\mathcal{F}([\mathcal{P}])=0$.

Note that hereafter we will use this Theorem 8 just with $\mathcal{V}=\mathbb{R}^{n}$ and $\Lambda=\mathbb{Z}^{n}$. The following lemma represents a core of Theorem 2 and contains a main improvement with respect to the counting algorithm from [25].

Lemma 1 Let $A \in \mathbb{Z}^{n \times n}, b \in \mathbb{Z}^{n}, \Delta=|\operatorname{det}(A)|>0$. Let us consider the polyhedron $\mathcal{P}=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$. Assume that $c \in \mathbb{Z}^{n}$ is given, such that $\left\langle c, h_{i}\right\rangle>0$, where h_{i} are the columns of $A^{*}=\Delta \cdot A^{-1}$, for $i \in\{1, \ldots, n\}$. Denote $\psi=\max _{i \in\{1, \ldots, n\}}\left\{\left|\left\langle c, h_{i}\right\rangle\right|\right\}$. Let,
additionally, $S=P A Q$ be the $S N F$ of A, where $P, Q \in \mathbb{Z}^{n \times n}$ are unimodular, and denote $\sigma=S_{n n}$.

Then, for any $\tau>0$, the series $\mathfrak{f}(\mathcal{P}, c ; \tau)$ converges absolutely to a function of the type

$$
\frac{\sum_{i=-n \cdot \sigma \cdot \psi}^{n \cdot \sigma \cdot \psi} \epsilon_{i} \cdot e^{\alpha_{i} \cdot \tau}}{\left(1-e^{-\beta_{1} \cdot \tau}\right)\left(1-e^{-\beta_{2} \cdot \tau}\right) \ldots\left(1-e^{-\beta_{n} \cdot \tau}\right)}
$$

where $\epsilon_{i} \in \mathbb{Z}_{\geq 0}, \beta_{i} \in \mathbb{Z}_{>0}$, and $\alpha_{i} \in \mathbb{Z}$. This representation can be found with an algorithm, having the arithmetic complexity bound

$$
O\left(T_{S N F}(n)+\Delta \cdot n^{2} \cdot \sigma \cdot \psi\right)
$$

where $T_{S N F}(n)$ is the arithmetic complexity of computing the SNF for $n \times n$ integer matrices.
Proof After the unimodular map $x=Q x^{\prime}$ and introducing slack variables y, the system $\left\{x \in \mathbb{Z}^{n}: A x \leq b\right\}$ becomes

$$
\left\{\begin{array}{l}
S x+P y=P b \\
x \in \mathbb{Z}^{n} \\
y \in \mathbb{Z}_{\geq 0}^{n}
\end{array}\right.
$$

Since P is unimodular, the last system is equivalent to the system

$$
\left\{\begin{array}{l}
P y=P b \quad\left(\bmod S \mathbb{Z}^{n}\right) \tag{14}\\
y \in \mathbb{Z}_{\geq 0}^{n}
\end{array}\right.
$$

Denoting $\mathcal{G}=\mathbb{Z}^{n} / S \mathbb{Z}^{n}, g_{0}=P b \bmod S \mathbb{Z}^{n}, g_{i}=P_{* i} \bmod S \mathbb{Z}^{n}$, the last system (14) can be rewritten:

$$
\left\{\begin{array}{l}
\sum_{i=1}^{n} y_{i} g_{i}=g_{0} \tag{15}\\
y \in \mathbb{Z}_{\geq 0}^{n} .
\end{array}\right.
$$

Note that points $x \in \mathcal{P} \cap \mathbb{Z}^{n}$ and the solutions y of the system (15) are connected by the bijective map $x=A^{-1}(b-y)$. Let $r_{i}=\left|\left\langle g_{i}\right\rangle\right|$, for $i \in\{1, \ldots, n\}$, and $r_{\text {max }}:=\max _{i \in\{1, \ldots, n\}}\left\{r_{i}\right\}$. Clearly, $|\mathcal{G}|=|\operatorname{det}(S)|=\Delta$ and $r_{\text {max }} \leq \sigma$. For $k \in\{1, \ldots, n\}$ and $g^{\prime} \in \mathcal{G}$, let $\mathcal{M}_{k}\left(g^{\prime}\right)$ be the solutions set of the auxiliary system

$$
\left\{\begin{array}{l}
\sum_{i=1}^{k} y_{i} g_{i}=g^{\prime} \\
y \in \mathbb{Z}_{\geq 0}^{k}
\end{array}\right.
$$

and define

$$
\mathfrak{g}_{k}\left(g^{\prime} ; \tau\right)=\sum_{y \in \mathcal{M}_{k}\left(g^{\prime}\right)} e^{-\left\langle c, \sum_{i=1}^{k} h_{i} y_{i}\right\rangle \tau}
$$

$$
\text { It follows that } \begin{align*}
\mathfrak{f}(\mathcal{P}, c ; \tau) & =\sum_{z \in \mathcal{P} \cap \mathbb{Z}^{n}} e^{\langle c, z\rangle \tau} \\
& =\sum_{y \in \mathcal{M}_{n}\left(g_{0}\right)} e^{\left\langle c, A^{-1}(b-y)\right\rangle \tau} \\
& =e^{\left\langle c, A^{-1} b\right\rangle \tau} \cdot \sum_{y \in \mathcal{M}_{n}\left(g_{0}\right)} e^{-\frac{1}{\Delta}\left\langle c, A^{*} y\right\rangle \tau}=e^{\left\langle c, A^{-1} b\right\rangle \tau} \cdot \mathfrak{g}_{n}\left(g_{0} ; \frac{\tau}{\Delta}\right) . \tag{16}
\end{align*}
$$

The formulae for $\mathfrak{g}_{k}\left(g^{\prime} ; \tau\right)$ were formally proven in [25, see its formulae (10), (11), and (12)], we cite them in the following separate lemma. Since the original published paper [25] contained an inaccuracy in the main result, we give a self-contained proof of the lemma in Subsection B of Appendix.

Lemma 2 The following formulae hold:

$$
\begin{array}{r}
\mathfrak{g}_{1}\left(g^{\prime} ; \tau\right)=\frac{e^{-\left\langle c, s h_{1}\right\rangle \tau}}{1-e^{-\left\langle c, r_{1} h_{1}\right\rangle \tau}}, \quad \text { wheres }=\min \left\{y_{1} \in \mathbb{Z}_{\geq 0}: y_{1} \cdot g_{1}=g^{\prime}\right\}, \\
\mathfrak{g}_{k}\left(g^{\prime} ; \tau\right)=\frac{1}{1-e^{-\left\langle c, r_{k} h_{k}\right\rangle \tau}} \cdot \sum_{i=0}^{r_{k}-1} e^{-\left\langle c, i h_{k}\right\rangle \tau} \cdot \mathfrak{g}_{k-1}\left(g^{\prime}-i \cdot g_{k} ; \tau\right), \\
\mathfrak{g}_{k}\left(g^{\prime} ; \tau\right)=\frac{\sum_{i=-k \cdot \sigma \cdot \psi}^{k \cdot \sigma \cdot \psi} \epsilon_{i}\left(k, g^{\prime}\right) \cdot e^{-i \tau}}{\left(1-e^{-\left\langle c, r_{1} \cdot h_{1}\right\rangle \tau}\right)\left(1-e^{-\left\langle c, r_{2} h_{2}\right\rangle \tau}\right) \ldots\left(1-e^{-\left\langle c, r_{k} h_{k}\right\rangle \tau}\right)}, \tag{19}
\end{array}
$$

where $\epsilon_{i}\left(k, g^{\prime}\right) \in \mathbb{Z}_{\geq 0}$ are coefficients, depending on k and g^{\prime}. If the set $\left\{y_{1} \in \mathbb{Z}_{\geq 0}: y_{1} g_{1}=\right.$ $\left.g^{\prime}\right\}$ is empty, we put $\mathfrak{g}_{1}\left(g^{\prime} ; \tau\right):=0$. If the vector c is chosen such that $\left\langle c, h_{i}\right\rangle>0$, for all $i \in\{1, \ldots, n\}$, then, for any $\tau>0, k \in\{1, \ldots, n\}$, and $g^{\prime} \in \mathcal{G}$, the series $\mathfrak{g}_{k}\left(g^{\prime} ; \tau\right)$ converges absolutely to the corresponding right-hand side functions.

