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In memory of Dmitri N. Akhiezer

1. Introduction

We work over algebraically closed field K of characteristic zero. All the varieties in this 
paper are algebraic varieties defined over K; Pn and An stand for the projective resp. 
affine n-space over K; Gm and Ga stand for the one-dimensional algebraic torus and the 
one-dimensional unipotent algebraic group over K, respectively. All the notions, such as 
a neighborhood, a spray, etc. are considered in the algebraic category unless otherwise 
noted. “Ellipticity” below means “Gromov’s algebraic ellipticity”.

1.1. Gromov’s ellipticity

The notion of Gromov ellipticity appeared first in analytic geometry where it serves 
in order to establish the Oka-Grauert Principle in the most general form, see [21] and 
[16]. Besides, for an elliptic complex manifold X the following approximation property 
holds: every holomorphic map f : K → X from a neighborhood of a compact convex set 
K ⊂ Cn can be approximated by holomorphic maps Cn → X, see [21]. A manifold X
with the latter property is called an Oka manifold, see the survey article [18]. If X is 
algebraic and elliptic in the algebraic sense, then f can be approximated by morphisms 
Cn → X, see [18, Corollary 6.5].

Gromov considered as well an analogous notion of ellipticity in the setup of algebraic 
varieties. It is known that an elliptic smooth algebraic variety X of dimension n admits a 
surjective morphism from An+1 which also is smooth and surjective on an open subset of 
An+1, see [31]. Assuming that X is also quasiaffine, this implies that the endomorphism 
monoid End(X) is highly transitive on X, see [26, Appendix A]. Furthermore, for K = C

the fundamental group π1(X) is finite, see [32].
Recall that a smooth algebraic variety X is called elliptic if it admits a dominating 

Gromov spray (E, p, S) where p : E → X is a vector bundle with zero section Z and 
s : E → X is a morphism such that s|Z = p|Z and s is dominating at any point x ∈ X, 
that is, the restriction s|Ex

to the fiber Ex = p−1(x) is dominant at the origin 0x ∈ Ex. 
The image Ox = s(Ex) ⊂ X is called the s-orbit of x.

According to [21, 3.5.B] (see also [16, Proposition 6.4.2], [33, Remark 3] and [26, Ap-
pendix B]) if the ellipticity holds locally on an open covering of X, then it holds globally. 
Moreover, the ellipticity of X holds if X is subelliptic, that is, there is a dominating 
collection of sprays on X instead of a single spray, see [15, Definition 2.1], [16] and [25]. 
In other words, one can always replace a dominating collection of sprays on X with a 
single dominating spray.

1.2. Ellipticity of cones

Let X ⊂ PN be a smooth projective variety of dimension n. The affine cone cone(X)
in AN+1 blown up at the origin gives rise to a line bundle F = OX(−1) on X whose zero 
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section ZF is the exceptional divisor of the blowup. The associated principal Gm-fiber 
bundle Y → X with fiber A1

∗ = A1 \{0} is isomorphic to F \ZF and so, to the punctured 
affine cone over X that is, the affine cone with its vertex removed:

Y = F \ ZF �X cone(X) \ {0}.

Our aim is to establish the ellipticity of Y provided X is elliptic, under certain addi-
tional assumptions on X. In [26] the second and the third authors suggested criteria of 
ellipticity of Y based on the so called curve-orbit property for some families of smooth 
rational curves and sprays on X. In particular, it was shown in [26] that the punctured 
affine cones over a flag variety G/P blown up in several points and infinitesimally near 
points are elliptic and the same holds for any rational smooth projective surface, see [26, 
Theorem 0.1]. In the present note we develop further the technique of [26]. This allows 
us to establish similar facts for uniformly rational varieties, in particular, for varieties of 
class A0, therefore, for smooth projective toric and, more generally, spherical varieties. 
Recall that a spherical variety is a normal G-variety which contains an open B-orbit, 
where G is a reductive algebraic group and B is a Borel subgroup in G. A flag variety 
G/P and a normal toric variety are spherical varieties. For G/P the latter follows from 
the Bruhat decomposition G = BWB, and for a toric T -variety it suffices to choose 
G = B = T .

