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DeepZ: A Deep Learning Approach for Z-DNA Prediction

Nazar Beknazarov and Maria Poptsova

Abstract

Here we describe an approach that uses deep learning neural networks such as CNN and RNN to aggregate
information from DNA sequence; physical, chemical, and structural properties of nucleotides; and omics
data on histone modifications, methylation, chromatin accessibility, and transcription factor binding sites
and data from other available NGS experiments. We explain how with the trained model one can perform
whole-genome annotation of Z-DNA regions and feature importance analysis in order to define key
determinants for functional Z-DNA regions.
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1 Introduction

Computational detection of Z-DNA regions based exclusively on
the information from sequence is a difficult task. Though some
sequences with specific patterns (such as GT repeats) are more
prone to flip from B- to Z-conformations, the entire set of potential
Z-DNA-forming sequences are far larger. Initially the general
understanding was that Z-DNA is formed from the alternating
purine–pyrimidine repeats, but ChIP-seq data on protein binding
with Z-DNA revealed that this is not always the case, and the
sequences that at first glance have no definite sequence patterns
are shown to adopt Z-DNA conformation [1].

On the other hand, even if a sequence is a potential Z-forming
sequence, it does not necessarily serve as a functional Z-DNA
element. Often genomic functional elements are surrounded by
other functional elements such as histone marks or DNA motifs
for transcription factors and other DNA-binding proteins. Combi-
natorial patterns of different genomic and epigenomic signals
should accompany functional Z-DNA regions, and it is a nontrivial
task to determine those regions.
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Another problem that one may face when applying machine
learning approach to Z-DNA detection is the scarcity of experi-
mental data. The experiments for detection of Z-DNA structure
have many biases (see [2] for a summary); that is why at the time
DeepZ was developed, there were only few whole-genome maps
available. The first Z-DNA map of the human genome was gener-
ated by using Zα domain of the double-stranded RNA editing
enzyme ADAR [3]. There were 186 Z-DNA hotspots found,
among which 46 hotspots were located in centromeres of
13 human chromosomes. The first ChIP-seq experiment for detec-
tion of Z-DNA regions [4] used Zaa protein with two Z-DNA-
binding domains. The generated genome-wide map of Z-DNA
sites contained 391 regions with the majority of the Z-DNA
located in promoter areas. Below we will describe how we over-
come the problem of small training data set by considering
nucleotide-level approach rather than region-based.

Here we take advantage of machine learning approach that can
aggregate information from multiple layers of genome organiza-
tion together with information on DNA sequence and structure
and predict functional elements of interest, here Z-DNA.

Deep learning models were shown to be successful in predict-
ing gene expression [5] and differential gene expression from his-
tone modification signals [6], histone modifications from sequence
information and chromatin accessibility data [7], protein–RNA
binding preferences from sequence and RNA secondary structure
information [8], and promoters and enhancers from histone modi-
fication and TF binding ChIP-seq, DNase-seq, FAIRE-seq, and
ChIA-PET data [9]. Here we describe a deep learning approach
to predict Z-DNA regions incorporating information about
sequence, structure, epigenetic code, chromatin accessibility, and
transcription factor and RNA polymerase binding sites.

2 The Input Data

The input data is taken from ChIP-seq experiments and usually are
represented in the form of intervals (typically, in .bed format). In
the original study [10], where we described DeepZ model, we used
two Z-DNA data sets: one from ChIP-seq experiment that
reported 391 Z-DNA regions [4] and the second data set com-
posed of data fromWu et al. [11] and Kouzine et al. [12]. The data
sets should be cleaned from ENCODE blacklist regions [13].

