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Abstract
In our paper, we consider the following general problems: check feasibility, count the number
of feasible solutions, find an optimal solution, and count the number of optimal solutions in
P ∩Z

n , assuming thatP is a polyhedron, defined by systems Ax ≤ b or Ax = b, x ≥ 0 with
a sparse matrix A. We develop algorithms for these problems that outperform state-of-the-
art ILP and counting algorithms on sparse instances with bounded elements in terms of the
computational complexity.Assuming that thematrix A has bounded elements, our complexity
bounds have the form sO(n), where s is the minimum between numbers of non-zeroes in
columns and rows of A, respectively. For s = o

(
log n

)
, this bound outperforms the state-of-

the-art ILP feasibility complexity bound (log n)O(n), due to Reis & Rothvoss (in: 2023 IEEE
64th Annual symposium on foundations of computer science (FOCS), IEEE, pp. 974–988).
For s = φo(log n), where φ denotes the input bit-encoding length, it outperforms the state-of-
the-art ILP counting complexity bound φO(n log n), due to Barvinok et al. (in: Proceedings of
1993 IEEE 34th annual foundations of computer science, pp. 566–572, https://doi.org/10.
1109/SFCS.1993.366830, 1993), Dyer, Kannan (Math Oper Res 22(3):545–549, https://doi.
org/10.1287/moor.22.3.545, 1997), Barvinok, Pommersheim (Algebr Combin 38:91–147,
1999), Barvinok (in: European Mathematical Society, ETH-Zentrum, Zurich, 2008). We
use known and new methods to develop new exponential algorithms for Edge/Vertex Multi-
Packing/Multi-Cover Problems on graphs and hypergraphs. This framework consists ofmany
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different problems, such as the Stable Multi-set, Vertex Multi-cover, Dominating Multi-set,
Set Multi-cover,Multi-set Multi-cover, andHypergraphMulti-matching problems, which are
natural generalizations of the standard Stable Set, Vertex Cover, Dominating Set, Set Cover,
and Maximum Matching problems.

Keywords Integer linear programming · Counting problem · Parameterized complexity ·
Multipacking · Multicover · Stable set · Vertex cover · Dominating set · Multiset
multicover · Hypergraph matching · Sparse matrix

1 Introduction

Let a polyhedron P be defined by one of the following ways:

(i) System in the canonical form:

P = {x ∈ R
n : Ax ≤ b}, where A ∈ Z

m×n and b ∈ Q
m; (Canon-Form)

(ii) System in the standard form:

P = {x ∈ R
n≥0 : Ax = b}, where A ∈ Z

k×n and b ∈ Q
k . (Standard-Form)

If P is defined by a system in the form Standard-Form with an additional constraint x ≤ u,
for given u ∈ Z

n≥0, we call such a system as the system in the standard form with box
constraints. We consider the following problems:

Problem 1 (Feasibility)

Find a point x inside P ∩Z
n or declare that P ∩Z

n = ∅. (Feasibility-IP)

Problem 2 (Counting)

Compute the value of |P ∩Z
n |or declare that |P ∩Z

n | = +∞. (Count-IP)

Problem 3 (Optimization) Given c ∈ Z
n , compute some x∗ ∈ P ∩Z

n , such that

c	x∗ = max{c	x : x ∈ P ∩Z
n}. (Opt-IP)

Or declare that P ∩Z
n = ∅ or that the maximization problem is unbounded.

Problem 4 (Optimization and Counting) Given c ∈ Z
n , compute the number of x∗, such that

c	x∗ = max{c	x : x ∈ P ∩Z
n}, (Opt-And-Count-IP)

and find an example of x∗, if such exists. Or declare thatP ∩Z
n = ∅ or that the maximization

problem is unbounded.

In our work, we analyze these problems under the assumption that the matrix A is sparse.
To estimate the sparsity of A, it is convenient to use the maximum number of non-zero
elements in rows and columns of A:

rs(A) := max
i

‖Ai∗‖0 and cs(A) := max
j

‖A∗ j‖0.

here ‖x‖0 = |{i : xi �= 0}| denotes the number of non-zeros in a vector x and Ai∗, A∗ j denote
the i-th row and the j-th column of A, respectively. Additionally, we define the total sparsity
of A as the minimum of the above parameters:

ts(A) = min
{
rs(A), cs(A)

}
.
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For our purposes, we sometimes need to use slightly weaker parameters that estimate the
number of non-zero elements in non-degenerate square sub-matrices. The reason is that the
matrix A can have duplicate rows and columns in some problem definitions. We want to
avoid these multiplicities, estimating the sparsity of the matrices. For arbitrary A ∈ Z

m×n ,
we define

rs(A) := max{rs(B) : Bis non-degenerate sub-matrix of A},
cs(A) := max{cs(B) : Bis non-degenerate sub-matrix of A} and

ts(A) = min
{
rs(A), cs(A)

}
.

Clearly, the new sparsity parameters are more general than the standard rs(A) and cs(A):

ts(A) ≤ ts(A).

Other parameters that are useful in expressing our results and have some connections with
sparsity are matrix norms. We recall the definitions. The maximum absolute value of entries
of a matrix A (also known as the matrix max-norm) is denoted by ‖A‖max = maxi, j |Ai j |.
For a matrix A, by ‖A‖p we denote the matrix norm, induced by the l p vector norm. It is
known that

‖A‖1 = max
i

‖Ai∗‖1 = max
i

∑

j

|Ai j | and

‖A‖∞ = max
j

‖A∗ j‖1 = max
j

∑

i

|Ai j |.

Again, we need a similar definition of a norm with respect to non-degenerate sub-matrices
B of A:

γp(A) = max{‖B‖p : Bis a non-degenerate sub-matrix of A}.
Surprisingly, the maximum number of vertices in polyhedra defined by systems in the canon-
ical or the standard forms with a fixed A and varying b is also closely connected with sparsity
parameters of the matrix A (see Lemma 4). The corresponding matrix parameter is denoted
by ν(A):

ν(A) = max
b∈Qm

|vert(P(A, b)
)|, where

P(A, b) = {x ∈ R
n : Ax ≤ b} or P(A, b) = {x ∈ R

n≥0 : Ax = b}.
The last important matrix parameters that will be used in our paper are the values of matrix
sub-determinants. These parameters are related to sparsity via the Hadamard’s inequality.

Definition 1 For a matrix A ∈ Z
m×n , by

�k(A) = max {|det(AI J )| : I ⊆ {1, . . . ,m}, J ⊆ {1, . . . , n}, |I| = |J | = k} ,

we denote the maximum absolute value of determinants of all the k × k sub-matrices of A.
Here, the symbol AI J denotes the sub-matrix of A, which is generated by all the rows with
indices inI and all the columnswith indices inJ . Note that�1(A) = ‖A‖max. Themaximum
absolute value of sub-determinants of all orders is denoted by �tot (A), i.e. �tot (A) =
maxk �k(A). By �gcd(A, k), we denote the greatest common divisor of determinants of
all the k × k sub-matrices of A. Additionally, let �(A) = �rank(A)(A) and �gcd(A) =
�gcd(A, rank(A)). The matrix A with �(A) ≤ �, for some � > 0, is called �-modular.
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Due to the Hadamard’s inequality and since det(B) = det(B	) and ‖x‖2 ≤ ‖x‖1, for any
B ∈ R

n×n and x ∈ R
n , the following inequalities connect �k(A), the matrix norms, and

ts(A):

�k(A) ≤ min
{
γ1(A), γ∞(A)}k ≤ min

{‖A‖1, ‖A‖∞}k, (1)

�k(A) ≤ (‖A‖max
)k · ts(A)k/2 ≤ (‖A‖max

)k · ts(A)k/2. (2)

Denoting γ1,∞(A) = min
{
γ1(A), γ∞(A)}, the inequality (1) becomes

�k(A) ≤ γ1,∞(A)k . (3)

For the reader’s convenience, we have put all the notations used in our work into the
separate Table 1. Additionally, for the sake of simplicity, in the remainder of the paper we
will use the following short notations with respect to the definitions Canon-Form and Stan-
dard-Form: � := �(A), �i := �i (A), for i ∈ {1, . . . , n}, �tot := �tot (A), ν := ν(A),
�gcd := �gcd(A), γp := γp(A), for p ∈ {1, . . . ,+∞}, γ1,∞ := γ1,∞(A), rs := rs(A),
cs := cs(A), ts := ts(A).

2 Results on sparse ILP problems and the related work

2.1 General ILP problems

Very recently a major breakthrough has been achieved in the ILP complexity theory: based
on the works [1–3] due to Dadush, Peikert & Vempala and [4] due to Regev & Stephens-
Davidowitz, V. Reis and T. Rothvoss have proven in [5] that the problem Opt-IP can be
solved in log(n)O(n) · poly(φ)1-time beating the previous O(n)n · poly(φ)-time state-of-the-
art algorithm due to Dadush, Peikert & Vempala [1, 2]. Note that the complexity results of
the works [1, 2, 5] are valid for even more general IP problems, where one needs to optimize
a convex function defined by the subgradient oracle on a convex region defined by the strict
hyperplane separation oracle. Surprisingly, due to Basu & Oertel [6], the ILP complexity
in the oracle-model is 2O(n) · poly(φ). There exist some more general formulations of IP
problems that allow polynomial algorithms in fixed dimension, see for example [7–9]. It is
a long-standing open problem to provide a 2O(n) · poly(φ)-time ILP algorithm.

The asymptotically fastest algorithm for the problemCount-IP in a fixed dimension can be
obtained, using the approach of A. Barvinok [10] with modifications, due to Dyer & Kannan
[11] and Barvinok & Pommersheim [12]. A complete exposition of Barvinok’s approach
can be found in [12–16], additional discussions and connections with "dual"-type counting
algorithms could be found in the book [17], due to J. Lasserre. An important notion of the
half-open sign decomposition and other variants of Barvinok’s algorithm that ismore efficient
in practice is given by Köppe & Verdoolaege in [18]. The paper [14] of Barvinok & Woods
gives important generalizations of the original techniques and adapts them to a wider range of
problems to handle projections of polytopes. Using the fastest deterministic Shortest Lattice
Vector Problem (SVP) solver byMicciancio &Voulgaris [19], the computational complexity
of Barvinok’s algorithm can be upper bounded by

ν · 2O(n) · (
log2(�)

)n log(n)
. (4)

1 The notation φ = size(A, b, c) denotes the input bit-encoding length.

123



Journal of Global Optimization

Table 1 Global and specific notations

Notation Description

rs(A) Maximum number of non-zeroes in rows of A

rs(A) = maxi ‖Ai∗‖0
cs(A) Maximum number of non-zeroes in columns of A

rs(A) = max j ‖A∗ j‖0
ts(A) The total sparsity of A defined as

ts(A) = min
{
rs(A), cs(A)

}

rs(A) Maximum number of non-zeroes in rows of non-degenerate sub-matrices of A

rs(A) = max
{
rs(B) : Bis a non-degenerate sub-matrix ofA

}

cs(A) Maximum number of non-zeroes in columns of non-degenerate sub-matrices of A

cs(A) = max
{
cs(B) : Bis a non-degenerate sub-matrix ofA

}

ts(A) The total sparsity of A with respect to non-degenerate sub-matrices of A

defined as ts(A) = min
{
rs(A), cs(A)

}

γp(A) The maximum ‖ · ‖p-norm of non-degenerate sub-matrices of A

γp(A) = max{‖B‖p : Bis a non-degenerate sub-matrix ofA}
γ1,∞(A) γ1,∞(A) = min

{
γ1(A), γ∞(A)}

ν(A) The maximum number of vertices in polyhedra

with a fixed matrix A and a varying right-hand side b

ν(A) = max
b∈Qm

|vert(P(A, b)
)|, where

P(A, b) = {x ∈ R
n : Ax ≤ b} or P(A, b) = {x ∈ R

n≥0 : Ax = b}
�k (A) The maximum absolute value of k × k sub-determinants of A

�k (A) = max
{|det(AI J )| : I ⊆ {1, . . . ,m}, J ⊆ {1, . . . , n}, |I| = |J | = k