1.3. Varieties of class A0

One says that a variety X belongs to class A0 if there is an open cover {Ai} on X by 
affine cells Ai � An where n = dim(X); see [15, Definition 2.3].2 It is well known that a 
variety of class A0 is elliptic; see, e.g., [21, Sec. 3.5]. The blowup of a variety of class A0

in a point is again a variety of class A0, see [21, 3.5D]. More generally, suppose X is a 
variety of class A0 and Z ⊂ X is a closed subvariety such that the pair (Ai, Z ∩ Ai) is 
isomorphic for any i to a pair (An, Ak) with n − k ≥ 2; in this case Z is called a linear 
subvariety of X. The blowup of a linear subvariety Z in X results again in a variety of 
class A0, see [3, Section 4, Statement 9].

1.4. Uniformly rational varieties

This class of varieties strictly contains the class A0, see Example 4.8.

Definition 1.1. An algebraic variety X is called uniformly rational3 if for each x ∈ X

there is an open neighborhood X0 of x in X isomorphic to an open subset of An.

2 A variety of class A0 is also said to be A-covered, see [3, Definition 4].
3 In other terms, regular, plain or locally flattenable, see [21, 35.D], [6] and [39], respectively.
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In [21, 3.5.E′′′] Gromov asked whether a smooth complete rational variety is uniformly 
rational. It seems that this question is still open, see [7, Question 1.1] and [9, p. 41]. On 
the other hand, not every complete uniformly rational variety belongs to class A0. For 
instance, none of the smooth rational cubic fourfolds in P 5 and none of the smooth 
threefold intersections of a pair of quadrics in P 5 contains a Zariski open set isomorphic 
to an affine space, see [37], and [41]. However, these varieties are uniformly rational, see 
[7] and Example 4.8 below.

For the following property of uniformly rational varieties see [21, Proposition 3.5E], 
[6, Theorem 4.4] and [7, Proposition 2.6].

Theorem 1.2. Let X be a uniformly rational variety and X̃ → X be the blowing of X up 
along a smooth subvariety of codimension at least 2. Then X̃ is uniformly rational.

Notice that the total space of a locally trivial fiber bundle over a uniformly rational 
variety with a uniformly rational general fiber also is uniformly rational.

1.5. Main results

We prove the following theorem.

Theorem 1.3 (Theorem 3.3). Let X be a complete uniformly rational variety of positive 
dimension. Then X is elliptic. Let further X be projective, D be an ample divisor on X
and Y = F \ ZF be the principal Gm-fiber bundle associated with a line bundle F where 
either F = OX(−D) or F = OX(D). Then Y is elliptic.

Remarks 1.4. 1. Up to isomorphism over X which inverses the Gm-action, the Gm-variety 
Y = F \ ZF stays the same under replacing D by −D.

2. For a trivial line bundle F on X the variety Y �X X × (A1 \ {0}) is not elliptic 
and π1(Y ) is infinite for K = C.

3. If Pic(X) = Z then any non-principal divisor D on X is either ample or anti-ample.
4. As a simple example, consider X = P 1 and let D be a point of P 1. Then 

F = OP1(−1) is the tautological line bundle on P 1 and Y = A2 \ {0}, which is elliptic. 
For D = 0 we obtain Y = P 1 × (A1 \ {0}), which is not elliptic.

From Theorems 1.2 and 1.3 we deduce the following fact.

Corollary 1.5. The variety X ′ resulting from a sequence of blowups of a complete uni-
formly rational variety X along smooth subvarieties is elliptic.

A closely related result in [33, Corollary 2] says that the blowup X ′ with a smooth 
center of codimension at least 2 in a variety X of class A0 is subelliptic. Hence, X ′ is 
elliptic by [25, Theorem 0.1]. See also [24] for a similar result.
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Notice also that due to Theorem 1.3 and to Gromov’s theorem mentioned above, any 
uniformly rational compact complex algebraic variety X is an Oka manifold.

Smooth complete spherical varieties and smooth complete rational T -varieties of com-
plexity one belong to class A0, see [8] and [3]. Hence, these varieties are uniformly 
rational. So, we have the following corollary.

Corollary 1.6 (cf. Corollary 4.6). Let a smooth projective variety X be either spherical 
or a rational T -variety of complexity one. Then the conclusions of Theorem 1.3 hold for 
X successively blown up along smooth subvarieties. In particular, this holds if X is a 
toric variety or a flag variety.

The next result concerns complete unirational varieties.