Let us estimate the complexity to compute the representation (19) of $\mathfrak{g}_{k}\left(g^{\prime} ; \tau\right)$, for all $k \in$ $\{1, \ldots, n\}$ and $g^{\prime} \in \mathcal{G}$, using the recurrence (18). In comparison to the paper [25], we will use a bit more sophisticated and efficient algorithm to do that. Consider a quotient group $\mathscr{Q}_{k}=\mathcal{G} /\left\langle g_{k}\right\rangle$ and fix $\mathcal{Q} \in \mathscr{Q}_{k}$. Clearly, $\mathcal{Q}=q+\left\langle g_{k}\right\rangle$, where $q \in \mathcal{G}$ is a member of \mathcal{Q}, and $r_{k}=|\mathcal{Q}|$. For $j \in\left\{0, \ldots, r_{k}-1\right\}$, define

$$
\begin{equation*}
\mathfrak{h}_{k}(j ; \tau)=\left(1-e^{-\left\langle c, r_{1} h_{1}\right\rangle \tau}\right) \cdot \ldots \cdot\left(1-e^{-\left\langle c, r_{k} h_{k}\right\rangle \tau}\right) \cdot \mathfrak{g}_{k}\left(q+j \cdot g_{k} ; \tau\right) . \tag{20}
\end{equation*}
$$

For the sake of simplicity, denote $x \ominus_{k} y=(x-y) \bmod r_{k}$, then the formulas (17), (18) and (19) become

$$
\begin{align*}
& \mathfrak{h}_{1}(j ; \tau)=e^{-\left\langle c, s h_{1}\right\rangle \tau}, \quad \text { where }=\min \left\{y_{1} \in \mathbb{Z}_{\geq 0}: y_{1} g_{1}=q+j \cdot g_{1}\right\}, \tag{21}\\
& \mathfrak{h}_{k}(j ; \tau)=\sum_{i=0}^{r_{k}-1} e^{-\left\langle c, i h_{k}\right\rangle \tau} \cdot \mathfrak{h}_{k-1}\left(j \ominus_{k} i ; \tau\right), \tag{22}\\
& \mathfrak{h}_{k}(j ; \tau)=\sum_{i=-k \cdot \sigma \cdot \psi}^{k \cdot \sigma \cdot \psi} \epsilon_{i}\left(k, q+j \cdot g_{k}\right) \cdot e^{-i \tau} . \tag{23}
\end{align*}
$$

Assume first that $k=1$. Then, clearly, all the values

$$
\mathfrak{h}_{1}(0 ; \tau), \mathfrak{h}_{1}(1 ; \tau), \ldots, \mathfrak{h}_{1}\left(r_{1}-1 ; \tau\right)
$$

can be computed with $O\left(r_{1}\right)$ operations. Assume now that $k \geq 2$ and that $(k-1)$-th level has already been computed. By the k-th level, we mean all the functions $\mathfrak{h}_{k}(j ; \tau)$, for $j \in$
$\left\{0, \ldots, r_{k}-1\right\}$. Due to the formula (23), $\mathfrak{h}_{k}(j ; \tau)$ contains $O(k \cdot \sigma \cdot \psi)$ monomials. Hence, the function $\mathfrak{h}_{k}(0 ; \tau)$ can be computed directly using the formula (22) with $O\left(r_{k} \cdot k \cdot \sigma \cdot \psi\right)$ operations. For $j \geq 1$, we have

$$
\begin{align*}
\mathfrak{h}_{k}(j ; \tau) & =\sum_{i=0}^{r_{k}-1} e^{-\left\langle c, i h_{k}\right\rangle \tau} \cdot \mathfrak{h}_{k-1}\left(j \ominus_{k} i ; \tau\right) \\
& =\sum_{i=-1}^{r_{k}-2} e^{-\left\langle c,(i+1) h_{k}\right\rangle \tau} \cdot \mathfrak{h}_{k-1}\left(j \ominus_{k}(i+1) ; \tau\right) \\
& =e^{-\left\langle c, h_{k}\right\rangle \tau} \cdot \mathfrak{h}_{k}(j-1 ; \tau)+\mathfrak{h}_{k-1}(j ; \tau)-e^{-\left\langle c, r_{k} h_{k}\right\rangle \tau} \cdot \mathfrak{h}_{k-1}\left(j \ominus_{k} r_{k} ; \tau\right) \\
& =e^{-\left\langle c, h_{k}\right\rangle \tau} \cdot \mathfrak{h}_{k}(j-1 ; \tau)+\left(1-e^{-\left\langle c, r_{k} h_{k}\right\rangle \tau}\right) \cdot \mathfrak{h}_{k-1}(j ; \tau) . \tag{24}
\end{align*}
$$

Consequently, in the assumption that the $(k-1)$-th level has already been computed and that $h_{k}(0 ; \tau)$ is known, all the functions $h_{k}(1 ; \tau), \ldots, h_{k}\left(r_{k}-1 ; \tau\right)$ can be computed with $O\left(r_{k} \cdot k \cdot \sigma \cdot \psi\right)$ operations, using the last formula (24).

In turn, when the functions $\mathfrak{h}_{k}(j ; \tau)$, for $j \in\left\{0, \ldots, r_{k}-1\right\}$, are already computed, we can return to the functions $\mathfrak{g}_{k}\left(g^{\prime} ; \tau\right)$, for $g^{\prime}=q+j \cdot g_{k}$, using the formula (20). It will consume additional $O\left(r_{k}\right)$ group operations to compute $g^{\prime}=q+j \cdot g_{k}$. By the definition of \mathcal{G}, the arithmetic cost of a single group operation can be estimated by the number of elements on the diagonal of S that are not equal to 1 . Clearly, this number is bounded by $\min \left\{n, \log _{2}(\Delta)\right\}$. Consequently, the arithmetic cost of the last step is $O\left(r_{k} \cdot n\right)$, which is negligible in comparison with the $\mathfrak{h}_{k}(j ; \tau)$ computational cost.

Summarizing, we need $O\left(r_{k} \cdot k \cdot \sigma \cdot \psi\right)$ operations to compute $\mathfrak{g}_{k}\left(g^{\prime} ; \tau\right)$, for $g^{\prime}=q+j \cdot g_{k}$ and $j \in\left\{0, \ldots, r_{k}\right\}$. Therefore, since $|\mathscr{Q}|=\Delta / r_{k}$, the arithmetic computational cost to compute k-th level of $\mathfrak{g}_{k}(\cdot)$ is

$$
O(\Delta \cdot k \cdot \sigma \cdot \psi)
$$

and the total arithmetic cost to compute all the levels is

$$
O\left(\Delta \cdot n^{2} \cdot \sigma \cdot \psi\right)
$$

Finally, using the formula (16), we construct the function

$$
\begin{aligned}
\mathfrak{f}(\mathcal{P}, c ; \tau) & =e^{\left\langle c, A^{-1} b\right\rangle \tau} \cdot \mathfrak{g}_{n}\left(g_{0} ; \frac{\tau}{\Delta}\right) \\
& =\frac{\sum_{i=-k \cdot \sigma \cdot \psi}^{k \cdot \sigma \cdot \psi} \epsilon_{i} \cdot e^{\frac{1}{\Delta}}\left\langle\left\langle c, A^{*} b\right\rangle-i\right)^{2}}{\left(1-e^{-\left\langle c, \frac{r_{1}}{\Delta} h_{1}\right\rangle \tau}\right)\left(1-e^{-\left\langle c, \frac{r_{2}}{\Delta} h_{2}\right\rangle \tau}\right) \ldots\left(1-e^{-\left\langle c, \frac{r_{n}}{\Delta} h_{n}\right\rangle \tau}\right)},
\end{aligned}
$$

where $\epsilon_{i}:=\epsilon_{i}\left(n, g_{0}\right)$, which gives the desired representation of $\mathfrak{f}(\mathcal{P}, c ; \tau)$. Since $\mathfrak{g}_{n}\left(g_{0} ; \tau\right)$ converges absolutely, for all $\tau>0$, the same is true for $\mathfrak{f}(\mathcal{P}, c ; \tau)$. Clearly, the arithmetic cost of the last transformation is proportional to the nominator length of $\mathfrak{g}_{n}\left(g_{0} ; \tau\right)$, which is $O(n \cdot \sigma \cdot \psi)$.

It is known that a slight perturbation in the right-hand side of a system $A x \leq b$ can transform the polyhedron $\mathcal{P}(A, b)$ to a simple one. We refer to the work [20] of Megiddo \& Chandrasekaran. For $\varepsilon \in(0,1)$ and $i \in\{1, \ldots, m\}$, denote $t_{\varepsilon} \in \mathbb{Q}^{m}$ to be a vector with $\left(t_{\varepsilon}\right)_{i}=\varepsilon^{i}$.

Theorem 9 (Megiddo \& Chandrasekaran [20]) For any input matrix $A \in \mathbb{Z}^{m \times n}$ with $\operatorname{rank}(A)=n$, there exists a rational value $\varepsilon_{A} \in(0,1)$, such that, for any $b \in \mathbb{Z}^{m}$ and any $\varepsilon \in\left(0, \varepsilon_{A}\right]$, the polyhedron $\mathcal{P}\left(A, b+t_{\varepsilon}\right)$ is simple.

The value ε_{A} can be computed by a polynomial-time algorithm. More precisely, the algorithm needs $O(\log n)$ operations with numbers of size $O\left(n \cdot \log \left(n\|A\|_{\max }\right)\right)$.
Remark 3 Let's see how to apply Theorem 9 to systems with a rational right-hand side. For $A \in \mathbb{Z}^{m \times n}$ with $\operatorname{rank}(A)=n$ and $b \in \mathbb{Q}^{m}$, let $\mathcal{P}:=\mathcal{P}(A, b)$ be an n-dimensional polyhedron. Let us show how to construct a vector $t \in \mathbb{Q}^{m}$, such that the polyhedron $\mathcal{P}(A, b+t)$ will be simple and integrally equivalent to \mathcal{P}.

To this end, let $D \in \mathbb{Z}_{\geq 0}^{m \times m}$ be the diagonal matrix, composed of the denominators of the corresponding components of b. Note that $\mathcal{P}=\mathcal{P}(D A, D b)$. Next, we apply Theorem 9 to the matrix $D A$, and let ε be the resulting perturbation value. Since $D b$ is an integer and $0<\varepsilon<1$, the polyhedron $\mathcal{P}\left(A, b+D^{-1} t_{\varepsilon}\right)=\mathcal{P}\left(D A, D b+t_{\varepsilon}\right)$ is simple and integrally equivalent to \mathcal{P}. Consequently, we can put $t:=D^{-1} t_{\varepsilon}$. Additionally, note that the described procedure needs only $O(m)$ operations to calculate t.

5.3 The proof of Theorem 2

Proof Since any system in the standard form can be straightforwardly transformed to a system in the canonical form without changing the solutions set, assume that the polytope \mathcal{P} is defined by a system $A x \leq b$, where $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Q}^{m}$.