}

�(A) The maximum absolute value of rank-order sub-determinants of A

�(A) = �rank(A)(A)

�tot (A) The maximum absolute value of all sub-determinants of A

�tot (A) = maxk �k (A)

�gcd(A) The greatest common divisor of rank-order sub-determinants of A

φ The input bit-encoding length of a corresponding computational problem

disc(A) The discrepancy of A

disc(A) = min
z∈{−1/2, 1/2}n ‖Az‖∞

herdisc(A) The hereditary discrepancy of A

herdisc(A) = max
I⊂{1,...,n} disc(AI )

detlb(A) detlb(A) = maxt t√�t (A)

n The number of vertices in a corresponding hypergraph

i.e. n = |V|, for a hypergraphH = (V,E )

m The number of hyperedges in a corresponding hypergraph

i.e. m = |E |, for a hypergraphH = (V,E )

d The maximum vertex degree of a corresponding hypergraph

d = maxv∈V deg(v), for a hypergraphH = (V,E )
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Table 1 continued

Notation Description

where deg(v) counts only unique (non-parallel) edges that are incident to v

r The maximum hyperedge cardinality of a corresponding hypergraph

i.e. r = maxE∈E |E |, for a hypergraphH = (V,E )

�, �i , �tot , ν, �gcd, The short notations with respect to the corresponding matrix A

γp, γ1,∞, rs, cs, ts � := �(A), �i := �i (A), �tot := �tot (A)

ν := ν(A), �gcd := �gcd(A), γp := γp(A), γ1,∞ := γ1,∞(A)

rs := rs(A), cs := cs(A), ts := ts(A)

Here we can parameterize by ν, because any polyhedron can be transformed to an integer-
equivalent simple polyhedron, using a slight perturbation of the right-hand side vector b (see,
for example, Theorem 9, due to Megiddo & Chandrasekaran [20] and Remark 3). Let us
assume that P is defined by the form Canon-Form. Due to the seminal work of P. McMullen
[21], the number of vertices attains its maximum at the class of polytopes, which is dual
to the class of cyclic polytopes. Together with the formula from [22, Section 4.7] for the
number of facets of a cyclic polytope, it follows that the maximum number of vertices in an
n-dimensional polyhedron with m facets is bounded by

ξ(n,m) =
{

m
m−s

(m−s
s

)
, for n = 2s

2
(m−s−1

s

)
, for n = 2s + 1

= O
(m
n

)n/2
.

Therefore, ν ≤ ξ(n,m) and ν = O(m/n)n/2. Due to [23, Chapter 3.2, Theorem 3.2], we
have � = 2O(φ). Using the notation φ, the bound (4) becomes

O
(m
n

)n/2 · (
log2(�)

)n log(n) = O
(m
n

)n/2 · φn log(n), (5)

which gives a polynomial-time algorithm in a fixed dimension for the problem Count-IP.
The papers [24–27] deal with the parameter � to give pseudo-polynomial algorithms,

which will be more effective in a varying dimension. Recently, it was shown by Gribanov
and Malyshev in [25] that the Count-IP problem can be solved with an algorithm whose
computational complexity is polynomial in ν, n, and�. Unfortunately, the paper [25] contains
an inaccuracy, which makes its main conclusion incorrect. This inaccuracy was eliminated
in [28]. The main result of [28] (and [25]) is represented by the following

Theorem 1 (Gribanov, Shumilov & Malyshev [28]) Let P be a polytope,2 given by a system
in the standard or the canonical forms and d := dim(P). Then, the problem Count-IP can
be solved by a randomized algorithm with the expected arithmetic complexity bound

O
(
ν2 · d4 · �4 · log2(�)

)
.

We improve the last result in Theorem 2 of our paper, and it will be our main tool for sparse
problems. A fully self-contained proof of this theorem will be given in Sect. 5.3. Wherever it
will be necessary to refer to the original article with an inaccuracy, we will cite the full proof
of the relevant statement in Appendix.

2 For simplicity reasons, we assume that P is bounded here. The unbounded case can be easily handled, see
the proof of Theorem 3, e.g.
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Theorem 2 Under assumptions of Theorem 1, the problem Count-IP can be solved by a
randomized algorithm with the expected arithmetic complexity bound:

O
(
ν2 · d4 · �3).

Using Theorem 1 and different ways to estimate ν, the paper [25] gives new interesting
arithmetic complexity bounds for the Feasibility-IP and Count-IP problems. Let us present
them, taking into account the improvement made in the Theorem 2:

• The bound

O
(m
n

)n · n4 · �3

for systems in the form Canon-Form that is polynomial in m and �, for any fixed n.
In comparison with the bound (5), this bound has a much better dependence on n,
considering � as a parameter. For example, taking m = O(n) and � = 2O(n), the
above bound becomes 2O(n), which is even faster, than the state-of-the-art algorithm
for the problem Feasibility-IP, due to Reis & Rothvoss [5], with the complexity bound
log(n)O(n) · poly(φ);

• The general bound, for systems in the canonical or the standard forms,

O(n)4+n · �3+2n

that is polynomial on �, for any fixed n;
• The bound

O
(
n/k

)2k · n4 · �3 (6)

for systems in the formStandard-Form,which is also valid for systems in the formCanon–
Form with k = m − n, that is polynomial on n and �, for k = O(1). Taking k = 1,
it gives an O

(
n6 · �3

)
-algorithm to compute the number of integer points in a simplex.

The last result can be used to count solutions of the Unbounded Subset-Sum problem,
which is formulated as follows. Given numbers w1, . . . , wn and W , we need to count
the number of ways to exchange the valueW by the values wi , assuming that each value
wi can be used unlimitedly. It can be done by algorithms with the arithmetic complexity
bound

O(n6 · w3
max).

Moreover, this result can be used to handle the k-dimensional variant of the Unbounded
Subset-Sumproblem,when the costswi andW are represented by k-dimensional vectors.
Using the Hadamard’s bound, it gives the following arithmetic complexity bound:

O(n)2(k+2) · k−k/2 · w3k
max,

where wmax = maxi ‖wi‖∞. Note that the earlier paper of Lasserre & Zeron [29] also
gives a counting FPT-algorithm for the Unbounded Subset-Sum problem, parameterized
by wmax, but an exact complexity bound was not given.

In the current work, we try to estimate the value of ν in a different way, to handle ILP
problems with sparse matrices. Additionally, we generalize Theorem 2 to work with the
problem Opt-And-Count-IP. The resulting theorem is the following:

123



Journal of Global Optimization

Table 2 The complexity bounds for the problems Feasibility-IP, Count-IP, Opt-IP, and Opt-And-Count-IP in
the form Canon-Form

Problems Timea References

Feasibility-IP and Opt-IP log(n)O(n) Reis & Rothvoss [5]

Count-IP O
(
m/n

)n/2 · φn log(n) Barvinok et al. [10–12]

Feasibility-IP and Count-IP
(
γ1,∞

)5n · 4n This work
(‖A‖max

)5n · ts(A)3.5n · 4n
Opt-And-Count-IP

(
γ1,∞

)7n · (‖c‖∞
)3 · 24n This work

(‖A‖max
)7n · (‖c‖∞

)3 · (
ts

)5.5n · 24n
aThe multiplicative factor poly(φ) is skipped

Theorem 3 Let P be a polyhedron, defined by the system in Canon-Form. Then, the prob-
lems Feasibility-IP and Count-IP can be solved by an algorithm, whose complexity can be
estimated by the following formulas

(
γ1,∞

)5n · 4n · poly(φ),
(‖A‖max

)5n · (
ts

)3.5n · 4n · poly(φ).

The problem Opt-And-Count-IP can be solved by an algorithm, whose complexity can be
estimated by the following formulas (under the assumption that c �= 0)

(
γ1,∞

)7n · (‖c‖∞
)3 · 24n · poly(φ),

(‖A‖max
)7n · (‖c‖∞

)3 · (
ts

)5.5n · 24n · poly(φ).

The theorem’s proof is given in Sect. 5.5. This new complexity bounds, applied to the prob-
lems in the formCanon-Form, are emphasized in Table 2.As the reader could see,with respect
to the problem Feasibility-IP, under the assumptions γ1,∞ ≤ logε(n) or ‖A‖max ≤ logε(n)

and ts ≤ logε(n), for some ε > 0, our complexity bounds outperform the state-of-the-
art complexity bound log(n)O(n) · poly(φ). With respect to the problem Count-IP, under
the assumption ‖A‖max = no(log(n)), our complexity bounds outperform the state-of-the-art
complexity bound O(m/n)n/2 · φn log(n).

The following corollary, which is a straightforward consequence of Theorem 3, shows
that, under some assumptions, the Count-IP and Opt-And-Count-IP problems can be solved
by a faster algorithm than the complexity bound (5) gives.

Corollary 1 In the notation of Theorem 3, assuming that ‖A‖max = nO(1) and ‖c‖∞ =
nO(n), the problems Count-IP and Opt-And-Count-IP can be solved by algorithms with the
complexity bound nO(n) · poly(φ).

2.1.1 About our method

The current paper continues the series of works [25, 27, 28], which are aimed to present
efficient pseudopolynomial algorithms for the problems Count-IP and Opt-And-Count-IP,
based on using rational generating functions together with the seminal Brion’s theorem. As
it was already mentioned, this approach was used by Barvinok in his seminal work [10] to
present the first polynomial-time in a fixed dimension algorithm for the problems Count-IP
and Opt-And-Count-IP.
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The most important feature of a new approach, introduced in [25, 28], is that we do not
compute the rational generating function of the set P ∩Z

n . Instead of doing this, we directly
compute a compact generating function of the exponential series f(P; τ) = ∑

z∈P ∩Zn
e〈c,z〉

that depends only on a single variable τ . The exponential generating function can be obtained
from the original rational generating function, substituting xi = eci τ , for some c ∈ R

n . The
new function forgets the structure of the set P ∩Z

d , but it is still useful for counting. For
example, two monomials x11 x

2
2 and x21 x

1
2 glue to one exponential term 2e3τ after the map

xi = eci τ with c = (1, 1)	. Our method to compute f(P; τ) is based on the Brion’s theorem
and a novel dynamic programming technique that processes tangent cones ofP . The dynamic
programming table is indexed by the dimensionality of the subproblems and the elements of
the Gomory group associated with a corresponding tangent cone.

Let us discuss a secondary part of a newmethod thatmay also have an independent interest.
For a given set A of m non-zero vectors in Q

n , let us consider the problem to compute a
vector z ∈ Z

n , such that a	z �= 0, for all a ∈ A. Preferably, the value of ‖z‖∞ should be as
small as possible. Due to the original work of A. Barvinok [10], the vector z could be found
by a polynomial-time algorithm as a point on the moment curve. The paper [18] of Köppe
& Verdoolaege gives an alternative method, based on "irrational decompositions" from the
work [30] of Köppe. These polynomial-time methods can generate z with the only guaranty
‖z‖∞ ≤ Mn , for some constant M ≥ m. However, due to De Loera, Hemmecke, Tauzer &
Yoshida [31], the vector z with sufficiently small components can be effectively chosen by a
randomized algorithm. Unfortunately, the paper [31] does not give exact theoretical bounds
that are needed to develop pseudopolynomial algorithms. In turn, the paper [28] presents a
new and very simple randomized polynomial-time algorithm that generates the desired vector
z with ‖z‖∞ ≤ |A|. The precise description of this fact is emphasized in Theorem 10.

Compared to the previous papers [25, 28] in the series, the current paper gives a more
efficient dynamic programming computational scheme. Additionally, we give a new bound
on the number of vertices of a rational polyhedron that is helpful to prove our complexity
bounds and can have an independent interest.

2.1.2 Other related work on sparse and1-modular ILPs

Due to Kratsch [32], the sparse ILP problems attain a polynomial kernalization with respect
to the parameter n+u, where u is the maximum variable range. More precisely, it was shown
that any ILP can be reduced to an equivalent ILP with O(ur · nr ) variables and constraints
with the coefficients bit-encoding length O(log(nu)), where r := rs(A). On the contrary,
if the range u is unbounded, then r -row-sparse ILP problems do not admit a polynomial
kernelization unless N P ⊆ coN P/poly.