Often, for usage with deep learning methods, the regions of
interest are centered and adjusted to the same width and are treated
as objects for positive class. In our approach due to the small
number of items in the positive class, we propose a different
method. Instead of intervals we consider the level of nucleotides
where the entire genome is represented by a Boolean array, where



1 is assigned to nucleotides in Z-DNA regions and 0 otherwise.
With this approach a minor class will contain enough elements to
use in machine learning models (e.g., around 150,000 for 380 sites
of Z-DNA regions from ChIP-seq experiments each approximately
400 bp long). The second class is composed from random positions
in the genome.
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Along with the sequence, the model allows incorporating any
additional information. This can be information on physical, chem-
ical, or structural properties of dinucleotides and any omics data
from NGS experiments.

We also included in DeepZ model B–Z transition energy that
was originally used in Z-Hunt (see Table 2 in [14]) and the addi-
tional information on histone marks (HM), DNase I hypersensitive
sites (DNase-seq), transcription factor (TF), and RNA polymerase
(RNAP) binding sites. Methylation variation maps were taken
from [15].

In fact, any genomic track can be added as an informational
layer (see Fig. 1). In the original DeepZ publication, the total set
included 1058 markers of which there were 100 histone marks,
947 transcription factor binding sites, 10 RNA polymerase binding
sites, and DNase I hypersensitive sites. The full list of features can
be found in Supplementary Table S1 in [10].

3 Data Compression

Each feature was normalized to the interval [0, 1]. The entire
genome was mapped to the matrix of size L × N where L is the
size of the genome and N is the number of features used in the
model. The total size of the human genome exceeds 3 × 109

nucleotides, and it requires 3 terabytes of RAM to store the entire
matrix with each value encoded by 4-byte float.

To overcome this problem, we propose to compress the data
with the sparse vector method. The basic idea of the method is to
encode the data by two vectors. The first data vector stores directly
the values of the encoded vector; the second vector stores the
indexes of the values in the encoded vector. This vector supports
the following operations: (1) returns standard vector values for a
given slice [i, j] and (2) changes vector values on a given slice [i, j].

On the real data—histone data labels—the compression level
exceeded 100. Thus, instead of 1 terabyte, about 100 megabytes
will solve the task.

For DeepZ model described in [10] with 1058 markers, all the
data for human genome took up only about 200 megabytes.
Hereby all the input data can run in RAM permanently. This
package was implemented in Python 3 using the NumPy library
and is available in the repository https://github.com/Nazar1997/
Sparse-vector.
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Fig. 1 General schema of deep learning models for Z-DNA prediction. (a) CNN-based deep model architec-
tures. (b) RNN-based deep model architecture for Z-DNA prediction. The second LSTM cell takes reversed
order of data and then concatenates the result with the first LSTM cell with the original order to improve the
performance
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4 Deep Learning Architectures

The proposed method is based on deep learning approach. We
considered three architectures comprising three types of deep neu-
ral networks: CNN, RNN, and hybrid CNN–RNN. Comparative
analysis performed by us in [10] showed that all three architectures
performed relatively well for the task of Z-DNA prediction.

The typical CNN and RNN blocks are presented in Fig. 1. They
can have different number of layers. The model ends by a fully
connected (FC) block, which also can be represented by more than
one layer. A dropout layer can be placed in between FC layers with a
probability of every dropout layer set to 0.5. The last FC layer has
two output neurons corresponding to two classes.

CNN-Based Architecture This type of DL models consists of only
CNN and FC layer blocks (Fig. 1). One and two CNN layers with
ReLU activation in between CNN layers were tried. Number of
convolutional kernels and kernel size varied from 1 to 17. Stride
was set to 1; padding was set to (kernel size - 1)/2, to keep the
same size of the output. Every convolutional kernel has 1D confor-
mation. An output of the CNN block is sent to the FC block, where
final prediction is made.

RNN-Based Architecture This type of DL models consists of only
RNN and FC blocks (Fig. 1). Untouched input is sent to the RNN
block. The RNN block consists of the LSTM network with differ-
ent hyperparameters. We tested one and two LSTM layers, one and
bidirectional LSTM with various hidden sizes. Output of the RNN
block is sent to the FC block where final prediction is made.