Since \mathcal{P} is bounded, it follows that $\operatorname{rank}(A)=n$. Since b is a rational vector, we can assume that $\operatorname{gcd}\left(A_{j}\right)=1$, for all $j \in\{1, \ldots, m\}$. Now, let us assume that $\operatorname{dim}(\mathcal{P})<n$. Clearly, it is equivalent to the existence of an index $j \in\{1, \ldots, m\}$, such that $A_{j} x=b_{j}$, for all $x \in \mathcal{P}$. Note that such j could be found by a polynomial-time algorithm. W.l.o.g., assume that $j=1$. Since $\operatorname{gcd}\left(A_{1}\right)=1$, there exists a unimodular matrix $Q \in \mathbb{Z}^{n \times n}$ such that $A_{1}=\left(\begin{array}{ll}1 & \mathbf{0}_{n-1}\end{array}\right) Q$. After the unimodular map $x^{\prime}=Q x$, the system $A x \leq b$ transforms to the integrally equivalent ${ }^{3}$ system

$$
\left(\begin{array}{cc}
1 & \mathbf{0}_{n-1} \\
h & B
\end{array}\right) x \leq b,
$$

where $h \in \mathbb{Z}^{m-1}$ and $B \in \mathbb{Z}^{(m-1) \times(n-1)}$. Note that $\Delta(B)=\Delta(A)=\Delta$. Since the first inequality always holds as an equality on the solutions set, we can just substitute $x_{1}=b_{1}$. As the result, we achieve a new integrally equivalent system with $n-1$ variables $B x \leq b^{\prime}$, where $b^{\prime}=b_{\{2, \ldots, m\}}-b_{1} \cdot h$.

Due to the proposed reasoning, we can assume that $\operatorname{dim}(\mathcal{P})=n$. Let us make some more assumptions on \mathcal{P}. Due to Theorem 9 and Remark 3, using $O(m)$ operations, we can produce a new right-hand side vector $b^{\prime} \in \mathbb{Q}^{m}$, such that a new polytope, defined by $A x \leq b^{\prime}$, will be simple and integrally equivalent to \mathcal{P}. Consequently, we can assume that \mathcal{P} is simple. Let $v \in \operatorname{vert}(\mathcal{P})$, denote

$$
\begin{aligned}
& \mathcal{J}(v)=\left\{j: A_{j} v=b_{j}\right\}, \text { and } \\
& \mathcal{P}_{v}=\left\{x \in \mathbb{R}^{n}: A_{\mathcal{J}(v)} x \leq b_{\mathcal{J}(v)}\right\} .
\end{aligned}
$$

Since \mathcal{P} is simple, it follows that $A_{\mathcal{J}(v)} \in \mathbb{Z}^{n \times n}$ and $0<\operatorname{det}\left(A_{\mathcal{J}(v)}\right) \leq \Delta$. Due to the seminal work [76] due to Avis \& Fukuda, all vertices of the simple polyhedron \mathcal{P} can be enumerated with $O(m \cdot n \cdot|\operatorname{vert}(\mathcal{P})|)$ arithmetic operations. Due to Lee, Paat, Stallknecht \& Xu [53], a Δ-modular system has at most $O\left(n^{2} \cdot \Delta^{2}\right)$ inequalities, i.e. $m=O\left(n^{2} \cdot \Delta^{2}\right)$. Hence, all the polyhedra \mathcal{P}_{v} can be constructed with $O\left(\nu \cdot n^{3} \cdot \Delta^{2}\right)$ operations.

[^3]Define the set \mathcal{E} of edge directions by the following way:

$$
h \in \mathcal{E} \Longleftrightarrow h \text { is a column of }-A_{\mathcal{J}(v)}^{*} \text { for some } v \in \operatorname{vert}(\mathcal{P}),
$$

where $B^{*}=|\operatorname{det}(B)| \cdot B^{-1}$, for arbitrary invertible B. Assume that a vector $c \in \mathbb{Z}^{n}$ is chosen, such that $c^{\top} h \neq 0$, for each $h \in \mathcal{E}$, and denote $\psi=\max _{h \in \mathcal{E}}\left\{\left|c^{\top} h\right|\right\}$. Note that such a choice of the vector c satisfies the conditions of Lemma 1 applied to any polyhedra \mathcal{P}_{v}, for $v \in \operatorname{vert}(\mathcal{P})$. We use Lemma 1 to all \mathcal{P}_{v} with the proposed choice of c, and construct the corresponding functions $f_{v}(\tau)$. Since $\sigma \leq \Delta$, and, due to Storjohann [72], $T_{S N F}(n)=O\left(n^{3}\right)$, the arithmetic complexity of the last operation can be estimated by

$$
\begin{equation*}
O\left(\nu \cdot \psi \cdot n^{2} \cdot \Delta^{2}\right) . \tag{25}
\end{equation*}
$$

Denote, additionally, $f_{\mathcal{P}}(\tau)=\sum_{v \in \operatorname{vert}(\mathcal{P})} f_{v}(\tau)$. Due to Brion's theorem [77] (see also [13, Chapter 6]), we have

$$
\begin{equation*}
[\mathcal{P}]=\sum_{v \in \operatorname{vert}(\mathcal{P})}\left[\mathcal{P}_{v}\right] \text { modulo polyhedra with lines }{ }^{4} \tag{26}
\end{equation*}
$$

Consequently, it follows from Theorem 8 and the last formula (26) that, for any $\tau \in \mathbb{R}$, the series $\mathfrak{f}(\mathcal{P}, c ; \tau)$ absolutely converges to the function $f_{\mathcal{P}}(\tau)$. Therefore, to calculate $\left|\mathcal{P} \cap \mathbb{Z}^{n}\right|$, we need to compute $\lim _{\tau \rightarrow 0} f_{\mathcal{P}}(\tau)$. We follow to [13, Chapter 14], to compute $\left|\mathcal{P} \cap \mathbb{Z}^{n}\right|=$ $\lim _{\tau \rightarrow 0} f_{\mathcal{P}}(\tau)$ as a constant term in the Taylor decomposition of $f_{\mathcal{P}}(\tau)$. Clearly, the constant term of $f_{\mathcal{P}}(\tau)$ is just the sum of constant terms of $f_{v}(\tau)$, for $v \in \operatorname{vert}(\mathcal{P})$. By this reason, let us fix some v and consider

$$
f_{v}(\tau)=\frac{\sum_{i=-n \cdot \sigma \cdot \psi}^{n \cdot \sigma \cdot \psi} \epsilon_{i} \cdot e^{\alpha_{i} \cdot \tau}}{\left(1-e^{-\beta_{1} \cdot \tau}\right)\left(1-e^{-\beta_{2} \cdot \tau}\right) \ldots\left(1-e^{-\beta_{n} \cdot \tau}\right)},
$$

where $\epsilon_{i} \in \mathbb{Z}_{\geq 0}, \beta_{i} \in \mathbb{Z}_{>0}$ and $\alpha_{i} \in \mathbb{Z}$. Due to [13, Chapter 14], we can see that the constant term in the Taylor decomposition for $f_{v}(\tau)$ is exactly

$$
\begin{equation*}
\sum_{i=-n \cdot \sigma \cdot \psi}^{n \cdot \sigma \cdot \psi} \frac{\epsilon_{i}}{\beta_{1} \ldots \beta_{n}} \sum_{j=0}^{n} \frac{\alpha_{i}^{j}}{j!} \cdot \operatorname{td}_{n-j}\left(\beta_{1}, \ldots, \beta_{n}\right), \tag{27}
\end{equation*}
$$

where $\operatorname{td}_{j}\left(\beta_{1}, \ldots, \beta_{n}\right)$ is a homogeneous polynomial of degree j, called the j-th Todd polynomial on $\beta_{1}, \ldots, \beta_{n}$. Due to [16, Theorem 7.2.8, p. 137], the values of $\operatorname{td}_{j}\left(\beta_{1}, \ldots, \beta_{n}\right)$, for $j \in\{1, \ldots, n\}$, can be computed with an algorithm that is polynomial in n and the bit-encoding length of $\beta_{1}, \ldots, \beta_{n}$. Moreover, it follows from the theorem's proof that the arithmetic complexity can be bounded by $O\left(n^{3}\right)$. Therefore, it is not hard to see that we need $O\left(n^{3}+n^{2} \cdot \sigma \cdot \psi\right)$ operations to compute the value of (27), and the total arithmetic cost to find the constant term in the Taylor's decomposition of the whole function $f_{\mathcal{P}}(\tau)$ is $O\left(\nu \cdot\left(n^{3}+n^{2} \cdot \sigma \cdot \psi\right)\right)$. Let us make an assumption that ψ can be upper bounded by a function that grows as $\Omega(n)$. In this assumption, the complexity bound $O\left(v \cdot\left(n^{3}+n^{2} \cdot \sigma \cdot \psi\right)\right)$ is negligible with respect to (25). Hence, we can assume that the formula (25) bounds the arithmetic complexity of the algorithm at the current state.

Previously, we made the assumption that the vector $c \in \mathbb{Z}^{n}$ is chosen such that $c^{\top} h \neq 0$, for any $h \in \mathcal{E}$. Let us present an algorithm that generates a vector c with a respectively

[^4]small value of the parameter $\psi=\max _{h \in \mathcal{E}}\left\{\left|c^{\top} h\right|\right\}$. The main idea is concentrated in following Theorem 10 due to corrected version [28] of the paper [25]. Since at the current moment of time the corrections [28] are available only as a preprint, we give a self-contained proof of Theorem 10 in Subsection A of Appendix.

Theorem 10 (Theorem 2 of [25]) Let \mathcal{A} be a set composed of m non-zero vectors in \mathbb{Q}^{n}. Then, there exists a randomized algorithm with the expected arithmetic complexity $O(n \cdot m)$, which finds a vector $z \in \mathbb{Z}^{n}$ such that:

1. $a^{\top} z \neq 0$, for any $a \in \mathcal{A}$;
2. $\|z\|_{\infty} \leq m$.