There are many other interesting works about the ILP’s complexity with respect to the
parameter �. Since a good survey is given in the work [26], we mention only the most
remarkable results. The first paper that discovers fundamental properties of the bimodular
ILP problem (� = 2) is [33], due to Veselov & Chirkov. Using results of [33], a strong
polynomial-time solvability of the bimodular ILP problem was proved by Artmann, Weis-
mantel & Zenklusen in [34]. Unfortunately, not much is known for � ≥ 3. Very recently, it
was shown by Fiorini, Joret, Weltge & Yuditsky in [35] that the ILP problem is polynomial-
time solvable, for any fixed�, if the matrix A has at most 2 non-zeros per row or per column.
Previously, a weaker result, based on the same reduction, was known, due to Alekseev &
Zakharova [36]. It states that any ILPwith a {0, 1}-matrix A, which has at most two non-zeros

per row and a fixed value of �
(1	
A

)
, can be solved by a linear-time algorithm.
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Additionally, we note that, due to Bock, Faenza, Moldenhauer & Ruiz-Vargas [37], there
are no polynomial-time algorithms for the ILP problems with � = 	(nε), for any ε > 0,
unless the ETH (the Exponential Time Hypothesis) is false. The last fact is the reason why
we need to use both parameters ν and �. Due to [37], the complexity bound poly(�, φ) is
unlikely to exist, while the bound poly(ν,�, φ) is presented in Theorem 2, which is used in
Theorem 3 to develop efficient algorithms for sparse problems.

2.2 ILP problems with a bounded co-dimension

In this subsection, we consider ILP problems in the form Standard-Form. Since in our defi-
nition k = rank(A), it is essential to call the parameter k as the co-dimension of P . We are
interested in the complexity bounds for bounded values of k. Let us survey some remarkable
results. The following result, due to Gribanov et al. [26, see Theorem 8 and Corollary 9],
gives a parameterization by k and �.

Theorem 4 (Gribanov et al. [26]) Assume that some k × k non-degenerate sub-matrix B of
A is given and η = �/|det(B)|. Then, the problem Opt-IP can be solved by an algorithm
with the arithmetic complexity bound

O(k)k+1 · η2k · �2 · log(�gcd) · log(k · �).

As it was noted in [26], due to [38], we can assume that η = O(log(k))k , and the previous
complexity bound becomes

O
(
log(k)

)2k2 · kk+1 · �2 · log(�gcd) · log(k · �).

For the case when A only has non-negative elements, the basic dynamic-programming
scheme from [39] can be used to derive an algorithm, parameterized by ‖b‖∞ and k. Using
fast (min,+)-convolution algorithms (see, for example, [40] or [41]), the same complexity
bound can be used for systems in the Standard-Form formwith box constraints.We emphasize
it in the following statement:

Proposition 1 The problem Opt-IP in the form Standard-Form with box constraints can be
solved by an algorithm with the arithmetic complexity bound

O
(
n · (‖b‖∞ + 1

)k)
.

Due to the works [42] and [43] of Cunningham & Geelen and Fomin et al., the parameter k
in the term

(‖b‖∞ + 1
)k can be replaced by stronger parameters 2ω or ρ + 1, where ω is the

branch-width and ρ is the path-width of the column matroid of A.
The approach, which is most important for us in this Subsection, is based on the notion

of the hereditary discrepancy of A.

Definition 2 For a matrix A ∈ R
k×n , its discrepancy and its hereditary discrepancy are

defined by the formulas

disc(A) = min
z∈{−1/2, 1/2}n ‖Az‖∞ ,

herdisc(A) = max
I⊂{1,...,n} disc(A∗I).

The paper [44], due to Jansen and Rohwedder, gives a powerful ILP algorithm, parameterized
by herdisc(A) and k, which will be our second main tool.
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Theorem 5 (Jansen & Rohwedder [44]) Let H = herdisc(A) and assume that there exists
an optimal solution x∗ of the problem Opt-IP with ‖x∗‖1 ≤ K. Then, the problem Opt-IP
can be solved by an algorithm with the complexity bound

O(H)2k · log(K ).

Different bounds on herdisc(A) can be used to develop different complexity bounds for ILP
problems. Due to the works [45] and [46] of Lovász, Spencer, & Vesztergombi, and Spencer,
it is known that

herdisc(A) ≤ 2 disc(A) ≤ ηk · ‖A‖max, where ηk ≤ 12 · √
k. (7)

Due to Beck and Fiala [47], the value of herdisc(A) is bounded by the l1-norm of columns.
More precisely,

herdisc(A) < ‖A‖∞. (8)

Additionally, Beck and Fiala conjectured that herdisc(A) = O
(√‖A‖∞

)
and settling this has

been an elusive open problem. The best known result in this direction is due to Banaszczyk
[48]:

herdisc(A) = O
(√‖A‖∞ · log(n)

)
. (9)

The important matrix characteristic that is closely related to herdisc(A) is detlb(A). Due to
Lovász, Spencer, & Vesztergombi [45], it can be defined as follows:

detlb(A) = max
t∈{1,...,k}

t
√

�t (A),

and it was shown in [45] that herdisc(A) ≥ (1/2) · detlb(A). Matoušek in [49] showed that
detlb(A) can be used to produce tight upper bounds on herdisc(A). The result of Matoušek
was improved by Jiang & Reis in [50]:

herdisc(A) = O
(
detlb(A) · √

log(k) · log(n)
)
. (10)

Next, let us consider the problemsCount-IP andOpt-And-Count-IP.Clearly, the number of
vertices in a polyhedron, defined by a system in the Canon-Form, can be estimated by

(n
k

) =
O(n/k)k . The last fact in combination with Theorem 2 results in the following corollary,
which gives a parameterization by � and k.

Corollary 2 Assume that P is bounded, then the problem Count-IP can be solved by an
algorithm with the arithmetic complexity bound O(n/k)2k · (n − k)4 · �3.

Remark 1 Note that if we already know an optimal solution x∗ of the problem Opt-IP, we
can solve the problem Opt-And-Count-IP, using Corollary 2 just by adding the equality
c	x = c	x∗ to the problem’s definition. Clearly, the resulting arithmetic complexity bound
is

O(n/k)2(k+1) · (n − k)4 · (‖c‖∞
)3 · �3. (11)

The next theorem considers the ILP problems in the standard form with sparse A. In this
theorem, we just summarize the combinations of Theorem 5 with the different bounds on
herdisc(A). Additionally, we use Corollary 2 to solve the counting-type problems. Note that
the 5-th complexity bound of the next theorem has already been proven in [44], we put it
here for the sake of completeness.
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Theorem 6 Let P be a polyhedron, defined by the form Standard-Form. The problems Fea-
sibility-IP and Opt-IP can be solved by algorithms with the following complexity bounds:

1. O
(
γ∞

)2k = O
(‖A‖max

)2k · (
cs

)2k
,

2. O
(
γ∞

)k · 2k·log log(n) = O
(‖A‖max

)k · (
cs

)k · 2k·log log(n),

3. O
(
γ1

)2k · 2k·log(log(k)·log(n)),

4. O
(‖A‖max

)2k · (
rs

)k · 2k·log
(
log(k)·log(n)

)
,

5. O
(‖A‖max

)2k · kk .
The problem Count-IP can be solved by algorithms with the following complexity bounds:

6. O(n/k)2k · (
γ1,∞

)3k
,

7. O(n/k)2k · (‖A‖max
)3k · (

ts
)1.5k

.

The problemOpt-And-Count-IP can be solved by the same algorithmwith the cost of an addi-
tional multiplicative term

(‖c‖∞
)3

in the complexity bound. Everywhere in the complexity
bounds, we skip the poly(φ) multiplicative term.

Proof Due to Theorem 5, the problems Feasibility-IP andOpt-IP can be solved by algorithms
with the arithmetic complexity bound O(H)2k · log(K ), where H = herdisc(A) and K =
‖x∗‖1, for any optimal solution x∗. It is known that the problem has an optimal solution x∗
with si ze(x∗) = poly(φ), so log(K ) = poly(φ).

Now, the 1-st bound follows from the inequality (8). The 2-nd bound follows from the
inequality (9). To establish the 3-rd and the 4-th bounds, we use the equality (10). Due to the
inequalities (2) and (3), we clearly have detlb(A) ≤ ‖A‖max ·√rs, and detlb(A) ≤ ‖A‖1.
Putting these bounds to (10), it gives the 3-rd and the 4-th complexity bounds. The 5-th
complexity bound directly follows from the inequality (7).

Now, let us consider the problems Count-IP and Opt-And-Count-IP. The 6-th and 7-
th complexity bounds straightforwardly follow from the bounds (3), (2) respectively and
Corollary 2. To satisfy its prerequisites, P needs to be bounded. If P is unbounded, then we
can check that |P ∩Z

n | = 0, using the algorithm for the problem Feasibility-IP. As it was
alreadymentioned, its complexity can be estimated by O

(‖A‖max
)2k ·kk , which has no effect

on the desired bound. In the opposite case, we have |P ∩Z
n | = +∞. So, we can assume that

P is bounded, and the result is true. Note additionally that, if P ∩Z
n �= ∅, then we can use

the same algorithm for the problem Feasibility-IP to find some x ∈ P ∩Z
n . Finally, using

the same reasoning, the complexity bounds for the problem Opt-And-Count-IP just follows
from Corollary 2 and its Remark 1. ��

2.3 ILP problems in the form Standard-Formwith box-constraints

Finally, beforewewill finish the current section, let us consider ILPproblems in the formStan-
dard-Form with box constraints. Using the basic dynamic programming scheme from [51],
combined with a linear-time algorithm for the (min,+)-convolution (see, for example, [26,
Theorem 7], [40] or [41]), it is easy to prove the following proposition.

Proposition 2 The problem Opt-IP in the form Standard-Form with box constraints can be
solved by an algorithm with the arithmetic complexity bound

O(χ + k)k · (‖A‖max
)k

,

123



Journal of Global Optimization

where χ is a value of the l1-proximity bound. That is

χ = max
x∗ min

z∗
‖x∗ − z∗‖1,

where x∗ and z∗ areoptimal solutions of theLPrelaxationandof the original ILP, respectively.

Different bounds on χ give different algorithms, based on Proposition 2. The paper [51] of
Eisenbrand &Weismantel gives χ ≤ k · (2k · ‖A‖max +1

)k . The paper [52], due to Lee, Paat
et al., gives χ ≤ (2k + 1)k · �. Recent result of Lee, Paat et al. [53] states that

χ ≤ k · (k + 1)2 · �3 + (k + 1) · � = O(k3 · �3).

The dependence on � in the last bound can be reduced by Averkov & Schymura [54]

χ = O(k5 · �2). (12)

Using Proposition 2 with the bound (12), we see that the ILP in the form Standard-Form with
box constraints can be solved by an algorithm with the arithmetic complexity bound

(‖A‖max
)k · O(�)2k · k5k .

Using the inequalities (3) and (2), the last bound transforms to the bounds

O(k)5k · (γ1,∞)2k
2 = O(γ1,∞)2k

2+O(k log(k)),

O(k)5k · (‖A‖max
)2k2+k · (

ts
)k2 = (‖A‖max

)2k2+k · (
ts

)k2+O(k log(k))
. (13)

In Table 3, we summarize all the facts, mentioned in the current subsection. The complexity
bounds for the problems Feasibility-IP, Opt-IP, Count-IP, Opt-And-Count-IP without box
constraints are taken from Theorem 6 and Remark 1. To handle the problems with box
constraints, we just take the complexity bound (13). We also mention that the existence of
algorithms for the problems Count-IP and Opt-And-Count-IP in the form Standard-Form
with box constraints, parameterized by k and polynomial by n, is open, and it is a good
direction for further research.