Hybrid CNN–RNN-Based Architecture This type of DL models
consists of both RNN and CNN and FC blocks. The input is first
sent to the CNN block and then to the RNN block, and the final
prediction is made in the FC block. Searching for hyperparameters
for each block was the same as described above.

In the original DeepZ publication, all models were trained
using RMSprop via backpropagation (RMSprop is the unpub-
lished, adaptive learning rate method proposed by Geoff Hinton).
Instead of the full-gradient calculation, the gradient was calculated
on a subset of the training set, and model parameters were updated
accordingly after each gradient calculation.
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5 Train and Test Set

Every chromosome is divided into a set of subsequences. We rec-
ommend to avoid generating boundaries of subsequences based on
the sites of Z-DNA as it takes place when the functional element is
centered in the region (seeNote 1). Every chromosome was evenly
cut into pieces with the length of 5000 nucleotides. For train and
test sets, we included all subsequences containing Z-DNA and
background sequences that do not contain Z-DNA, which were
randomly chosen from the entire genome. Randomization was
fixed for reproducibility. The number of non-Z-DNA sequences
was triple the number of Z-DNA-containing sequences. Training
and test sets were stratified and divided in the ratio of 4 to 1. The
stratification was based on Z-DNA presence and chromosome
number.

6 Whole-Genome Annotation with Z-DNA Regions

Once the model is trained, it can be used to predict novel functional
Z-DNA regions. The problem with training DeepZ model was the
scarcity of experimental Z-DNA data at the time DeepZ model was
developed. To minimize the bias toward the available training set,
we implemented procedure similar to five-fold cross validation. We
describe it further in detail. The entire data set, which is the entire
genome, is divided into 5 folds of equal size, and each fold is
stratified by chromosome number and indication of Z-DNA pres-
ence/absence (1 or 0). At each consequent step, one fold out of 5 is
chosen for a test set and the DeepZ model is trained on the
remaining 4 folds. The procedure is repeated five times. In total,
five DeepZ models are trained. Each of the five models is used for
predictions of the genomic regions outside of the training set. The
final prediction is calculated as an average of all five models’ predic-
tions, and these are probabilities for a nucleotide to belong to a
Z-DNA region. Thus, every nucleotide from every chromosome
will have a probability to belong to a Z-DNA-forming region. We
assign a nucleotide as belonging to a Z-DNA region if the predicted
probability is above a threshold. The threshold is recommended to
choose as the value that maximized F1 score on the combined set of
all 5 folds (see Note 2).

This method can assign short DNA regions being Z-DNA that
can be located at a short distance from each other. To avoid frag-
mentation, we combined short regions into longer one based on
the rule that all intervals with a gap less than 11 bp can be joined
together taking into account that 11 bp is the length of one turn of
DNA helix (see Note 3).
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7 DeepZ Model Interpretation

One of the important aspects of machine learning approach is the
interpretability of the constructed model. The value of the machine
learning model depends on whether it is possible to extract impor-
tant features that contribute to the model performance. Since RNN
architectures are not good for interpretations, we used the best
CNN model, which performance was only slightly inferior to the
best RNNmodel. We applied different approaches to interpretation
and describe each separately.

CNN was originally developed for image recognition where
image is supplied in the form of matrix with pixel values. The
CNN model applies different filters (small matrices) to reveal
important elements in the image regardless of their position inside
the image. Here genomic data is digitalized and represented as a
matrix with real values similar to image representation with pixel
values. The idea of applying different filters is the same as for images
but here the important filters correspond to the recurrent sequence
motifs. This methodology of extracting important filters from
CNN trained to predict genomic regions of interest was successfully
applied in many works including prediction of DNA-binding sites
[16] and others [8, 17]. This method uses only sequence informa-
tion that is converted to the DNA sequence motifs characteristic for
regions of interest (see Note 4).