Since the polytope \mathcal{P} is assumed to be simple, each vertex $v \in \operatorname{vert}(\mathcal{P})$ corresponds to exactly n edge directions. Consequently, $2 \cdot|\mathcal{E}|=v \cdot n$. Choose some basis sub-matrix B of A. Note that $B h \neq \mathbf{0}$ and $(B h)_{i} \in\{-\Delta, \ldots, \Delta\}$, for any $h \in \mathcal{E}$ and $i \in\{1, \ldots, n\}$. Next, we use Theorem 10 to the set $B \cdot \mathcal{E}$, which produces a vector z, such that

1. $z^{\top} B h \neq 0$, for each $h \in \mathcal{E}$;
2. $\|z\|_{\infty} \leq v \cdot n$.

Now, we assign $c:=B^{\top} z$. By the construction, we have $c^{\top} h \neq 0$ and $\left|c^{\top} h\right|=\left|z^{\top} B h\right| \leq$ $n^{2} \cdot v \cdot \Delta$, for each $h \in \mathcal{E}$. Therefore, $\psi \leq n^{2} \cdot v \cdot \Delta$, which justifies the assumption on ψ. Due to the formula (25), the total complexity bound becomes $O\left(v^{2} \cdot n^{4} \cdot \Delta^{3}\right)$, which finishes the proof.

Remark 4 Let us discuss an inaccuracy of the paper [25], which was corrected in the preprint [28]. It has just been proven that there exists a vector $c \in \mathbb{Z}^{n}$, such that $c^{\top} h \neq 0$, for each $h \in \mathcal{E}$, with $\psi \leq n^{2} \cdot v \cdot \Delta$, where $\psi=\max _{h \in \mathcal{E}}\left\{\left|c^{\top} h\right|\right\}$. In turn, the paper [25] chooses the vector $c \in \mathbb{Z}^{n}$ by a different way that causes an error. More precisely, let B be a basis sub-matrix of A, corresponding to some vertex $v \in \operatorname{vert}(\mathcal{P})$. Since \mathcal{P} is assumed to be simple, B is an $n \times n$ non-degenerate integer matrix. Then, the vector c is chosen as the sum of columns of B^{\top}. It is easy to see that $\psi \leq n \cdot \Delta$, but the statement $\forall h \in \mathcal{E}: c^{\top} h \neq 0$ is not necessary to be correct for every \mathcal{P}, which is the mentioned inaccuracy.

5.4 A bound for the number of vertices of a rational polyhedron

For an arbitrary matrix $B \in \mathbb{R}^{m \times n}$, denote cone $(B)=\left\{B t: t \in \mathbb{R}_{\geq 0}^{n}\right\}$. The following lemmas help to estimate the number of vertices in a polyhedron, defined by a sparse system. We will use this bound to prove Theorem 3.

Lemma 3 Let $A \in \mathbb{Z}^{n \times n}, \operatorname{det}(A) \neq 0$, and $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}$ be any vector norm, which is symmetric with respect to any coordinate, i.e. $\|x\|=\left\|x-2 x_{i} \cdot e_{i}\right\|$, for any $x \in \mathbb{R}^{n}$ and $i \in$ $\{1, \ldots, n\}$. Let us consider a sector $\mathcal{U}=\mathbb{B}_{\|\cdot\|} \cap \operatorname{cone}(A)$, where $\mathbb{B}_{\|\cdot\|}=\left\{x \in \mathbb{R}^{n}:\|x\| \leq 1\right\}$ is the unit ball with respect to the $\|\cdot\|$-norm. Then,

$$
\begin{equation*}
\operatorname{vol}(\mathcal{U}) \geq \frac{|\operatorname{det}(A)|}{2^{n}} \cdot \operatorname{vol}\left(r \cdot \mathbb{B}_{\|\cdot\|}\right) \tag{28}
\end{equation*}
$$

where $r \cdot \mathbb{B}_{\|\cdot\|}$ is the $\|\cdot\|$-ball of the maximum radius r, inscribed into the set $\left\{x \in \mathbb{R}^{n}:\|A x\| \leq\right.$ $1\}$.

Consequently, let $\mathcal{U}_{1}=\mathbb{B}_{1} \cap \operatorname{cone}(A)$ and $\mathcal{U}_{\infty}=\mathbb{B}_{\infty} \cap \operatorname{cone}(A)$. Then,

$$
\begin{align*}
\operatorname{vol}\left(\mathcal{U}_{1}\right) & \geq \frac{|\operatorname{det}(A)|}{\left(2\|A\|_{\infty}\right)^{n}} \cdot \operatorname{vol}\left(\mathbb{B}_{1}\right) \geq \frac{|\operatorname{det}(A)|}{\left(2\|A\|_{\max } \cdot \operatorname{cs}(A)\right)^{n}} \cdot \operatorname{vol}\left(\mathbb{B}_{1}\right) ; \tag{29}\\
\operatorname{vol}\left(\mathcal{U}_{\infty}\right) & \geq \frac{|\operatorname{det}(A)|}{\left(2\|A\|_{1}\right)^{n}} \cdot \operatorname{vol}\left(\mathbb{B}_{\infty}\right) \geq \frac{|\operatorname{det}(A)|}{\left(2\|A\|_{\max } \cdot \operatorname{rs}(A)\right)^{n}} \cdot \operatorname{vol}\left(\mathbb{B}_{\infty}\right) \tag{30}
\end{align*}
$$

Proof Let us prove the inequality (28). Clearly,

$$
\operatorname{vol}(\mathcal{U})=|\operatorname{det}(A)| \cdot \operatorname{vol}\left(\mathcal{K} \cap \operatorname{cone}\left(I_{n \times n}\right)\right)
$$

where $\mathcal{K}=\left\{x \in \mathbb{R}^{n}:\|A x\| \leq 1\right\}$. By the definition of r, we have $\mathcal{K} \supseteq r \cdot \mathbb{B}_{\|\cdot\|}$. Consequently,

$$
\operatorname{vol}(\mathcal{U}) \geq|\operatorname{det}(A)| \cdot \operatorname{vol}\left(r \cdot \mathbb{B}_{\|\cdot\|} \cap \operatorname{cone}\left(I_{n \times n}\right)\right) \geq \frac{|\operatorname{det}(A)|}{2^{n}} \cdot \operatorname{vol}\left(r \cdot \mathbb{B}_{\|\cdot\|}\right) .
$$

Now, let us prove the inequality (29). To this end, we just need to prove the inequality $r \geq \frac{1}{\|A\|_{\infty}}$ with respect to the l_{1}-norm. Let us consider the set \mathcal{K}. It can be represented as the set of solutions of the following inequality:

$$
\begin{equation*}
\sum_{i=1}^{n}\left|A_{i *} x\right| \leq 1 . \tag{31}
\end{equation*}
$$

Let us consider the $2 n$ points $\pm p_{i}= \pm \frac{1}{\|A\|_{\infty}} \cdot e_{i}$, for $i \in\{1, \ldots, n\}$. Substituting $\pm p_{j}$ to the inequality (31), we have

$$
\sum_{i=1}^{n}\left|A_{i *} p_{j}\right|=\frac{1}{\|A\|_{\infty}} \cdot \sum_{i=1}^{n}\left|A_{i *} e_{j}\right|=\frac{1}{\|A\|_{\infty}} \cdot \sum_{i=1}^{n}\left|A_{i j}\right| \leq 1 .
$$

Hence, all the points $\pm p_{i}$, for $i \in\{1, \ldots, n\}$, satisfy the inequality (31). Since \mathcal{K} is convex, we have $\frac{1}{\|A\|_{\infty}} \cdot \mathbb{B}_{1} \subseteq \mathcal{K}$, and, consequently, $r \geq \frac{1}{\|A\|_{\infty}}$.

Finally, let us prove the inequality (30). Again, we need to show that $r \geq \frac{1}{\|A\|_{1}}$ with respect to the l_{1}-norm. In the current case, the set \mathcal{K} can be represented as the set of solutions of the following system:

$$
\begin{equation*}
\forall i \in\{1, \ldots, n\}, \quad\left|A_{i *} x\right| \leq 1 . \tag{32}
\end{equation*}
$$

Let us consider the set $\mathcal{M}=\left\{\frac{1}{\|A\|_{1}} \cdot(\pm 1, \pm 1, \ldots, \pm 1)^{\top}\right\}$ of 2^{n} points. Substituting any point $p \in \mathcal{M}$ to the j-th inequality of the system (32), we have

$$
\left|A_{j *} p\right| \leq \sum_{i=1}^{n}\left|A_{j i} \| p_{i}\right|=\frac{1}{\|A\|_{1}} \cdot \sum_{i=1}^{n}\left|A_{j i}\right| \leq 1 .
$$

Hence, all the points $p \in \mathcal{M}$ satisfy the inequality (32). Since \mathcal{K} is convex, we have $\frac{1}{\|A\|_{1}}$. $\mathbb{B}_{\infty} \subseteq \mathcal{K}$, and, consequently, $r \geq \frac{1}{\|A\|_{1}}$.

Lemma 4 Let $A \in \mathbb{Z}^{m \times n}, b \in \mathbb{Q}^{m}$, and $\operatorname{rank}(A)=n$. Let \mathcal{P} be a polyhedron, defined by a system $A x \leq b$. Then, $|\operatorname{vert}(\mathcal{P})| \leq 2^{n} \cdot \gamma_{1, \infty}(A)^{n} \leq\left(2\|A\|_{\max }\right)^{n} \cdot \overline{\mathrm{ts}}(A)^{n}$.