3 Applications: the vertex/edgemulti-packing andmulti-cover
problems on graphs and hypergraphs

To define a hypergraph, we will often use the notation H = (V, E ), where V is the set of
vertices, represented by an arbitrary finite set, and E ⊆ 2V is a set of hyperedges. To denote
a single vertex and a single hyperedge of H, we will use the symbols v ∈ V and E ∈ E .
Additionally, we denote n = |V|, m = |E |, d = maxv∈V deg(v), and r = maxE∈E |E|.
In other words, the symbols n, m, d, and r denote the number of vertices, the number of
hyperedges, the maximum vertex degree, and the maximum edge cardinality, respectively.
We use this notation to avoid ambiguity with the notation n, m, and d from the subsections,
considering ILP problems.

In some problem formulations, we need to deal with hypergraphs H = (V, E ) having
parallel hyperedges. That is, E is a multi-set of sets E ∈ 2V . In this case, by deg(v)we denote
the number of unique hyperedges that are incident to v, and d denotes the maximum vertex
degree with respect to unique hyperedges.

In our work, we consider two types of combinatorial multi-packing/multi-cover problems:
vertex-based problems and edge-based problems. In vertex-based problems, we need to pack
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Table 3 New complexity bounds for ILP problems in the form Standard-Form

Problems Timea

Opt-IP without mult O(γ∞)2k = O
(‖A‖max

)2k · (
cs

)2k

O(γ∞)k · 2k·log log(n) = O
(‖A‖max

)k · (
cs

)k · 2k·log log(n)

O(γ1)
2k · 2k·log

(
log(k)·log(n)

)

O
(‖A‖max

)2k · (
rs

)k · 2k·log
(
log(k)·log(n)

)

O
(‖A‖max

)k · kk , due to Jansen & Rohwedder [44]

Count-IP without mult. b O(n/k)2k · (
γ1,∞

)3k

O(n/k)2k · O(‖A‖max
)3k · (

ts
)1.5k

Opt-IP with mult O
(
γ1,∞

)2k2+O(k log k)

O
(‖A‖max

)2k2+k · (
ts

)k2+O(k log k)

Count-IP with mult open problem

aThe multiplicative factor poly(φ) is skipped
bTo solve the problem Opt-And-Count-IP, we need to pay an additional multiplicative factor

(‖c‖∞
)3

vertices into hyperedges or to cover the hyperedges by vertices. In edge-based problems, we
need to pack hyperedges or to cover vertices by hyperedges. The word "multi" means that we
can choose amulti-set of vertices or edges to satisfy cover constraints or to not violate packing
constraints. Before we give formal definitions, we present a few examples. The Stable Multi-
set problem, which was introduced by Koster and Zymolka in [55] as a natural generalization
of the standard Stable Set problem, is an example of a vertex-based multi-packing problem.
Similarly, the Vertex Multi-cover problem, which is a natural generalization of the standard
Vertex Cover problem, is an example of a vertex-basedmulti-cover problem. Some properties
of the Stable Multi-set problem polyhedron were investigated in [56, 57], which had given
a way to construct effective branch & bound algorithms for this problem. We cannot find a
reference to the paper that introduces the Vertex Multi-cover problem, but this problem can
be interpreted as a blocking problem for the Stable Multi-set problem (introduction to the
theory of blocking and anti-blocking can be found in [58, 59], see also [60, p. 225]).

The examples of edge-based problems are the Set Multi-cover,Multi-set Multi-cover, and
Hypergraph Multi-matching problems. The Set Multi-cover problem is a natural generaliza-
tion of the classic Set Cover problem, where we need to choose a multi-set of hyperedges
to cover the vertices by a given number of times. In the Multi-Set Multi-Cover problem, the
input hypergraph H can have parallel hyperedges. This problem has received quite a lot of
attention in the recent papers [61–66]. An exact O

(
(cmax + 1)n · m)

arithmetic complexity
algorithm for the Multi-Set Multi-Cover problem, parameterized by n and the maximum
coverage constraint number cmax, is given by Hua, Wang, Yu & Lau in [64, 65]. A dou-
ble exponential 22

O(n logn) · poly(φ)-complexity FPT-algorithm, parameterized by n, is given
in Bredereck et al. [61]. The last algorithm was improved to a nO(n2) ·poly(φ)-complexity
algorithm by Knop, Kouteckỳ &Mnich in [66]. A polynomial-time approximation algorithm
can be found in Gorgi et al. [63]. The Hypergraph Multi-matching problem is a very natural
generalization of the Hypergraph Matching problem (see, for example, [67, 68]), which in
turn is a generalization of the standard Maximum Matching problem in simple graphs. We
cannot find a reference to the paper that formally introduces the Hypergraph Multi-matching
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problem, but, again, this problem can be interpreted as a blocking problem for the Multi-set
Multi-cover problem. The papers [62, 69] give good surveys and contain new ideas to use
the ILP theory in combinatorial optimization setting.

Now, let us give some formal definitions. The vertex-based multi-packing/multi-cover
problems can easily be modeled, using the following template problem:

Problem 5 (Hypergraph Vertex-Based Multi-packing/Multi-cover) Let H = (V, E ) be a
hypergraph. Given numbers cE , pE ∈ Z≥0, for E ∈ E , compute a multi-subset of V , repre-
sented by natural numbers xv , for v ∈ V , such that

(i) cE ≤ x(E) ≤ pE , for any E ∈ E ;
(ii) x(V) is maximized or minimized.

Here, x(M) = ∑
v∈M xv , for any M ⊆ V . In other words, we need to solve the following

ILP:

max
{
1	 x

}
or min

{
1	 x

}
(Vertex-Based-ILP)

{
c ≤ A(H)	x ≤ p

x ∈ Z
V≥0,

where A(H) denotes the vertex-hyperedge incidence matrix of H, and the vectors c and p
are composed of the values pE and cE , respectively. It is natural to think that H does not
contain parallel hyperedges, because the multiple edge-constraints can easily be replaced by
a stronger one.

If cE = −∞, for all E ∈ E , and x(V) is maximized, it can be considered as the Stable
Multi-set Problem on Hypergraphs, when we need to find a multi-set of vertices of the
maximum size, such that each hyperedge E ∈ E is triggered at most pE times. Similarly,
if pE = +∞, for all E ∈ E , and x(V) is minimized, it can be considered as the Vertex
Multi-cover Problem on Hypergraphs, when we need to find a multi-set of vertices of the
minimum size, such that each hyperedge E ∈ E is triggered at least cE times.

For the case, whenH is a simple graph, these problems can be considered as very natural
generalizations of the classical Stable Set and Vertex Cover problems. Following [55], the
first one is called the Stable Multi-set Problem. As it was previously discussed, it is natural
to call the second problem as the Vertex Multi-cover Problem.

Definition 3 Given numbers uv ∈ Z≥0, for v ∈ V , we can add additional constraints xv ≤ uv

to any of the problems above. We call such a problem as a problem with multiplicities.
Similarly, given wv ∈ Z, for v ∈ V , we can consider the objective function

∑
v∈V wvxv

instead of x(V) = ∑
v∈V xv . We call such a problem as a weighted problem. The maximum

weight is denoted by wmax = maxv∈V |wv|.
Similarly, the edge-based multi-packing/multi-cover problems can be modeled using the
following template problem:

Problem 6 (Hypergraph Edge-Based Multi-packing/Multi-cover) Let H = (V, E ) be a
hypergraph. Given numbers cv, pv ∈ Z≥0, for v ∈ V , compute a multi-subset of E , rep-
resented by the natural numbers xE , for E ∈ E , such that

(i) cv ≤ x
(
δ(v)

) ≤ pv , for any v ∈ V;
(ii) x(E ) is maximized or minimized.

Here, x(M ) = ∑
E∈M xE , for any M ⊆ E , and δ(v) = {E ∈ E : v ∈ E} denotes the set of

hyperedges that are incident to the vertex v.
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The problem can be represented by the following ILP:

max
{
1	 x

}
or min

{
1	 x

}
(Edge-Based-ILP)

{
c ≤ A(H)x ≤ p

x ∈ Z
E≥0,

where the vectors c, p are composed of the values cv and pv . Again, it is natural to think that
H does not contain parallel hyperedges, because the multiple edge-variables can be easily
glued to one variable.

If cv = −∞, for all v ∈ V , and x(E ) is maximized, it can be considered as theHypergraph
Multi-matching problem, when we need to find a multi-set of hyperedges of the maximum
size, such that each vertex v ∈ V is triggered at most pv times. Similarly, if pv = +∞, for
all v ∈ V , and x(E ) is minimized, it can be considered as the Set Multi-cover problem, when
we need to find a multi-set of hyper-edges of the minimum size, such that each vertex v ∈ V
is triggered at least cv times.

For the case, whenH is a simple graph, these problems can be considered as very natural
generalizations of the classical Matching and Edge Cover problems. It seems natural to
call these problems as the Maximum Multi-matching and Edge Multi-cover problems. The
definition of the Edge Multi-cover problem can be found, for example, in the work [70], due
to Cohen and Nutov. For the Maximum Multi-matching problem, we did not find a correct
reference.

Similarly, we can introduce the Dominating Multi-set Problem on simple graphs, which
is a natural generalization of the classicalDominating Set problem. In this problem, we need
to find a multi-set of vertices of the minimal size, such that all the vertices of a given graph
will be covered given number of times by neighbors of the constructed vertex multi-set.
The Dominating Multi-set Problem can be straightforwardly reduced to the Set Multi-cover
Problem. To do that, we just need to construct the set systemH = (V, E ), where V coincides
with the set of vertices of a given graph, and E is constituted by neighbors of its vertices.

Definition 4 By analogy with Definition 3, we introduce the weighted variants and vari-
ants with multiplicities for the all edge-based multi-packing/multi-cover problems discussed
above. Note that the presence of parallel edges for these problems is not redundant andmakes
the corresponding problemmore general. The weighted SetMulti-cover with multiplicities is
known in literature as theWeightedMulti-setMulti-cover problem, see, for example, [64–66].

Let us explain our motivation with respect to the specified combinatorial problems. The
classical Stable Set and Vertex Cover Problems on graphs and hypergraphs admit trivial
2O(n) · poly(φ)-complexity algorithms. However, the Stable Multi-set and Vertex Multi-
cover Problems do not admit such a trivial algorithm. But, both problems can be modeled
as the ILP problem (Edge-Based-ILP) with n variables. Consequently, both problems can be
solved by the previously mentioned log(n)O(n) · poly(φ)-complexity general ILP algorithm.
Here φ = size(c, p, w, u).

Is it possible to give a faster algorithm? Is it possible to give a positive answer to this ques-
tion, considering a more complex variant with multiplicities? We show that these problems
on hypergraphs can be solved by a min{d, r}O(n) · poly(φ)-complexity algorithm. Conse-
quently, the Stable Multi-set and Vertex Multi-cover Problems on simple graphs can be
solved by 2O(n) · poly(φ)-complexity algorithms. Our complexity results for these prob-
lems, together with the Multi-set Multi-cover, Hypergraph Multi-matching, and Dominating
Multi-set problems, are gathered in Theorem 7.
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Theorem 7 Let us consider the Opt-And-Count-IP-variants of the problems Stable Multi-set,
Vertex Multi-cover, Set Multi-cover, Hypergraph Multi-matching, and Dominating Multi-
set with multiplicities (also known as the Multi-set Multi-cover problem). The following
complexity bounds hold:

Problems Time

Stable Multi-set and Vertex Multi-cover on hypergraps min{d, r}5.5n · 24n
Stable Multi-set and Vertex Multi-cover on simple graphs 29n

Dominating Multi-set d5.5n · 24n
Set Multi-cover and Hypergraph Multi-matching min{d, r}5.5m · 24m

The complexity bounds for the weighted variants of the considered problems contain an addi-
tional multiplicative term w3

max. Everywhere in the complexity bounds, we skip the poly(φ)

multiplicative term.

Proof To prove the theorem, we use Theorem 3 for the problems’ definitions: 5, 6, 3 and 4.
This approach gives us the desired complexity bounds for all the problems, except for the
Stable Multiset and Vertex Multicover problems on simple graphs. For these exceptions, we
will give a more refined analysis.