The second method for getting feature importance from
DeepZ model consists in quantifying both positive and negative
contribution of each feature from omics data and physical, chemi-
cal, or structural properties of DNA. To obtain these values, CNN
model should be trained separately with a high regularization
penalty.

For image classification task, the proposed method computes
the gradient of the class score with respect to the input image
[18]. Our method is similar with the difference that the input is a
1D image of the nucleotide sequences. The training of the CNN
model is done with an addition of 10-3 (or 10-2) weights of L1
regularization in the loss function. L1 regularization has the prop-
erty of nullifying all unnecessary model weights, and all features
with zero weights in the first convolutional layer are further
ignored. The nonzero weights of the model are frozen, and the
trainable input is passed again to this model. The structure of the
model allows limiting the trainable input length to nine nucleotides
(Fig. 2). The most distant filter of the second layer is located at a
distance of two nucleotides; in turn the most distant nucleotide is
located at a distance of two nucleotides from the side filter. Thus,
the dependence on the target nucleotide will not exceed four
nucleotides to the left and to the right. A sequence of nine elements
will completely define one output of the trained CNN model as
shown in Fig. 2.
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Fig. 2 Model interpretation scheme

However, unlike a neural network, whose weights can take any
real value, values of this input can only take values from 0 to 1. In
order to find features that from the model’s point of view increase
the probability of Z-DNA formation, the range of values was set
from -1 to 1. This way we can quantify features with both positive
and negative contribution. The target function maximizes the pre-
dicted probability of becoming a Z-DNA site for the central nucle-
otide. RMSprop with learning rate 10-2 was used for input
learning. Input values were mapped to the interval [-1, 1] after
every learning iteration.

After the input that maximizes the output of the CNN is found,
it is difficult to find a DNA sequence that corresponds to its
maximum output, since the sequence itself is encoded by the
one-hot encoding method. This means that all four input features
depend on each other, and their independent maximization can
give an incorrect answer unlike other features. In order to find such
a sequence, a separate maximization was performed for the
encoded sequence but with additional restrictions. The sum of
four features for each nucleotide is equal to one. With these restric-
tions, the problem is not solved by an ordinary gradient descent,
but it is solved using sequential least squares programming. The
output is the weight matrix, which is interpretable as a Z-DNA
probability (see Note 5).

Availability The DeepZ model implementation is available at
https://github.com/Nazar1997/DeepZ.

8 Notes

1. Because of the small number of the positive class elements and
large number of features, the model is prone to overfitting.
Every step in the training should be taken with caution of
overfitting. A method to fight against overfitting is to avoid
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Z-DNA to be centered in the region submitted for training.
Otherwise the model will know boundaries and it will result in
a target leakage. That is why we partition chromosome in
5000 bp intervals and real Z-DNA regions are randomly
distributed over that 5000 bp intervals.

2. We can recommend two strategies to set up a threshold. The
one is chosen as the value that maximized F1 (or any other)
score on the combined set of all 5 folds as it was done in
DeepZ. The other way is to set up the desired number of
predicted intervals one expects from the model taking into
account model performance metrics. In DeepZ original study,
we used the cutoff threshold of 0.343 as it was the value that
maximized F1 score on the combined set of all 5 folds.

3. The accumulating data on Z-DNA binding indicate that Z-
DNA-binding sites can be shorter than 11 bp. It is up to a
researcher to set up the value for the Z-DNA region minimum
length. If the value is too small, then the prediction can result
in many fragmented regions.

4. Extraction of important filters and their conversion into DNA
motifs are done differently from the approaches when only
sequence information is used in the form one-hot-encoded
matrix. Here we must perform optimization with boundary
conditions, and for this task the standard gradient methods
must be modified.

5. Feature importance analysis for deep neural network models is
a developing field and there does not exist one solution. Dif-
ferent approaches and methods can be employed. In the origi-
nal DeepZ publications, we applied regularization to the first
convolution layer. Later we found that linear regression with
regularization also works given that the linear model shows a
good performance.
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