Proof Let $\mathcal{N}(v)=\operatorname{cone}\left(A_{\mathcal{J}(v)}^{\top}\right)$ be the normal cone of a vertex $v \in \operatorname{vert}(\mathcal{P})$, where $\mathcal{J}(v)=$ $\left\{j \in\{1, \ldots, m\}: A_{j *} v=b_{j}\right\}$. Since $\operatorname{rank}(A)=n$, we have $\operatorname{dim}(\mathcal{N}(v))=n$, for any
$v \in \operatorname{vert}(\mathcal{P})$. It is a known fact that $\operatorname{dim}\left(\mathcal{N}\left(v_{1}\right) \cap \mathcal{N}\left(v_{2}\right)\right)<n$, for different $v_{1}, v_{2} \in \operatorname{vert}(\mathcal{P})$. Next, we will use the following trivial inclusion

$$
\begin{equation*}
\bigcup_{v \in \operatorname{vert}(\mathcal{P})} \mathcal{N}(v) \cap \mathbb{B} \subseteq \mathbb{B}, \tag{33}
\end{equation*}
$$

where \mathbb{B} is the unit ball with respect to any vector norm $\|\cdot\|: \mathbb{R}^{n} \rightarrow \mathbb{R}_{\geq 0}$.
Again, since $\operatorname{rank}(A)=n$, each matrix $A_{\mathcal{J}(v)}^{\top}$ contains a non-degenerate $n \times n$ sub-matrix. Taking $\mathbb{B}:=\mathbb{B}_{1}$ or $\mathbb{B}:=\mathbb{B}_{\infty}$, by Lemma 3, we have $\operatorname{vol}(\mathcal{N}(v) \cap \mathbb{B}) \geq \frac{\operatorname{vol}(\mathbb{B})}{\left(2 \gamma_{1, \infty}(A)\right)^{n}}$. Finally, due to (33), we have

$$
\frac{\operatorname{vol}(\mathbb{B})}{\left(2 \gamma_{1, \infty}(A)\right)^{n}} \cdot|\operatorname{vert}(\mathcal{P})| \leq \operatorname{vol}(\mathbb{B})
$$

5.5 The proof of Theorem 3

Proof Consider first the case, when \mathcal{P} is unbounded. In this case, we need only to distinguish between two possibilities: $\left|\mathcal{P} \cap \mathbb{Z}^{n}\right|=0$ and $\left|\mathcal{P} \cap \mathbb{Z}^{n}\right|=+\infty$. Due to [23, Theorem 17.1], if $\left|\mathcal{P} \cap \mathbb{Z}^{n}\right| \neq 0$, then there exists $v \in \mathcal{P} \cap \mathbb{Z}^{n}$ such that $\|v\|_{\infty} \leq(n+1) \cdot \Delta_{\text {ext }}$, where $\Delta_{\text {ext }}=$ $\Delta\left(A_{\text {ext }}\right)$ and $A_{\text {ext }}=(A b)$ is the extended matrix of the system $A x \leq b$. Consequently, to transform the unbounded case to the bounded one, we just need to add the inequalities $\left|x_{i}\right| \leq(n+1) \cdot n^{n / 2} \cdot\left(\left\|A_{\text {ext }}\right\|_{\max }\right)^{n}$, for $i \in\{1, \ldots, n\}$, to the original system $A x \leq b$.

Now, we can assume that \mathcal{P} is bounded, and consequently $\operatorname{rank}(A)=n$. Due to Theorem 2, the counting problem can be solved by an algorithm with the arithmetic complexity bound

$$
\begin{equation*}
O\left(v^{2} \cdot n^{4} \cdot \Delta^{3}\right) \tag{34}
\end{equation*}
$$

where v is the maximum number of vertices in polyhedra with fixed A and varying b. In our case, the value of v can be estimated by Lemma 4. To estimate the value of Δ, we use the inequalities (2) and (3). The inequalities for v and Δ, together with the bound (34), give the desired complexity bound for the problem Count-IP.

Let us show how to find some point z inside $\mathcal{P} \cap \mathbb{Z}^{n}$ in the case $\left|\mathcal{P} \cap \mathbb{Z}^{n}\right|>0$, to handle the problem Feasibility-IP. For $\alpha, \beta \in \mathbb{Z}$, let us consider the polytope $\mathcal{P}^{\prime}(\alpha, \beta)$, defined by the system $A x \leq b$ with the additional inequality $\alpha \leq x_{1} \leq \beta$. The maximum rank-order sub-determinants of the new system are bounded by $\max \left\{\Delta_{n}, \Delta_{n-1}\right\}$. In turn, the value of Δ_{n-1} can be estimated in the same way, as it was done for Δ_{n}. Let v be some vertex of \mathcal{P}, which can be found by a polynomial-time algorithm. Due to the seminal sensitivity result [78] of Cook, Gerards, Schrijver \& Tardos, if $\mathcal{P} \cap \mathbb{Z}^{n} \neq \emptyset$, then there exists a point $z \in \mathcal{P} \cap \mathbb{Z}^{n}$ such that $\|v-z\|_{\infty} \leq n \cdot \Delta_{\text {tot }}$. So, the value of z_{1} can be found, using the binary search with questions to the $\mathcal{P}^{\prime}(\alpha, \beta) \cap \mathbb{Z}^{n}$-feasibility oracle, which can be clearly reduced to the Count-IP problem. Clearly, we need $O\left(\log \left(n \Delta_{t o t}\right)\right)$ calls to the oracle. After the moment, when we already know the value of z_{1}, we just add the equality $x_{1}=z_{1}$ to the system $A x \leq b$ and start a similar search procedure for the value of z_{2}. The total number of calls to the binary search oracle to compute all the components of z is $O\left(n \cdot \log \left(n \Delta_{t o t}\right)\right.$).

Finally, let us explain how to deal with the problem Opt-And-Count-IP. Let $\alpha, \beta \in \mathbb{Z}$, consider the polytope $\mathcal{P}^{\prime}(\alpha, \beta)$, defined by the system $A x \leq b$ with the additional inequality $\alpha \leq c^{\top} x \leq \beta$. Let $A^{\prime} \in \mathbb{Z}^{(m+2) \times n}$ be the matrix that defines $\mathcal{P}^{\prime}(\alpha, \beta)$, i.e. $A^{\prime}=\left(c-c A^{\top}\right)$. Expanding sub-determinants of A^{\prime} by the c^{\top}-row, we have $\Delta\left(A^{\prime}\right) \leq\|c\|_{1} \cdot \Delta_{n-1}(A)$. Let
us estimate the number of vertices in $\mathcal{P}^{\prime}(\alpha, \beta)$. The polytope $\mathcal{P}^{\prime}(\alpha, \beta)$ is the intersection of the polytope \mathcal{P} with the slab $\left\{x \in \mathbb{R}^{n}: \alpha \leq c^{\top} x \leq \beta\right\}$. Clearly, the new vertices may appear only on edges of \mathcal{P}, by at most 2 new vertices per edge. The number of edges in \mathcal{P} is bounded by $|\operatorname{vert}(\mathcal{P})|^{2} / 4$. In turn, the value of $|\operatorname{vert}(\mathcal{P})|^{2} / 4$ can be estimated, using Lemma 4. Due to Theorem 2 , the value $\left|\mathcal{P}^{\prime}(\alpha, \beta) \cap \mathbb{Z}^{n}\right|$ can be computed by an algorithm with the desired complexity bounds. To complete the proof, we note that, using the binary search method, the original optimization problem can be reduced to a polynomial number of feasibility questions in the set $\mathcal{P}^{\prime}(\alpha, \beta) \cap \mathbb{Z}^{n}$ for different α, β.

Acknowledgements Section 2 was prepared within the framework of the Basic Research Program at the National Research University Higher School of Economics (HSE). Sections 2.2 and 3 were prepared under financial support of Russian Science Foundation Grant No. 21-11-00194. Additionally, the authors would thank the anonymous reviewers who offered important comments that significantly improved our work.

Data availibility The manuscript has no associated data.

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Appendix A: Proof of Theorem 10

Proof Fix a parameter r and let $\mathcal{I}=\{-r, \ldots, r\}$. For $a \in \mathcal{A}$, denote $\mathcal{H}_{a}=\left\{x \in \mathcal{I}^{n}: a^{\top} x=\right.$ $0\}$, and let

$$
\mathcal{N}=\mathcal{I}^{n} \backslash \bigcup_{a \in \mathcal{A}} \mathcal{H}_{a}
$$

Consider a polynomial $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given by the formula

$$
f(x)=\prod_{a \in \mathcal{A}} a^{\top} x .
$$

Clearly, f is a homogeneous polynomial with $\operatorname{deg}(f)=|\mathcal{A}|=m$. Let $\mathcal{R}=\left\{x \in \mathcal{I}^{n}: f(x)=\right.$ $0\}$ be the roots of f inside \mathcal{I}^{n}. Note that $\mathcal{R}=\bigcup_{a \in \mathcal{A}} \mathcal{H}_{a}$ and $\mathcal{N}=\mathcal{I}^{n} \backslash \mathcal{R}$. Due to the known Schwartz-Zippel lemma, $|\mathcal{R}| \leq \operatorname{deg}(f) \cdot|\mathcal{I}|^{n-1}=m \cdot(2 r+1)^{n-1}$. Therefore, $|\mathcal{N}| \geq(2 r+1)^{n}-m \cdot(2 r+1)^{n-1}=(2 r+1)^{n-1} \cdot(2 r+1-m)$, and consequently

$$
\frac{|\mathcal{N}|}{\left|\mathcal{I}^{n}\right|} \geq \frac{2 r+1-m}{2 r+1}=1-\frac{m}{2 r+1} .
$$

Assign $r:=m$. After that, the previous inequality becomes $\frac{|\mathcal{N}|}{\left|\bar{I}^{n}\right|}>1 / 2$. Now, to find a vector z that can satisfy the claims

1. $a^{\top} z \neq 0$, for any $a \in \mathcal{A}$;
2. $\|z\|_{\infty} \leq m$;
we uniformly sample points z inside \mathcal{I}^{n}. With a probability at least $1 / 2$ it will satisfy the first claim. The second claim is satisfied automatically. Therefore, the expected number of sampling iterations is $O(1)$. The arithmetic complexity of a single iteration is clearly bounded by $O(n \cdot m)$, which completes the proof.