We follow the proof of Theorem 3, using a more refined bound for �n−1 and �n, where
A := A(G) be the incidence matrix of the corresponding simple graph G. Due to Grossman,
Kulkarni & Schochetman [71], the absolute values of sub-determinants of a simple graph
incidence matrix can be bounded in terms of the odd tulgeity of G. More precisely,�i ≤ 2τ0 ,
where τ0 = τ0(G) is the odd tulgeity of G, which is defined as the maximum number of
vertex-disjoint odd cycles of G. Clearly, τ0 ≤ n /3, so,

max
{
�n−1,�n

} ≤ 2n /3.

Using this bound in the proof of Theorem 3, it gives the desired complexity bounds for the
Stable Multiset and Vertex Multicover Problems. ��

3.1 Themulti-set multi-cover and hypergraphmulti-matching problems
parameterized by the number of vertices n

In Theorem 7, we have presented min{d, r}5.5m · 24m · poly(φ)-complexity algorithms for
the Opt-And-Count-IP-variant of the Set Multi-cover and Hypergraph Multi-matching prob-
lems with multiplicities. Due to Knop, Kouteckỳ &Mnich [66], the weighted Opt-IP-variants
of these problems admit an nO(n2) · poly(φ)-complexity algorithm, which is faster than our
algorithm for m = 	(n2+ε) and any ε > 0. In other words, our last complexity bound is
good only for sufficiently sparse hypergraphs.

So, the motivation of this subsection is to present faster algorithms for the Opt-And–
Count-IP- and Opt-IP-variants of the weighted Multi-set Multi-cover and Hypergraph
Multi-matching problems with and without multiplicities, parameterized by n instead of
m. Our results for these problems are gathered in Table 4.

Remark 2 Let us have a little discussion about the complexity bounds, presented in Table 4.
Firstly, let us consider the problems without multiplicities. As the reader can see, for fixed r,

123



Journal of Global Optimization

Table 4 New complexity bounds for the Set Multi-cover and Hypergraph Multi-matching problems

Version Timea

Opt-IP, without multiplicities O(r)2n

O(r)n · 2n · log(r log(n))

O(d)n · 2n · log(log(dn) log(n))

O(n)n

Opt-And-Count-IP, without multiplicities min{r, d}1.5n · O(m / n)2n · w3
max

r1.5n · O(n)2 r n+O(r) · w3
max

O(d)3.5n · w3
max

4n
2 +O(n) · w3

max

Opt-IP, with multiplicities O(min{d, r})n2 +O(n logn)

Opt-And-Count-IP, with multiplicities open problem

aThe multiplicative factor poly(φ) is skipped

the weighted Opt-IP-variant of the considered problems can be solved by 2O(n)-complexity
algorithms (the poly(φ)-term is ignored). For r = log(n)O(1), the best complexity bound is
2O(n · log log(n)). Another interesting case is d = o(n), which gives the o(n)n ·2O(n · log log(n))-
complexity bound. For other values of parameters, the general O(n)n-complexity bound
holds.

For the unweighted Opt-And-Count-IP-variant of the considered problems, if r is fixed,
then the nO(n)-complexity algorithm exists. The same is true if d = nO(1) orm = nO(1). The
complexity 2O(n) is possible, if a hypergraph has constant maximum degree d = O(1)
or, if it is very sparse m = O(n) and has a constant maximum hyperedge cardinality
r = O(1). For the general values of r, d, and m, it is better to use the complexity bound
min{d, r}1.5n · O(m / n)2n. Since m ≤ 2n, it straightforwardly gives the general 4n

2 +O(n)-
complexity bound. Note that the considered complexity bounds for the problems without
multiplicities sufficiently outperform the best complexity bound that we know nO(n2), due
to Knop, Kouteckỳ, and Mnich [66].

Now, let us consider the problems with multiplicities. Note again that the weighted Set
Multi-cover problem with multiplicities is also known as the weighted Multi-set Multi-
cover problem. In comparison with the state-of-the-art complexity bound nO(n2), our bound

O
(
min{d, r})n2 +O(n logn) has a lower exponent base, and it gives a constant-estimate in the

exponent power. Unfortunately, we are not able to present a complexity bound, parameterized
by n, for the Opt-And-Count-IP-variant, and it seems to be an interesting open problem.

We omit proofs of the results, presented in Table 4, because they straightforwardly follow
from the complexity bounds, described in Theorem6 andTable 3. Indeed, theweightedMulti-
set Multi-cover and Hypergraph Multi-matching problems with or without multiplicities can
be represented by the following ILP’s in the standard form:

max
{
w	x

}

⎧
⎪⎨

⎪⎩

(
A(H) In×n

)
x = p

0 ≤ x ≤ u

x ∈ Z
n+m

min
{
w	x

}

⎧
⎪⎨

⎪⎩

(−A(H) In×n

)
x = −c

0 ≤ x ≤ u

x ∈ Z
n+m,
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where the constraint x ≤ u needs to be omitted for the variants without multiplicities. The
co-dimension of these formulations is n. Using simple bounds m ≤ 2n, m ≤ d n, and
m = O(n)r+1 that are valid for the problems without multiplicities, the desired complexity
bounds of Table 4 can be easily obtained. Note that the equality m = O(n)r+1 directly
follows from the inequality m ≤ ∑r

i=1

(n
i

)
.

4 Summary of the paper and open problems

Here we give a summary of results, notes, and implications of our work.

• We show that the problems Count-IP & Opt-And-Count-IP with respect to sparse
instances with bounded elements and their weaker versions Feasibility-IP & Opt-IP can
be solved by algorithms that outperform the general state-of-the-art log(n)O(n) ·poly(φ)-
complexity algorithm for Opt-IP, due to Reis & Rothvoss [5]. Details can be found in
Table 2 and Theorem 3. For example, if the matrix A is an {−1, 0, 1}-matrix, and it has
constant number of non-zeroes in each row/column, then the corresponding problems
Count-IP & Opt-And-Count-IP can be solved in 2O(n) · poly(φ)-time.

• We show that in the assumptions ‖A‖max = nO(1) and ‖c‖∞ = nO(n), the prob-
lems Count-IP and Opt-And-Count-IP can be solved by algorithms with the complexity
bound nO(n) · poly(φ), which outperforms the state bound (5) for the problems Count-IP
and Opt-And-Count-IP. For details, see Corollary 1.

• We give an improved arithmetic complexity bound O(ν2 ·n4 ·�3) for the problem Coun-
t-IP with respect to the older bound O

(
ν2 · n4 · �4 · log(�)

)
, see Theorem 2.

• Wegive new algorithms for the Opt-And-Count-IP-variant of the StableMulti-set, Vertex
Multi-cover, Set Multi-cover, Multi-matching, and Dominating Multi-set problems with
respect to simple graphs and hypergraphs, see the definitions 5 and 6. The weighted
variants and the variants with the multiplicities of the above problems are handled, see
Definitions 3 and 4. Note that the weighted SetMulti-cover problemwith multiplicities is
also known as the weighted Multi-set Multi-cover problem. Our algorithms outperform
the general state-of-the-art ILP algorithms, applied to these problems. Details can be
found in Theorem 7.

• We summarize known results and new methods to give new algorithms for the Feasibili-
ty-IP-, Count-IP-, Opt-IP-, Opt-And-Count-IP-variants of ILP problems in the standard
form with and without multiplicities, parameterized by ‖A‖max and the co-dimension
of Ax = b. The new complexity bounds outperform general-case bounds on sparse
instances. Details can be found in Sect. 2.2, Table 3, and Theorem 6.

• Using our notes for sparse problems in the standard form, we give new algorithms
for the Opt-IP- and Opt-And-Count-IP-variants of the Set Multi-cover and Hypergraph
Multi-matching problems with and without multiplicities, parameterized by the number
of vertices n. The weighted variants are handled. Tighter complexity bounds with respect
to the parameters n, m, r, and d are considered.
Unfortunately, we are not able to present a complexity bound, parameterized by n, for
theOpt-And-Count-IP-variantwithmultiplicities, it seems to be an interesting open prob-
lem. Our complexity bounds for the considered problems outperform the state-of-the-art
nO(n2) ·poly(φ)-complexity bound, due to Knop, Kouteckỳ, and Mnich [66]. Details can
be found in Sect. 3.1 and Table 4. Discussion can be found in Remark 2.

123



Journal of Global Optimization

4.1 Open problems

• As it was noted before, we are not able to present an algorithm for the problem Count-IP
in the form Standard-Form with multiplicities, which will be polynomial on n, � or
‖A‖max, for any fixed co-dimension k. More precisely, given A ∈ Z

k×n , b ∈ Q
k , and

u ∈ Z
n , let us consider the polyhedron P , defined by the system Ax = b, 0 ≤ x ≤ u.

The problem is to develop an algorithm to compute |P ∩Z
n |, whose complexity will be

polynomial on n, � or ‖A‖max, for any fixed k. Despite considerable effort, we are not
able to present such an algorithm. The main difficulty is that our methods work well only
in the scenarios, when the value of |vert(P)| is sufficiently small. But, in the current case,
the value of |vert(P)| can be equal to 2n . Note that the positive solution for this problem
can grant new more efficient algorithms for the Multi-set Multi-cover problem and its
weighted variant.

• Our general complexity bounds (see Theorems 3 and 6) for sparse variants of the prob-

lem Count-IP contain a term of the type
(‖A‖max

)O(n) or of the type
(‖A‖max

)O(k).
Could we develop an algorithm, which will be polynomial on ‖A‖max and more efficient
for sparse problems with respect to the general state-of-the-art algorithms? Could we do
this for the simpler problem Feasibility-IP?

• Our complexity bounds for sparse problems depend mainly on the total number of vari-
ables n, which can by significantly bigger than an actual dimension d = dim(P) of a
polyhedron. The known state-of-the-art algorithms can be easily adapted to work with
the parameter d instead of n. For example, the state-of-the-art algorithm, due to Reis
& Rothvoss [5], gives the log(d)O(d) · poly(φ) complexity bound. Unfortunately, at the
current moment, we can not adapt our methods for sparse problems to work with the
parameter d . The difficulty is concentrated in Lemma 4, which estimates the number
of vertices of a polyhedron. The proof of such a lemma, based on a parameter d , is an
interesting open question, which will guaranty the existence of an algorithm for sparse
problems, parameterized by d instead of n.

5 Proofs of themain theorems 2 and 3

5.1 The Smith normal form

Let A ∈ Z
m×n be an integer matrix of rank n. It is a known fact (see, for example, [23,

72, 73]) that there exist unimodular matrices P ∈ Z
m×m and Q ∈ Z

n×n , such that A =
P

(
S

0d×n

)
Q, where d = m−n and S ∈ Z

n×n
≥0 is a diagonal non-degeneratematrix.Moreover,

∏k
i=1 Sii = �gcd(A, k), and, consequently, Sii | S(i+1)(i+1), for i ∈ {1, . . . , n − 1}. The

matrix

(
S

0d×n

)
is called the Smith Normal Form (or, shortly, the SNF) of the matrix A.

Near-optimal polynomial-time algorithms for constructing the SNF of A are given in the
work [72] due to Storjohann & Labahn.

5.2 Algebra of rational polyhedra and generating functions

Let V be a Euclidean space with the inner product denoted by 〈·, ·〉. Let � ⊆ V be a lattice
and �◦ be its dual.
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Definition 5 For a polyhedron P ⊆ V , a vector c ∈ V and an abstract variable τ , we denote

f(P, c; τ) =
∑

z∈P ∩�

e〈c,z〉τ .

The polar of P is denoted by P◦ = {y ∈ V : 〈y, x〉 ≤ 1,∀x ∈ P}.
Definition 6 LetA ⊆ V be a set. The indicator [A] ofA is the function [A] : V → R defined
by

[A](x) =
{
1, if x ∈ A
0, if x /∈ A .

Definition 7 The polyhedron P ⊆ V is called rational, if it can be defined by a system of
finitely many inequalities

〈ai , x〉 ≤ bi , where ai ∈ �◦and bi ∈ Z .