Appendix B: Proof of the Lemma 2

A recurrent formula for the generating function of a group polyhedron

Let \mathcal{G} be an arbitrary finite Abelian group and $g_{1}, \ldots, g_{n} \in \mathcal{G}$. Let additionally $r_{i}=\left|\left\langle g_{i}\right\rangle\right|$ be the order of g_{i}, for $i \in\{1, \ldots, n\}$, and $r_{\max }=\max _{i}\left\{r_{i}\right\}$. For $g^{\prime} \in \mathcal{G}$ and $k \in\{1, \ldots, n\}$, let $\mathcal{M}\left(k, g^{\prime}\right)$ be the solutions set of the following system:

$$
\left\{\begin{array}{l}
\sum_{i=1}^{k} x_{i} g_{i}=g^{\prime} \tag{B1}\\
x \in \mathbb{Z}_{\geq 0}^{k} .
\end{array}\right.
$$

Consider the formal power series $\mathfrak{f}_{k}\left(g^{\prime} ; \mathbf{x}\right)=\sum_{z \in \mathcal{M}\left(k, g^{\prime}\right) \cap \mathbb{Z}^{k}} \mathbf{x}^{z}$. For $k=1$, we clearly have

$$
\begin{equation*}
\mathfrak{f}_{1}\left(g^{\prime} ; \mathbf{x}\right)=\frac{x_{1}^{s}}{1-x_{1}^{r_{1}}}, \quad \text { where } s=\min \left\{x_{1} \in \mathbb{Z}_{\geq 0}: x_{1} g_{1}=g^{\prime}\right\} \tag{B2}
\end{equation*}
$$

If such s does not exist, we put $\mathfrak{f}_{1}\left(g^{\prime} ; \mathbf{x}\right):=0$. Clearly, the series $\mathfrak{f}_{1}\left(g^{\prime} ; \mathbf{x}\right)$ absolutely converges to the corresponding right-hand side function for any $x_{1} \in \mathbb{C}$ with $\left|x_{1}^{r_{1}}\right|<1$. For any value of $x_{k} \in \mathbb{Z}_{\geq 0}$, the system (B1) can be rewritten as

$$
\left\{\begin{array}{l}
\sum_{i=1}^{k-1} x_{i} g_{i}=g^{\prime}-x_{k} g_{k} \\
x \in \mathbb{Z}_{\geq 0}^{k-1}
\end{array}\right.
$$

Hence, for $k \geq 1$, we have

$$
\begin{align*}
\mathfrak{f}_{k}\left(g^{\prime} ; \mathbf{x}\right) & =\frac{\mathfrak{f}_{k-1}\left(g^{\prime} ; \mathbf{x}\right)+x_{k} \cdot \mathfrak{f}_{k-1}\left(g^{\prime}-g_{k} ; \mathbf{x}\right)+\cdots+x_{k}^{r_{k}-1} \cdot \mathfrak{f}_{k-1}\left(g^{\prime}-g_{k} \cdot\left(r_{k}-1\right) ; \mathbf{x}\right)}{1-x_{k}^{r_{k}}} \\
& =\frac{1}{1-x_{k}^{r_{k}}} \cdot \sum_{i=0}^{r_{k}-1} x_{k}^{i} \cdot \mathfrak{f}_{k-1}\left(g^{\prime}-i \cdot g_{k} ; \mathbf{x}\right) . \tag{B3}
\end{align*}
$$

$$
\begin{equation*}
\text { Consequently, } \quad f_{k}\left(g^{\prime} ; \mathbf{x}\right)=\frac{\sum_{i_{1}=0}^{r_{1}-1} \cdots \sum_{i_{k}=0}^{r_{k}-1} \epsilon_{i_{1}, \ldots, i_{k}} x_{1}^{i_{1}} \ldots x_{k}^{i_{k}}}{\left(1-x_{1}^{r_{1}}\right)\left(1-x_{2}^{r_{2}}\right) \ldots\left(1-x_{k}^{r_{k}}\right)}, \tag{B4}
\end{equation*}
$$

where the numerator is a polynomial with coefficients $\epsilon_{i_{1}, \ldots, i_{k}} \in\{0,1\}$ and degree at most $\left(r_{1}-1\right) \ldots\left(r_{k}-1\right)$. Since a sum of absolutely convergent series is absolutely convergent, it follows from the induction principle that the series $\mathfrak{f}_{k}\left(g^{\prime} ; \mathbf{x}\right)$ absolutely converges to the right-hand side of the formula (B4) when $\left|x_{i}^{r_{i}}\right|<1$ for each $i \in\{1, \ldots, k\}$.

The group \mathcal{G}, induced by the SNF, of A

Recall that $A \in \mathbb{Z}^{n \times n}, 0<\Delta=|\operatorname{det}(A)|$, and h_{1}, \ldots, h_{n} are the columns of $A^{*}:=$ $\Delta \cdot A^{-1}$. The vector $c \in \mathbb{Z}^{n}$ is chosen, such that $\left\langle c, h_{i}\right\rangle>0$, for each $i \in\{1, \ldots, n\}$, and $\psi=\max _{i}\left|\left\langle c, h_{i}\right\rangle\right|$. Additionally, let $S=P A Q$ be the SNF of A, where $P, Q \in \mathbb{Z}^{n \times n}$ are unimodular, and $\sigma=S_{n n}$.

Let us consider the sets $\mathcal{M}\left(k, g^{\prime}\right)$, induced by the group system (B1) with $\mathcal{G}=\mathbb{Z}^{n} / S \mathbb{Z}^{n}$ and $g_{i}=P_{* i} \bmod S \mathbb{Z}^{n}$. Note that $r_{i} \leq \sigma$, for each $i \in\{1, \ldots, n\}$. Additionally, let us
consider a new formal series, defined by

$$
\hat{\mathfrak{f}}_{k}\left(g^{\prime} ; \mathbf{x}\right)=\sum_{z \in \mathcal{M}\left(k, g^{\prime}\right) \cap \mathbb{Z}^{k}} \mathbf{x}^{-\sum_{i=1}^{k} h_{i} z_{i}},
$$

which can be derived from the series $\mathfrak{f}_{k}\left(g^{\prime} ; \mathbf{x}\right)$ by the monomial substitution $x_{i} \rightarrow \mathbf{x}^{-h_{i}}$. For $\hat{\mathfrak{f}}_{k}\left(g^{\prime} ; \mathbf{x}\right)$, the formulae (B2), (B3) and (B4) become:

$$
\begin{align*}
& \hat{\mathfrak{f}}_{1}\left(g^{\prime} ; \mathbf{x}\right)=\frac{\mathbf{x}^{-s h_{1}}}{1-\mathbf{x}^{-r_{1} h_{1}}}, \quad \text { where } s=\min \left\{y_{1} \in \mathbb{Z}_{\geq 0}: y_{1} g_{1}=g^{\prime}\right\}, \tag{B5}\\
& \hat{\mathfrak{f}}_{k}\left(g^{\prime} ; \mathbf{x}\right)=\frac{1}{1-\mathbf{x}^{-r_{k} h_{k}}} \cdot \sum_{i=0}^{r_{k}-1} \mathbf{x}^{-i h_{k}} \cdot \hat{\mathfrak{f}}_{k-1}\left(g^{\prime}-i \cdot g_{k} ; \mathbf{x}\right) \text { and } \tag{B6}\\
& \hat{\mathfrak{f}}_{k}\left(g^{\prime} ; \mathbf{x}\right)=\frac{\sum_{i_{1}=0}^{r_{1}-1} \cdots \sum_{i_{k}=0}^{r_{k}-1} \epsilon_{i_{1}, \ldots, i_{k}} \mathbf{x}^{-\left(i_{1} h_{1}+\cdots+i_{k} h_{k}\right)}}{\left(1-\mathbf{x}^{-r_{1} h_{1}}\right)\left(1-\mathbf{x}^{-r_{2} h_{2}}\right) \ldots\left(1-\mathbf{x}^{-r_{k} h_{k}}\right)} . \tag{B7}
\end{align*}
$$

Clearly, here the absolute convergence takes place for the values of \mathbf{x} with $\left|\mathbf{x}^{-r_{i} h_{i}}\right|<1$, for each $i \in\{1, \ldots, k\}$. Let us consider now the formal series

$$
\mathfrak{g}_{k}\left(g^{\prime} ; \tau\right)=\sum_{y \in \mathcal{M}_{k}\left(g^{\prime}\right)} e^{-\tau \cdot\left\langle c, \sum_{i=1}^{k} h_{i} y_{i}\right\rangle},
$$

which can be derived from $\hat{\mathfrak{f}}_{k}\left(g^{\prime} ; \mathbf{x}\right)$ by the substitution $x_{i} \rightarrow e^{\tau \cdot c_{i}}$. For $\mathfrak{g}_{k}\left(g^{\prime} ; \tau\right)$, the formulae (B5), (B6), and (B7) become:

$$
\begin{align*}
& \mathfrak{g}_{1}\left(g^{\prime} ; \tau\right)=\frac{e^{-\left\langle c, s h_{1}\right\rangle \cdot \tau}}{1-e^{-\left\langle c, r_{1} h_{1}\right\rangle \cdot \tau}}, \tag{B8}\\
& \mathfrak{g}_{k}\left(g^{\prime} ; \tau\right)=\frac{1}{1-e^{-\left\langle c, r_{k} h_{k}\right\rangle \cdot \tau}} \cdot \sum_{i=0}^{r_{k}-1} e^{-\left\langle c, i h_{k}\right\rangle \cdot \tau} \cdot \mathfrak{g}_{k-1}\left(g^{\prime}-i \cdot g_{k} ; \tau\right), \tag{B9}\\
& \mathfrak{g}_{k}\left(g^{\prime} ; \tau\right)=\frac{\sum_{i_{1}=0}^{r_{1}-1} \cdots \sum_{i_{k}=0}^{r_{k}-1} \epsilon_{i_{1}, \ldots, i_{k}} e^{-\left\langle c, i_{1} h_{1}+\cdots+i_{k} h_{k}\right\rangle \cdot \tau}}{\left(1-e^{-\left\langle c, r_{1} h_{1}\right\rangle \cdot \tau}\right)\left(1-e^{-\left\langle c, r_{2} h_{2}\right\rangle \cdot \tau}\right) \ldots\left(1-e^{-\left\langle c, r_{k} h_{k}\right\rangle \cdot \tau}\right)} . \tag{B10}
\end{align*}
$$

Since the series $\hat{\mathfrak{f}}_{k}\left(g^{\prime} ; \mathbf{x}\right)$ absolutely converges, when $\left|\mathbf{x}^{-r_{i} h_{i}}\right|<1$, for each $i \in\{1, \ldots, k\}$, the new one converges, for any $\tau>0$. Since $\left\langle c, h_{i}\right\rangle \in \mathbb{Z}_{\neq 0}$, for each i, the number of terms $e^{-\langle c, \cdot\rangle \cdot \tau}$ is bounded by $2 \cdot k \cdot \sigma \cdot \psi+1$. So, after combining similar terms, the numerator's length becomes $O(k \cdot \sigma \cdot \psi)$. In other words, there exist coefficients $\epsilon_{i} \in \mathbb{Z}_{\geq 0}$, such that

$$
\begin{equation*}
\mathfrak{g}_{k}\left(g^{\prime} ; \tau\right)=\frac{\sum_{i=-k \cdot \sigma \cdot \psi}^{k \cdot \sigma \cdot \psi} \epsilon_{i} \cdot e^{-i \cdot \tau}}{\left(1-e^{-\left\langle c, r_{1} \cdot h_{1}\right\rangle \tau}\right)\left(1-e^{-\left\langle c, r_{2} h_{2}\right\rangle \cdot \tau}\right) \ldots\left(1-e^{-\left\langle c, r_{k} h_{k}\right\rangle \cdot \tau}\right)} . \tag{B11}
\end{equation*}
$$

The formulae (B8), (B9), and (B11) coincide with the desired formulae (17), (18), and (19). So, the proof of Lemma 2 is finished.