The algebra of rational polyhedra P(QV) is the vector space, defined as the span of the
indicator functions of all the rational polyhedra P ⊆ V .

We recall the following restatement of the theorem proved by Lawrence [74] and inde-
pendently by Khovanski & Pukhlikov [75], declared as Theorem 13.8b in [13, Section 13].

Theorem 8 (Lawrence [74], Khovanski & Pukhlikov [75]) Let dim(V) = n andR(V) be the
linear space of functions acting from V to R, spanned by finite linear combinations of the
following functions

c → e〈c,v〉
(
1 − e〈c,u1〉) · . . . · (

1 − e〈c,un〉) ,

where v ∈ � and ui ∈ � \ {0}, for i ∈ {1, . . . , n}. Then, there exists a linear transformation
F : P(QV) → R(V),

such that the following properties hold:

(1) Let P ⊆ V be a non-empty rational polyhedron without lines and let R := RP ⊆ V be
its recession cone. Then, for all c ∈ int(R◦), the series

∑

z∈P ∩�

e〈c,z〉

converges absolutely to a function F([P]).
(2) If P contains a line, then F([P]) = 0.

Note that hereafter we will use this Theorem 8 just with V = R
n and � = Z

n . The following
lemma represents a core of Theorem 2 and contains a main improvement with respect to the
counting algorithm from [25].

Lemma 1 Let A ∈ Z
n×n, b ∈ Z

n, � = |det(A)| > 0. Let us consider the polyhedron
P = {x ∈ R

n : Ax ≤ b}. Assume that c ∈ Z
n is given, such that 〈c, hi 〉 > 0, where hi

are the columns of A∗ = � · A−1, for i ∈ {1, . . . , n}. Denote ψ = max
i∈{1,...,n}

{
|〈c, hi 〉|

}
. Let,
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additionally, S = PAQ be the SNF of A, where P, Q ∈ Z
n×n are unimodular, and denote

σ = Snn.
Then, for any τ > 0, the series f(P, c; τ) converges absolutely to a function of the type

n·σ ·ψ∑

i=−n·σ ·ψ
εi · eαi ·τ

(
1 − e−β1·τ )(1 − e−β2·τ ) . . .

(
1 − e−βn ·τ ) ,

where εi ∈ Z≥0, βi ∈ Z>0, and αi ∈ Z. This representation can be found with an algorithm,
having the arithmetic complexity bound

O
(
TSNF(n) + � · n2 · σ · ψ

)
,

where TSN F (n) is the arithmetic complexity of computing the SNF for n×n integer matrices.

Proof After the unimodular map x = Qx ′ and introducing slack variables y, the system
{x ∈ Z

n : Ax ≤ b} becomes

⎧
⎪⎨

⎪⎩

Sx + Py = Pb

x ∈ Z
n

y ∈ Z
n≥0 .

Since P is unimodular, the last system is equivalent to the system

{
Py = Pb (mod S Zn)

y ∈ Z
n≥0 .

(14)

Denoting G = Z
n /S Zn , g0 = Pb mod S Zn , gi = P∗i mod S Zn , the last system (14) can

be rewritten:
⎧
⎨

⎩

n∑

i=1
yi gi = g0

y ∈ Z
n≥0 .

(15)

Note that points x ∈ P ∩Z
n and the solutions y of the system (15) are connected by the bijec-

tive map x = A−1(b − y). Let ri = |〈gi 〉|, for i ∈ {1, . . . , n}, and rmax := maxi∈{1,...,n}{ri }.
Clearly, |G| = |det(S)| = � and rmax ≤ σ . For k ∈ {1, . . . , n} and g′ ∈ G, let Mk(g′) be
the solutions set of the auxiliary system

⎧
⎪⎨

⎪⎩

k∑

i=1
yi gi = g′

y ∈ Z
k≥0,

and define

gk(g
′; τ) =

∑

y∈Mk (g′)
e
−〈c,

k∑

i=1
hi yi 〉τ
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It follows that f(P, c; τ) =
∑

z∈P ∩Zn

e〈c,z〉τ

=
∑

y∈Mn(g0)

e〈c,A−1(b−y)〉τ

= e〈c,A−1b〉τ ·
∑

y∈Mn(g0)

e− 1
�

〈c,A∗y〉τ = e〈c,A−1b〉τ · gn
(
g0; τ

�

)
.

(16)

The formulae for gk(g
′; τ) were formally proven in [25, see its formulae (10), (11), and

(12)], we cite them in the following separate lemma. Since the original published paper [25]
contained an inaccuracy in the main result, we give a self-contained proof of the lemma in
Subsection B of Appendix.

Lemma 2 The following formulae hold:

g1(g
′; τ) = e−〈c,sh1〉τ

1 − e−〈c,r1h1〉τ , wheres = min{y1 ∈ Z≥0 : y1 · g1 = g′}, (17)

gk(g
′; τ) = 1

1 − e−〈c,rkhk 〉τ ·
∑rk−1

i=0
e−〈c,ihk 〉τ · gk−1(g

′ − i · gk; τ), (18)

gk(g
′; τ) =

∑k·σ ·ψ
i=−k·σ ·ψ εi (k, g′) · e−iτ

(
1 − e−〈c,r1·h1〉τ )(1 − e−〈c,r2h2〉τ ) . . .

(
1 − e−〈c,rkhk 〉τ ) , (19)

where εi (k, g′) ∈ Z≥0 are coefficients, depending on k and g′. If the set {y1 ∈ Z≥0 : y1g1 =
g′} is empty, we put g1(g

′; τ) := 0. If the vector c is chosen such that 〈c, hi 〉 > 0, for all
i ∈ {1, . . . , n}, then, for any τ > 0, k ∈ {1, . . . , n}, and g′ ∈ G, the series gk(g′; τ) converges
absolutely to the corresponding right-hand side functions.

Let us estimate the complexity to compute the representation (19) of gk(g
′; τ), for all k ∈

{1, . . . , n} and g′ ∈ G, using the recurrence (18). In comparison to the paper [25], we will
use a bit more sophisticated and efficient algorithm to do that. Consider a quotient group
Qk = G /〈gk〉 and fix Q ∈ Qk . Clearly, Q = q + 〈gk〉, where q ∈ G is a member of Q, and
rk = |Q|. For j ∈ {0, . . . , rk − 1}, define

hk( j; τ) = (
1 − e−〈c,r1h1〉τ ) · . . . · (

1 − e−〈c,rkhk 〉τ ) · gk(q + j · gk; τ). (20)

For the sake of simplicity, denote x �k y = (x − y) mod rk , then the formulas (17), (18) and
(19) become

h1( j; τ) = e−〈c,sh1〉τ , wheres = min{y1 ∈ Z≥0 : y1g1 = q + j · g1}, (21)

hk( j; τ) =
rk−1∑

i=0

e−〈c,ihk 〉τ · hk−1
(
j �k i; τ

)
, (22)

hk( j; τ) =
k·σ ·ψ∑

i=−k·σ ·ψ
εi (k, q + j · gk) · e−iτ . (23)

Assume first that k = 1. Then, clearly, all the values

h1(0; τ), h1(1; τ), . . . , h1(r1 − 1; τ)

can be computed with O(r1) operations. Assume now that k ≥ 2 and that (k − 1)-th level
has already been computed. By the k-th level, we mean all the functions hk( j; τ), for j ∈
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{0, . . . , rk − 1}. Due to the formula (23), hk( j; τ) contains O(k · σ · ψ) monomials. Hence,
the function hk(0; τ) can be computed directly using the formula (22) with O(rk · k · σ · ψ)

operations. For j ≥ 1, we have

hk( j; τ) =
rk−1∑

i=0

e−〈c,ihk 〉τ · hk−1( j �k i; τ)

=
rk−2∑

i=−1

e−〈c,(i+1)hk 〉τ · hk−1
(
j �k (i + 1); τ

)

= e−〈c,hk 〉τ · hk( j − 1; τ) + hk−1( j; τ) − e−〈c,rkhk 〉τ · hk−1
(
j �k rk; τ

)

= e−〈c,hk 〉τ · hk( j − 1; τ) + (1 − e−〈c,rkhk 〉τ ) · hk−1
(
j; τ

)
. (24)

Consequently, in the assumption that the (k − 1)-th level has already been computed and
that hk(0; τ) is known, all the functions hk(1; τ), . . . , hk(rk − 1; τ) can be computed with
O(rk · k · σ · ψ) operations, using the last formula (24).

In turn, when the functions hk( j; τ), for j ∈ {0, . . . , rk − 1}, are already computed, we
can return to the functions gk(g

′; τ), for g′ = q + j · gk , using the formula (20). It will
consume additional O(rk) group operations to compute g′ = q + j · gk . By the definition
of G, the arithmetic cost of a single group operation can be estimated by the number of
elements on the diagonal of S that are not equal to 1. Clearly, this number is bounded by
min{n, log2(�)}. Consequently, the arithmetic cost of the last step is O(rk · n), which is
negligible in comparison with the hk( j; τ) computational cost.

Summarizing, we need O(rk ·k ·σ ·ψ) operations to compute gk(g
′; τ), for g′ = q+ j ·gk

and j ∈ {0, . . . , rk}. Therefore, since |Q| = �/rk , the arithmetic computational cost to
compute k-th level of gk(·) is

O(� · k · σ · ψ),

and the total arithmetic cost to compute all the levels is

O(� · n2 · σ · ψ).

Finally, using the formula (16), we construct the function

f(P, c; τ) = e〈c,A−1b〉τ · gn
(
g0; τ

�

)

=
∑k·σ ·ψ

i=−k·σ ·ψ εi · e 1
�

(
〈c,A∗b〉−i

)
τ

(
1 − e−〈c, r1

�
h1〉τ )(1 − e−〈c, r2

�
h2〉τ ) . . .

(
1 − e−〈c, rn

�
hn〉τ )

,

where εi := εi (n, g0), which gives the desired representation of f(P, c; τ). Since gn(g0; τ)

converges absolutely, for all τ > 0, the same is true for f(P, c; τ). Clearly, the arithmetic
cost of the last transformation is proportional to the nominator length of gn(g0; τ), which is
O(n · σ · ψ). ��

It is known that a slight perturbation in the right-hand side of a system Ax ≤ b can
transform the polyhedron P(A, b) to a simple one. We refer to the work [20] of Megiddo
& Chandrasekaran. For ε ∈ (0, 1) and i ∈ {1, . . . ,m}, denote tε ∈ Q

m to be a vector with
(tε)i = εi .

Theorem 9 (Megiddo & Chandrasekaran [20]) For any input matrix A ∈ Z
m×n with

rank(A) = n, there exists a rational value εA ∈ (0, 1), such that, for any b ∈ Z
m and

any ε ∈ (0, εA], the polyhedron P(A, b + tε) is simple.
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The value εA can be computed by a polynomial-time algorithm. More precisely, the algo-
rithm needs O(log n) operations with numbers of size O

(
n · log(n ‖A‖max

))
.

Remark 3 Let’s see how to apply Theorem 9 to systems with a rational right-hand side. For
A ∈ Z

m×n with rank(A) = n andb ∈ Q
m , letP := P(A, b)be ann-dimensional polyhedron.

Let us show how to construct a vector t ∈ Q
m , such that the polyhedron P(A, b + t) will be

simple and integrally equivalent to P .
To this end, let D ∈ Z

m×m
≥0 be the diagonal matrix, composed of the denominators of the

corresponding components of b. Note that P = P(DA, Db). Next, we apply Theorem 9
to the matrix DA, and let ε be the resulting perturbation value. Since Db is an integer and
0 < ε < 1, the polyhedron P(A, b + D−1tε) = P(DA, Db + tε) is simple and integrally
equivalent to P . Consequently, we can put t := D−1tε . Additionally, note that the described
procedure needs only O(m) operations to calculate t .

5.3 The proof of Theorem 2

Proof Since any system in the standard form can be straightforwardly transformed to a
system in the canonical form without changing the solutions set, assume that the polytope P
is defined by a system Ax ≤ b, where A ∈ Z

m×n and b ∈ Q
m .