References

1. Dadush, D.: Integer programming, lattice algorithms, and deterministic volume estimation. Georgia Institute of Technology, ProQuest Dissertations Publishing, Ann Arbor (2012)
2. Dadush, D., Peikert, C., Vempala, S.: Enumerative lattice algorithms in any norm via m-ellipsoid coverings. In: 2011 IEEE 52nd annual symposium on foundations of computer science, pp. 580-589 (2011). https://doi.org/10.1109/FOCS. 2011.31
3. Dadush, D.: On approximating the covering radius and finding dense lattice subspaces. In: Proceedings of the 51st Annual ACM SIGACT symposium on theory of computing, pp. 1021-1026 (2019). https:// doi.org/10.1145/3313276.3316397
4. Regev, O., Stephens-Davidowitz, N.: A reverse minkowski theorem. In: Proceedings of the 49th Annual ACM SIGACT symposium on theory of computing, pp. 941-953 (2017)
5. Reis, V., Rothvoss, T.: The subspace flatness conjecture and faster integer programming. In: 2023 IEEE 64th Annual symposium on foundations of computer science (FOCS), IEEE. pp. 974-988 (2023)
6. Basu, A., Oertel, T.: Centerpoints: a link between optimization and convex geometry. SIAM J. Optim. 27(2), 866-889 (2017). https://doi.org/10.1137/16M1092908
7. Chirkov, Y.A., Gribanov, V.D., Malyshev, S.D., Pardalos, M.P., Veselov, I.S., Zolotykh, Y.N.: On the complexity of quasiconvex integer minimization problem. J. Global Optim. 73(4), 761-788 (2019). https:// doi.org/10.1007/s10898-018-0729-8
8. Gribanov, D.V., Malyshev, D.S.: Integer conic function minimization based on the comparison oracle. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) Mathematical optimization theory and operations research, pp. 218-231. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22629-9_16
9. Veselov, S.I., Gribanov, D.V., Zolotykh, N.Y., Chirkov, A.Y.: A polynomial algorithm for minimizing discrete convic functions in fixed dimension. Discret. Appl. Math. 283, 11-19 (2020). https://doi.org/10. 1016/j.dam.2019.10.006
10. Barvinok, A.I.: A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed. In: Proceedings of 1993 IEEE 34th annual foundations of computer science, 566-572 (1993). https://doi.org/10.1109/SFCS.1993.366830
11. Dyer, M., Kannan, R.: On barvinok's algorithm for counting lattice points in fixed dimension. Math. Oper. Res. 22(3), 545-549 (1997). https://doi.org/10.1287/moor.22.3.545
12. Barvinok, A., Pommersheim, J.: An algorithmic theory of lattice points in polyhedra New Perspect. Algebraic Combin. 38, 91-147 (1999)
13. Barvinok, A.: Integer points in polyhedra. European Mathematical Society, ETH-Zentrum, Zurich (2008)
14. Barvinok, A., Woods, K.: Short rational generating functions for lattice point problems. J. Am. Math. Soc. 16(4), 957-979 (2003)
15. Beck, M., Robins, S.: Computing the continuous discretely. Springer, New York (2015)
16. De Loera, J., Hemmecke, R., Köppe, M.: Algebraic and geometric ideas in the theory of discrete optimization. Society for Industrial and Applied Mathematics, Philadelphia (2013)
17. Lasserre, J.-B.: Linear and integer programming vs linear integration and counting: a duality viewpoint. Springer, New York (2009)
18. Köppe, M., Verdoolaege, S. Computing parametric rational generating functions with a primal barvinok algorithm. The Electr. J. Combinat. (2008) https://doi.org/10.48550/arXiv.0705.3651
19. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations. SIAM J. Comput. 42(3), 1364-1391 (2013)
20. Megiddo, N., Chandrasekaran, R.: On the ε-perturbation method for avoiding degeneracy. Oper. Res. Lett. 8(6), 305-308 (1989)
21. McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17(2), 179-184 (1970). https://doi.org/10.1112/S0025579300002850
22. Grünbaum, B.: Convex polytopes. Graduate texts in mathematics. Springer, New York (2011)
23. Schrijver, A.: Theory of linear and integer programming. Wiley, Chichester (1998)
24. Gribanov, V. D.: An FPTAS for the Δ-modular multidimensional knapsack problem (2021). https://doi. org/10.1007/978-3-030-77876-7_6
25. Gribanov, V. D., Malyshev, S. D.: A faster algorithm for counting the integer points number in δ-modular polyhedra. Siberian electronic mathematical reports (2022). https://doi.org/10.33048/semi.2022.19.051
26. Gribanov, V.D., Shumilov, A.I., Malyshev, S.D., Pardalos, M.P.: On δ-modular integer linear problems in the canonical form and equivalent problems. J. Glob. Optim. (2022). https://doi.org/10.1007/s10898-022-01165-9
27. Gribanov, D.V., Zolotykh, N.Y.: On lattice point counting in δ-modular polyhedra. Optimiz. Lett. 16(7), 1991-2018 (2022). https://doi.org/10.1007/s11590-021-01744-x
28. Gribanov, D., Shumilov, I., Malyshev, D.: A faster algorithm for counting the integer points number in Δ-modular polyhedra (corrected version) (2023)
29. Lasserre, B., Jean Zeron, S.: Eduardo: solving the knapsack problem via z-transform. Operat. Res. Lett. 30(6), 394-400 (2002)
30. Köppe, M.: A primal barvinok algorithm based on irrational decompositions. SIAM J. Discret. Math. 21(1), 220-236 (2007)
31. De Loera, J.A., Hemmecke, R., Tauzer, J., Yoshida, R.: Effective lattice point counting in rational convex polytopes. J. Symb. Comput. 38(4), 1273-1302 (2004). https://doi.org/10.1016/j.jsc.2003.04.003
32. Kratsch, S.: On polynomial kernels for sparse integer linear programs. J. Comput. Syst. Sci. 82(5), 758766 (2016)
33. Veselov, S.I., Chirkov, A.J.: Integer program with bimodular matrix. Discret. Optim. 6(2), 220-222 (2009). https://doi.org/10.1016/j.disopt.2008.12.002
34. Artmann, S., Weismantel, R., Zenklusen, R.: A strongly polynomial algorithm for bimodular integer linear programming. In: Proceedings of the 49th Annual ACM SIGACT symposium on theory of computing. STOC 2017, Association for Computing Machinery, New York, NY, USA, pp. 1206-1219 (2017). https:// doi.org/10.1145/3055399.3055473
35. Fiorini, S., Joret, G., Weltge, S., Yuditsky, Y.: Integer programs with bounded subdeterminants and two nonzeros per row. In: 2021 IEEE 62nd annual symposium on foundations of computer science (FOCS). IEEE, pp. 13-24 (2022)
36. Alekseev, E.V., Zakharova, V.D.: Independent sets in the graphs with bounded minors of the extended incidence matrix. J. Appl. Ind. Math. 5(1), 14-18 (2011). https://doi.org/10.1134/S1990478911010029
37. Bock, A., Faenza, Y., Moldenhauer, C., Ruiz-Vargas, A.J.: Solving the stable set problem in terms of the odd cycle packing number. In: Raman, V., Suresh, S.P. (eds.) 34th International conference on foundation of software technology and theoretical computer science (FSTTCS 2014). Leibniz International Proceedings in Informatics (LIPIcs), vol. 29, pp. 187-198. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2014). https://doi.org/10.4230/LIPIcs.FSTTCS.2014.187
38. Di Summa, M., Eisenbrand, F., Faenza, Y., Moldenhauer, C.: On largest volume simplices and subdeterminants, pp. 315-323. https://doi.org/10.1137/1.9781611973730.23
39. Bellman, R.: Dynamic programming. Science 153(3731), 34-37 (1966)
40. Gribanov, D., Shumilov, I., Malyshev, D.: Structured ($\min ,+$)-Convolution and its applications for the shortest vector, closest vector, and separable nonlinear Knapsack problems (2022)
41. Polak, A., Rohwedder, L., Wegrzycki, K.: Knapsack and subset sum with small items. arXiv:2105.04035v1 [cs.DS] (2021)
42. Cunningham, W.H., Geelen, J.: On integer programming and the branch-width of the constraint matrix. In: International conference on integer programming and combinatorial optimization, pp. 158-166. Springer (2007)
43. Fomin, F.V., Panolan, F., Ramanujan, M., Saurabh, S.: On the optimality of pseudo-polynomial algorithms for integer programming. Math. Programm. 198, 561-593 (2023)
44. Jansen, K., Rohwedder, L.: On integer programming and convolution. In: 10th Innovations in theoretical computer science conference (ITCS 2019) (2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
45. Lovász, L., Spencer, J., Vesztergombi, K.: Discrepancy of set-systems and matrices. Eur. J. Comb. 7(2), 151-160 (1986). https://doi.org/10.1016/S0195-6698(86)80041-5
46. Spencer, J.: Six standard deviations suffice. Trans. Am. Math. Soc. 289(2), 679-706 (1985). https://doi. org/10.1090/S0002-9947-1985-0784009-0
47. Beck, J., Fiala, T.: "Integer-making" theorems. Discret. Appl. Math. 3(1), 1-8 (1981)
48. Banaszczyk, W.: Balancing vectors and gaussian measures of n-dimensional convex bodies. Random Struct. Algorith. 12(4), 351-360 (1998)
49. Matoušek, J.: The determinant bound for discrepancy is almost tight. Proceed. Am. Math. Soci. 141(2), 451-460 (2013)
50. Jiang, H., Reis, V.: A tighter relation between hereditary discrepancy and determinant lower bound. In: Symposium on simplicity in algorithms (SOSA). SIAM, 308-313 (2022)
51. Eisenbrand, F., Weismantel, R.: Proximity results and faster algorithms for integer programming using the Steinitz lemma. ACM Trans. Algorith. 16(1), 1-4 (2019). https://doi.org/10.1145/3340322
52. Lee, J., Paat, J., Stallknecht, I., Xu, L.: Improving proximity bounds using sparsity. In: Baïou, M., Gendron, B., Günlük, O., Mahjoub, A.R. (eds.) Combinatorial optimization, pp. 115-127. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53262-8_10
53. Lee, J., Paat, J., Stallknecht, I., Xu, L.: Polynomial upper bounds on the number of differing columns of an integer program. (2021) arXiv preprint arXiv:2105.08160v2 [math.OC]
54. Averkov, G., Schymura, M.: On the maximal number of columns of δ-modular matrix. In: International conference on integer programming and combinatorial optimization, pp. 29-42, Springer (2022)
55. Koster, A.M., Zymolka, A.: Stable multi-sets. Math. Methods Oper. Res. 56(1), 45-65 (2002). https:// doi.org/10.1007/s001860200199
56. Arie, K., Adrian, Z.: Polyhedral investigations on stable multi-sets. Technical Report 03-10, ZIB, Takustr. 7:14195 Berlin (2003)
57. Koster, A.M., Zymolka, A.: On cycles and the stable multi-set polytope. Discret. Optim. 2(3), 241-255 (2005). https://doi.org/10.1016/j.disopt.2005.06.004
58. Fulkerson, D.R.: Blocking and anti-blocking pairs of polyhedra. Math. Program. 1(1), 168-194 (1971). https://doi.org/10.1007/BF01584085
59. Fulkerson, D.R.: Anti-blocking polyhedra. J. Comb. Theory, Series B 12(1), 50-71 (1972). https://doi. org/10.1016/0095-8956(72)90032-9
60. Grötschel, M., Lovász, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer, Berlin \& Heidelberg (2012)
61. Bredereck, R., Faliszewski, P., Niedermeier, R., Skowron, P., Talmon, N.: Elections with few candidates: Prices, weights, and covering problems. In: International conference on algorithmic decision theory, Springer, pp. 414-431 (2015). https://doi.org/10.1007/978-3-319-23114-3_25
62. Bredereck, R., Faliszewski, P., Niedermeier, R., Skowron, P., Talmon, N.: Mixed integer programming with convex/concave constraints: fixed-parameter tractability and applications to multicovering and voting. Theoret. Comput. Sci. 814, 86-105 (2020). https://doi.org/10.1016/j.tcs.2020.01.017
63. Gorgi, A., El Ouali, M., Srivastav, A., Hachimi, M.: Approximation algorithm for the multicovering problem. J. Comb. Optim. 41(2), 433-450 (2021). https://doi.org/10.1007/s10878-020-00688-9
64. Hua, Q.-S., Wang, Y., Yu, D., Lau, F.C.: Dynamic programming based algorithms for set multicover and multiset multicover problems. Theoret. Comput. Sci. 411(26-28), 2467-2474 (2010). https://doi.org/10. 1016/j.tcs.2010.02.016
65. Hua, Q.-S., Yu, D., Lau, F.C., Wang, Y.: Exact algorithms for set multicover and multiset multicover problems. In: International Symposium on Algorithms and Computation, Springer, pp. 34-44 (2009). https://doi.org/10.1007/978-3-642-10631-6_6
66. Knop, D., Kouteckỳ, M., Mnich, M.: Combinatorial n-fold integer programming and applications. Math. Program. 184(1), 1-34 (2020). https://doi.org/10.1007/s10107-019-01402-2
67. Alon, N., Yuster, R.: On a hypergraph matching problem. Graphs Combinat. 21(4), 377-384 (2005)
68. Keevash, P., Mycroft, R.: A geometric theory for hypergraph matching. American Mathematical Society, Rhode Island (2014)
69. Gavenčiak, T., Kouteckỳ, M., Knop, D.: Integer programming in parameterized complexity: five miniatures. Discret. Optim. (2020). https://doi.org/10.1016/j.disopt.2020.100596
70. Cohen, N., Nutov, Z.: Approximating minimum power edge-multi-covers. J. Comb. Optim. 30(3), 563578 (2015)
71. Grossman, J.W., Kulkarni, D.M., Schochetman, I.E.: On the minors of an incidence matrix and its smith normal form. Linear Algebra Appl. 218, 213-224 (1995). https://doi.org/10.1016/0024-3795(93)00173W
72. Storjohann, A.: Near optimal algorithms for computing Smith normal forms of integer matrices. In: Proceedings of the 1996 international symposium on symbolic and algebraic computation. ISSAC '96, pp. 267-274. Association for Computing Machinery, New York, NY, USA (1996). https://doi.org/10. 1145/236869.237084
73. Zhendong, W.: Computing the Smith forms of integer matrices and solving related problems. University of Delaware, Newark, DE (2005)
74. Lawrence, J.: Rational-function-valued valuations on polyhedra. Discrete and computational geometry (New Brunswick, NJ, 1989/1990) Vol. 6, pp. 199-208 (1991)
75. Pukhlikov, A.V., Khovanskii, A.G.: The riemann-roch theorem for integrals and sums of quasipolynomials on virtual polytopes (russian). Algebra i Analiz 4(4), 188-216 (1992)
76. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geometry 8(3), 295-313 (1992). https://doi.org/10.1007/BF02293050
77. Brion, M.: Points entiers dans les polyèdres convexes. Annales scientifiques de l'École Normale Supérieure 4e s'erie 21(4), 653-663 (1988). https://doi.org/10.24033/asens. 1572
78. Cook, W., Gerards, A.M.H., Schrijver, A., Tardos, E.: Sensitivity theorems in integer linear programming. Math. Program. 34(3), 251-261 (1986). https://doi.org/10.1007/BF01582230

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

[^0]: Dmitry Gribanov
 dimitry.gribanov@ gmail.com
 Ivan Shumilov
 ivan.a.shumilov@gmail.com
 Dmitry Malyshev
 dsmalyshev@rambler.ru
 Nikolai Zolotykh
 nikolai.zolotykh@itmm.unn.ru
 1 Laboratory of Algorithms and Technologies for Network Analysis, HSE University, 136 Rodionova Ulitsa, Nizhny Novgorod, Russian Federation 603093
 2 Lobachevsky State University of Nizhny Novgorod, 23 Gagarina Avenue, Nizhny Novgorod, Russian Federation 603950

 3 Mathematics of Future Technologies Center, Lobachevsky State University of Nizhni Novgorod, 23 Gagarina Avenue, Nizhny Novgorod, Russian Federation 603950

[^1]: ${ }^{1}$ The notation $\phi=\operatorname{size}(A, b, c)$ denotes the input bit-encoding length.

[^2]: ${ }^{2}$ For simplicity reasons, we assume that \mathcal{P} is bounded here. The unbounded case can be easily handled, see the proof of Theorem 3, e.g.

[^3]: ${ }^{3}$ Saying "integrally equivalent" we mean that the sets of integer solutions of both systems are connected by a bijective unimodular map.

[^4]: ${ }^{4}$ The words "modulo polyhedra with lines" mean that the sum can contain additional terms of the form $[\mathcal{M}]$, where \mathcal{M} is a polyhedron with lines.