Since P is bounded, it follows that rank(A) = n. Since b is a rational vector, we can
assume that gcd(A j ) = 1, for all j ∈ {1, . . . ,m}. Now, let us assume that dim(P) < n.
Clearly, it is equivalent to the existence of an index j ∈ {1, . . . ,m}, such that A j x = b j ,
for all x ∈ P . Note that such j could be found by a polynomial-time algorithm. W.l.o.g.,
assume that j = 1. Since gcd(A1) = 1, there exists a unimodular matrix Q ∈ Z

n×n such
that A1 = (1 0n−1)Q. After the unimodular map x ′ = Qx , the system Ax ≤ b transforms
to the integrally equivalent3 system

(
1 0n−1

h B

)
x ≤ b,

where h ∈ Z
m−1 and B ∈ Z

(m−1)×(n−1). Note that �(B) = �(A) = �. Since the first
inequality always holds as an equality on the solutions set, we can just substitute x1 = b1.
As the result, we achieve a new integrally equivalent system with n − 1 variables Bx ≤ b′,
where b′ = b{2,...,m} − b1 · h.

Due to the proposed reasoning, we can assume that dim(P) = n. Let us make some more
assumptions onP . Due to Theorem 9 and Remark 3, using O(m) operations, we can produce
a new right-hand side vector b′ ∈ Q

m , such that a new polytope, defined by Ax ≤ b′, will
be simple and integrally equivalent to P . Consequently, we can assume that P is simple. Let
v ∈ vert(P), denote

J (v) = { j : A jv = b j }, and
Pv = {x ∈ R

n : AJ (v)x ≤ bJ (v)}.
SinceP is simple, it follows that AJ (v) ∈ Z

n×n and 0 < det(AJ (v)) ≤ �. Due to the seminal
work [76] due to Avis & Fukuda, all vertices of the simple polyhedron P can be enumerated
with O

(
m · n · |vert(P)|) arithmetic operations. Due to Lee, Paat, Stallknecht & Xu [53], a

�-modular system has at most O(n2 · �2) inequalities, i.e. m = O(n2 · �2). Hence, all the
polyhedra Pv can be constructed with O(ν · n3 · �2) operations.

3 Saying "integrally equivalent" we mean that the sets of integer solutions of both systems are connected by
a bijective unimodular map.
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Define the set E of edge directions by the following way:

h ∈ E ⇐⇒ h is a column of − A∗
J (v) for some v ∈ vert(P),

where B∗ = |det(B)| ·B−1, for arbitrary invertible B. Assume that a vector c ∈ Z
n is chosen,

such that c	h �= 0, for each h ∈ E , and denote ψ = max
h∈E

{|c	h|}. Note that such a choice of
the vector c satisfies the conditions of Lemma 1 applied to any polyhedraPv , for v ∈ vert(P).
We use Lemma 1 to all Pv with the proposed choice of c, and construct the corresponding
functions fv(τ ). Since σ ≤ �, and, due to Storjohann [72], TSNF (n) = O(n3), the arithmetic
complexity of the last operation can be estimated by

O(ν · ψ · n2 · �2). (25)

Denote, additionally, fP (τ ) = ∑
v∈vert(P) fv(τ ). Due to Brion’s theorem [77] (see also [13,

Chapter 6]), we have

[P] =
∑

v∈vert(P)

[Pv] modulo polyhedra with lines 4 (26)

Consequently, it follows from Theorem 8 and the last formula (26) that, for any τ ∈ R, the
series f(P, c; τ) absolutely converges to the function fP (τ ). Therefore, to calculate |P ∩Z

n |,
we need to compute lim

τ→0
fP (τ ). We follow to [13, Chapter 14], to compute |P ∩Z

n | =
lim
τ→0

fP (τ ) as a constant term in the Taylor decomposition of fP (τ ). Clearly, the constant

term of fP (τ ) is just the sum of constant terms of fv(τ ), for v ∈ vert(P). By this reason, let
us fix some v and consider

fv(τ ) =
∑n·σ ·ψ

i=−n·σ ·ψ εi · eαi ·τ
(
1 − e−β1·τ )(1 − e−β2·τ ) . . .

(
1 − e−βn ·τ ) ,

where εi ∈ Z≥0, βi ∈ Z>0 and αi ∈ Z. Due to [13, Chapter 14], we can see that the constant
term in the Taylor decomposition for fv(τ ) is exactly

n·σ ·ψ∑

i=−n·σ ·ψ

εi

β1 . . . βn

n∑

j=0

α
j
i

j ! · tdn− j (β1, . . . , βn), (27)

where td j (β1, . . . , βn) is a homogeneous polynomial of degree j , called the j-th Todd poly-
nomial on β1, . . . , βn . Due to [16, Theorem 7.2.8, p. 137], the values of td j (β1, . . . , βn),
for j ∈ {1, . . . , n}, can be computed with an algorithm that is polynomial in n and the
bit-encoding length of β1, . . . , βn . Moreover, it follows from the theorem’s proof that the
arithmetic complexity can be bounded by O(n3). Therefore, it is not hard to see that we
need O(n3 + n2 · σ · ψ) operations to compute the value of (27), and the total arithmetic
cost to find the constant term in the Taylor’s decomposition of the whole function fP (τ )

is O
(
ν · (n3 + n2 · σ · ψ)

)
. Let us make an assumption that ψ can be upper bounded by a

function that grows as	(n). In this assumption, the complexity bound O
(
ν ·(n3+n2 ·σ ·ψ)

)

is negligible with respect to (25). Hence, we can assume that the formula (25) bounds the
arithmetic complexity of the algorithm at the current state.

Previously, we made the assumption that the vector c ∈ Z
n is chosen such that c	h �= 0,

for any h ∈ E . Let us present an algorithm that generates a vector c with a respectively

4 The words "modulo polyhedra with lines" mean that the sum can contain additional terms of the form [M],
where M is a polyhedron with lines.
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small value of the parameter ψ = max
h∈E

{|c	h|}. The main idea is concentrated in following

Theorem 10 due to corrected version [28] of the paper [25]. Since at the current moment of
time the corrections [28] are available only as a preprint, we give a self-contained proof of
Theorem 10 in Subsection A of Appendix. ��

Theorem 10 (Theorem 2 of [25]) LetA be a set composed of m non-zero vectors inQn. Then,
there exists a randomized algorithm with the expected arithmetic complexity O(n ·m), which
finds a vector z ∈ Z

n such that:

1. a	z �= 0, for any a ∈ A;
2. ‖z‖∞ ≤ m.

Since the polytope P is assumed to be simple, each vertex v ∈ vert(P) corresponds to
exactly n edge directions. Consequently, 2 · |E| = ν · n. Choose some basis sub-matrix B of
A. Note that Bh �= 0 and (Bh)i ∈ {−�, . . . , �}, for any h ∈ E and i ∈ {1, . . . , n}. Next,
we use Theorem 10 to the set B · E , which produces a vector z, such that

1. z	Bh �= 0, for each h ∈ E ;
2. ‖z‖∞ ≤ ν · n.
Now, we assign c := B	z. By the construction, we have c	h �= 0 and |c	h| = |z	Bh| ≤
n2 · ν · �, for each h ∈ E . Therefore, ψ ≤ n2 · ν · �, which justifies the assumption on ψ .
Due to the formula (25), the total complexity bound becomes O(ν2 · n4 ·�3), which finishes
the proof.

Remark 4 Let us discuss an inaccuracy of the paper [25], which was corrected in the preprint
[28]. It has just been proven that there exists a vector c ∈ Z

n , such that c	h �= 0, for each
h ∈ E , withψ ≤ n2 ·ν ·�, whereψ = max

h∈E
{|c	h|}. In turn, the paper [25] chooses the vector

c ∈ Z
n by a different way that causes an error. More precisely, let B be a basis sub-matrix

of A, corresponding to some vertex v ∈ vert(P). Since P is assumed to be simple, B is an
n × n non-degenerate integer matrix. Then, the vector c is chosen as the sum of columns of
B	. It is easy to see that ψ ≤ n · �, but the statement ∀h ∈ E : c	h �= 0 is not necessary to
be correct for every P , which is the mentioned inaccuracy.

5.4 A bound for the number of vertices of a rational polyhedron

For an arbitrarymatrix B ∈ R
m×n , denote cone(B) = {Bt : t ∈ R

n≥0}. The following lemmas
help to estimate the number of vertices in a polyhedron, defined by a sparse system. We will
use this bound to prove Theorem 3.

Lemma 3 Let A ∈ Z
n×n, det(A) �= 0, and ‖ · ‖ : R

n → R≥0 be any vector norm, which is
symmetric with respect to any coordinate, i.e. ‖x‖ = ‖x − 2xi · ei‖, for any x ∈ R

n and i ∈
{1, . . . , n}. Let us consider a sector U = B‖·‖ ∩ cone(A), where B‖·‖ = {x ∈ R

n : ‖x‖ ≤ 1}
is the unit ball with respect to the ‖ · ‖-norm. Then,

vol(U) ≥ |det(A)|
2n

· vol(r · B‖·‖), (28)

where r ·B‖·‖ is the ‖·‖-ball of themaximum radius r , inscribed into the set {x ∈ R
n : ‖Ax‖ ≤

1}.
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Consequently, let U1 = B1 ∩ cone(A) and U∞ = B∞ ∩ cone(A). Then,

vol(U1) ≥ |det(A)|
(2‖A‖∞)n

· vol(B1) ≥ |det(A)|
(
2‖A‖max · cs(A)

)n · vol(B1); (29)

vol(U∞) ≥ |det(A)|
(2‖A‖1)n · vol(B∞) ≥ |det(A)|

(
2‖A‖max · rs(A)

)n · vol(B∞). (30)

Proof Let us prove the inequality (28). Clearly,

vol(U) = |det(A)| · vol(K∩ cone(In×n)
)
,

whereK = {x ∈ R
n : ‖Ax‖ ≤ 1}. By the definition of r , we haveK ⊇ r ·B‖·‖. Consequently,

vol(U) ≥ |det(A)| · vol(r · B‖·‖ ∩ cone(In×n)
) ≥ |det(A)|

2n
· vol(r · B‖·‖).

Now, let us prove the inequality (29). To this end, we just need to prove the inequality
r ≥ 1

‖A‖∞ with respect to the l1-norm. Let us consider the set K. It can be represented as the
set of solutions of the following inequality:

n∑

i=1

|Ai∗x | ≤ 1. (31)

Let us consider the 2n points ±pi = ± 1
‖A‖∞ · ei , for i ∈ {1, . . . , n}. Substituting ±p j to the

inequality (31), we have

n∑

i=1

|Ai∗ p j | = 1

‖A‖∞
·

n∑

i=1

|Ai∗e j | = 1

‖A‖∞
·

n∑

i=1

|Ai j | ≤ 1.

Hence, all the points ±pi , for i ∈ {1, . . . , n}, satisfy the inequality (31). Since K is convex,
we have 1

‖A‖∞ · B1 ⊆ K, and, consequently, r ≥ 1
‖A‖∞ .

Finally, let us prove the inequality (30). Again, we need to show that r ≥ 1
‖A‖1 with respect

to the l1-norm. In the current case, the set K can be represented as the set of solutions of the
following system:

∀i ∈ {1, . . . , n}, |Ai∗x | ≤ 1. (32)

Let us consider the setM = { 1
‖A‖1 ·(±1,±1, . . . ,±1)	} of 2n points. Substituting any point

p ∈ M to the j-th inequality of the system (32), we have

|A j∗ p| ≤
n∑

i=1

|A ji ||pi | = 1

‖A‖1 ·
n∑

i=1

|A ji | ≤ 1.

Hence, all the points p ∈ M satisfy the inequality (32). Since K is convex, we have 1
‖A‖1 ·

B∞ ⊆ K, and, consequently, r ≥ 1
‖A‖1 . ��

Lemma 4 Let A ∈ Z
m×n, b ∈ Q

m, and rank(A) = n. Let P be a polyhedron, defined by a
system Ax ≤ b. Then, |vert(P)| ≤ 2n · γ1,∞(A)n ≤ (

2‖A‖max
)n · ts(A)n.

Proof LetN (v) = cone
(
A	
J (v)

)
be the normal cone of a vertex v ∈ vert(P), where J (v) =

{
j ∈ {1, . . . ,m} : A j∗v = b j

}
. Since rank(A) = n, we have dim

(N (v)
) = n, for any
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v ∈ vert(P). It is a known fact that dim
(N (v1)∩N (v2)

)
< n, for different v1, v2 ∈ vert(P).

Next, we will use the following trivial inclusion
⋃

v∈vert(P)

N (v) ∩ B ⊆ B, (33)

where B is the unit ball with respect to any vector norm ‖ · ‖ : R
n → R≥0.

Again, since rank(A) = n, eachmatrix A	
J (v) contains a non-degenerate n×n sub-matrix.

Taking B := B1 or B := B∞, by Lemma 3, we have vol(N (v) ∩ B) ≥ vol(B)(
2 γ1,∞(A)

)n . Finally,

due to (33), we have

vol(B)
(
2 γ1,∞(A)

)n · |vert(P)| ≤ vol(B).

��

5.5 The proof of Theorem 3

Proof Consider first the case, whenP is unbounded. In this case, we need only to distinguish
between two possibilities: |P ∩Z

n | = 0 and |P ∩Z
n | = +∞. Due to [23, Theorem 17.1], if

|P ∩Z
n | �= 0, then there exists v ∈ P ∩Z

n such that ‖v‖∞ ≤ (n + 1) · �ext , where �ext =
�(Aext ) and Aext = (

A b
)
is the extended matrix of the system Ax ≤ b. Consequently,

to transform the unbounded case to the bounded one, we just need to add the inequalities
|xi | ≤ (n + 1) · nn/2 · (‖Aext‖max

)n , for i ∈ {1, . . . , n}, to the original system Ax ≤ b.
Now,we can assume thatP is bounded, and consequently rank(A) = n. Due toTheorem2,

the counting problem can be solved by an algorithm with the arithmetic complexity bound

O(ν2 · n4 · �3), (34)

where ν is the maximum number of vertices in polyhedra with fixed A and varying b. In our
case, the value of ν can be estimated by Lemma 4. To estimate the value of �, we use the
inequalities (2) and (3). The inequalities for ν and �, together with the bound (34), give the
desired complexity bound for the problem Count-IP.

Let us show how to find some point z inside P ∩Z
n in the case |P ∩Z

n | > 0, to handle
the problem Feasibility-IP. For α, β ∈ Z, let us consider the polytope P ′(α, β), defined by
the system Ax ≤ b with the additional inequality α ≤ x1 ≤ β. The maximum rank-order
sub-determinants of the new system are bounded by max{�n,�n−1}. In turn, the value of
�n−1 can be estimated in the same way, as it was done for �n . Let v be some vertex of P ,
which can be found by a polynomial-time algorithm. Due to the seminal sensitivity result [78]
of Cook, Gerards, Schrijver & Tardos, if P ∩Z

n �= ∅, then there exists a point z ∈ P ∩Z
n

such that ‖v − z‖∞ ≤ n · �tot . So, the value of z1 can be found, using the binary search
with questions to the P ′(α, β) ∩ Z

n-feasibility oracle, which can be clearly reduced to the
Count-IP problem. Clearly, we need O(log(n�tot )) calls to the oracle. After the moment,
when we already know the value of z1, we just add the equality x1 = z1 to the system Ax ≤ b
and start a similar search procedure for the value of z2. The total number of calls to the binary
search oracle to compute all the components of z is O(n · log(n�tot )).

Finally, let us explain how to deal with the problem Opt-And-Count-IP. Let α, β ∈ Z,
consider the polytope P ′(α, β), defined by the system Ax ≤ b with the additional inequality
α ≤ c	x ≤ β. Let A′ ∈ Z

(m+2)×n be the matrix that defines P ′(α, β), i.e. A′ = (c − c A	).
Expanding sub-determinants of A′ by the c	-row, we have �(A′) ≤ ‖c‖1 · �n−1(A). Let
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us estimate the number of vertices in P ′(α, β). The polytope P ′(α, β) is the intersection of
the polytope P with the slab {x ∈ R

n : α ≤ c	x ≤ β}. Clearly, the new vertices may appear
only on edges ofP , by at most 2 new vertices per edge. The number of edges inP is bounded
by |vert(P)|2/4. In turn, the value of |vert(P)|2/4 can be estimated, using Lemma 4. Due
to Theorem 2, the value |P ′(α, β) ∩ Z

n | can be computed by an algorithm with the desired
complexity bounds. To complete the proof, we note that, using the binary search method, the
original optimization problem can be reduced to a polynomial number of feasibility questions
in the set P ′(α, β) ∩ Z

n for different α, β. ��
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Appendix A: Proof of Theorem 10

Proof Fix a parameter r and let I = {−r , . . . , r}. For a ∈ A, denoteHa = {x ∈ In : a	x =
0}, and let

N = In \
⋃

a∈A
Ha .

Consider a polynomial f : R
n → R given by the formula

f (x) =
∏

a∈A
a	x .

Clearly, f is a homogeneous polynomialwith deg( f ) = |A| = m. LetR = {x ∈ In : f (x) =
0} be the roots of f inside In . Note that R = ⋃

a∈A Ha and N = In \R. Due to the
known Schwartz–Zippel lemma, |R| ≤ deg( f ) · |I|n−1 = m · (2r + 1)n−1. Therefore,
|N | ≥ (2r + 1)n − m · (2r + 1)n−1 = (2r + 1)n−1 · (2r + 1 − m), and consequently

|N |
|In | ≥ 2r + 1 − m

2r + 1
= 1 − m

2r + 1
.

Assign r := m. After that, the previous inequality becomes |N |
|In | > 1/2. Now, to find a

vector z that can satisfy the claims

1. a	z �= 0, for any a ∈ A;
2. ‖z‖∞ ≤ m;

we uniformly sample points z inside In . With a probability at least 1/2 it will satisfy the
first claim. The second claim is satisfied automatically. Therefore, the expected number of
sampling iterations is O(1). The arithmetic complexity of a single iteration is clearly bounded
by O(n · m), which completes the proof. ��
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Appendix B: Proof of the Lemma 2

A recurrent formula for the generating function of a group polyhedron

Let G be an arbitrary finite Abelian group and g1, . . . , gn ∈ G. Let additionally ri = |〈gi 〉|
be the order of gi , for i ∈ {1, . . . , n}, and rmax = maxi {ri }. For g′ ∈ G and k ∈ {1, . . . , n},
let M(k, g′) be the solutions set of the following system:

⎧
⎪⎨

⎪⎩

k∑

i=1
xi gi = g′

x ∈ Z
k≥0 .

(B1)

Consider the formal power series fk(g
′; x) = ∑

z∈M(k,g′)∩Zk

xz . For k = 1, we clearly have

f1(g
′; x) = xs1

1 − xr11
, where s = min{x1 ∈ Z≥0 : x1g1 = g′}. (B2)

If such s does not exist,we put f1(g
′; x) := 0.Clearly, the series f1(g

′; x) absolutely converges
to the corresponding right-hand side function for any x1 ∈ C with |xr11 | < 1. For any value
of xk ∈ Z≥0, the system (B1) can be rewritten as

⎧
⎪⎨

⎪⎩

k−1∑

i=1
xi gi = g′ − xkgk

x ∈ Z
k−1
≥0 .

Hence, for k ≥ 1, we have

fk(g
′; x) = fk−1(g

′; x) + xk · fk−1(g
′ − gk; x) + · · · + xrk−1

k · fk−1(g
′ − gk · (rk − 1); x)

1 − xrkk

= 1

1 − xrkk
·
rk−1∑

i=0

xik · fk−1(g
′ − i · gk; x). (B3)

Consequently, fk(g
′; x) =

∑r1−1
i1=0 · · · ∑rk−1

ik=0 εi1,...,ik x
i1
1 . . . xikk

(1 − xr11 )(1 − xr22 ) . . . (1 − xrkk )
, (B4)

where the numerator is a polynomial with coefficients εi1,...,ik ∈ {0, 1} and degree at most
(r1 − 1) . . . (rk − 1). Since a sum of absolutely convergent series is absolutely convergent,
it follows from the induction principle that the series fk(g

′; x) absolutely converges to the
right-hand side of the formula (B4) when |xrii | < 1 for each i ∈ {1, . . . , k}.

The groupG, induced by the SNF, of A

Recall that A ∈ Z
n×n , 0 < � = |det(A)|, and h1, . . . , hn are the columns of A∗ :=

� · A−1. The vector c ∈ Z
n is chosen, such that 〈c, hi 〉 > 0, for each i ∈ {1, . . . , n}, and

ψ = maxi |〈c, hi 〉|. Additionally, let S = PAQ be the SNF of A, where P, Q ∈ Z
n×n are

unimodular, and σ = Snn .
Let us consider the sets M(k, g′), induced by the group system (B1) with G = Z

n /S Zn

and gi = P∗i mod S Zn . Note that ri ≤ σ , for each i ∈ {1, . . . , n}. Additionally, let us
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consider a new formal series, defined by

f̂k(g
′; x) =

∑

z∈M(k,g′)∩Zk

x
−

k∑

i=1
hi zi

,

which can be derived from the series fk(g
′; x) by the monomial substitution xi → x−hi . For

f̂k(g
′; x), the formulae (B2), (B3) and (B4) become:

f̂1(g
′; x) = x−sh1

1 − x−r1h1
, where s = min{y1 ∈ Z≥0 : y1g1 = g′}, (B5)

f̂k(g
′; x) = 1

1 − x−rkhk
·
rk−1∑

i=0

x−ihk ·f̂k−1(g
′ − i · gk; x) and (B6)

f̂k(g
′; x) =

∑r1−1
i1=0 · · · ∑rk−1

ik=0 εi1,...,ik x
−(i1h1+···+ik hk )

(1 − x−r1h1)(1 − x−r2h2) . . . (1 − x−rkhk )
. (B7)

Clearly, here the absolute convergence takes place for the values of x with |x−ri hi | < 1, for
each i ∈ {1, . . . , k}. Let us consider now the formal series

gk(g
′; τ) =

∑

y∈Mk (g′)
e−τ ·〈c,∑k

i=1 hi yi 〉,

which can be derived from f̂k(g
′; x) by the substitution xi → eτ ·ci . For gk(g′; τ), the formulae

(B5), (B6), and (B7) become:

g1(g
′; τ) = e−〈c,sh1〉·τ

1 − e−〈c,r1h1〉·τ , (B8)

gk(g
′; τ) = 1

1 − e−〈c,rkhk 〉·τ ·
rk−1∑

i=0

e−〈c,ihk 〉·τ · gk−1(g
′ − i · gk; τ), (B9)

gk(g
′; τ) =

∑r1−1
i1=0 · · · ∑rk−1

ik=0 εi1,...,ik e
−〈c,i1h1+···+ik hk 〉·τ

(
1 − e−〈c,r1h1〉·τ )(1 − e−〈c,r2h2〉·τ ) . . .

(
1 − e−〈c,rkhk 〉·τ ) . (B10)

Since the series f̂k(g
′; x) absolutely converges, when |x−ri hi | < 1, for each i ∈ {1, . . . , k},

the new one converges, for any τ > 0. Since 〈c, hi 〉 ∈ Z�=0, for each i , the number of terms
e−〈c,·〉·τ is bounded by 2 · k · σ · ψ + 1. So, after combining similar terms, the numerator’s
length becomes O(k · σ · ψ). In other words, there exist coefficients εi ∈ Z≥0, such that

gk(g
′; τ) =

∑k·σ ·ψ
i=−k·σ ·ψ εi · e−i ·τ

(
1 − e−〈c,r1·h1〉τ )(1 − e−〈c,r2h2〉·τ ) . . .

(
1 − e−〈c,rkhk 〉·τ ) . (B11)

The formulae (B8), (B9), and (B11) coincide with the desired formulae (17), (18), and (19).
So, the proof of Lemma 2 is finished.
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