Theorem 1.7. Let X be a complete unirational variety of dimension n. Then there exists a 
smooth complete uniformly rational variety X̃ of dimension n and surjective morphisms 
An+1 → X̃ → X. If X is rational then the morphism X̃ → X can be chosen to be 
birational. Furthermore, if the base field K is C, then there are surjective morphisms 
An → X̃ → X.

Proof. By Chow’s Lemma there exists a projective variety X ′ and a birational surjective 
morphism X ′ → X, see [22, Ch. II. Exercise 4.10]. Clearly, replacing X by X ′ we may 
assume that X is projective.

Choose a generically finite dominant rational map h : Pn ��� X, which is birational 
if X is rational. By Hironaka’s theorem on elimination of indeterminacy there exists a 
commutative diagram

X̃

Pn X
h

f g

where f is a composition of blowups with smooth irreducible centers and g is a generically 
finite morphism, which is birational if h is, see [23] and [29, Corollary 3.18 and Theorem 
3.21]. By Theorem 1.2, X̃ is uniformly rational, hence elliptic, see Theorem 1.3. This 
allows to apply a theorem of Kusakabe [31] which says that there is a surjective morphism 
An+1 → X̃. Moreover, if K = C, then there is a surjective morphism An → X̃ by a result 
of Forstnerič, see [17, Theorem 1.6]. �

From Theorem 1.7 we deduce the following characterization of unirationality:

Corollary 1.8. A complete variety X over K of dimension n is unirational if and only if 
X admits a surjective morphism from An+1 (resp., from An if the base field is C).
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Remarks 1.9. 1. The assumptions of completeness in Theorems 1.3 and 1.7 are important, 
as the following simple example shows: take the complement T of the coordinate cross 
xy = 0 in C2. See, however, [1] and [4] for certain classes of affine and quasiaffine varieties, 
respectively, that are images of affine spaces.

2. Recall Gromov’s question (see [21, 3.5′′]): is every unirational smooth complete 
variety elliptic?

3. By the Lefschetz Principle, the theorem of Forstnerič cited above holds over any 
algebraically closed field of characteristic zero which has infinite transcendence degree 
over Q, see [14].

4. The version of Kusakabe’s theorem used in the above proof says that a smooth 
complete elliptic variety X̃ admits a morphism An+1 → X̃. Moreover, this morphism 
could be chosen so that its restriction to an open subset of An+1 is smooth and surjective. 
For the reader’s convenience we sketch a short argument close to the original one in [31]. 
Notice that the original Kusakabe’s theorem works for a not necessarily complete smooth 
elliptic variety.

Fix a dominating spray (E, p, s) on X̃ of rank r ≥ n. For any point x ∈ X̃ the 
restriction s|Ex

: Ex → X̃ has surjective differential at the origin 0x ∈ Ex. Hence, one 
can choose a vector subspace Fx ⊂ Ex of dimension n such that s|Fx

: Fx → X̃ is étale 
at 0x ∈ Fx. It follows that Fx contains an open neighborhood Vx of 0x ∈ Fx such that 
the differential of s|Vx

has rank n at any point v ∈ Vx and s(Vx) contains a Zariski 
open dense neighborhood Ux of x in X̃. Choosing a finite open covering {Uxi

} of X̃, 
i = 1, . . . , k one has s(V ) = X̃ where V = ∪iVxi

.
Since X̃ is unirational, hence rationally connected, there exists a rational curve C

in X̃ which passes through x1, . . . , xk, see [28, Ch. IV, Theorem 3.9]. The normaliza-
tion morphism η : P 1 → C induces a vector bundle η∗E → P 1. Choose an affine chart 
A � A1 in P 1 which contains η−1(xi) for i = 1, . . . , k. The restriction of η∗E|A is trivial: 
η∗E|A ∼=A A1 × Ar = Ar+1. Let Ṽ resp. F̃ be the preimage of V resp. of F = ∪iFxi

in 
η∗E|A. Identifying η∗E|A with the trivial vector bundle A1 ×Ar → A1 one can find an 
automorphism ϕ of the latter identical on A1 which sends every An-component of F̃ to 
the fixed An-subspace of Ar. Thus, ϕ sends F̃ into A1 × An = An+1. Since s(V ) = X̃, 
letting s̃ = s ◦ η∗ ◦ ϕ−1 one has s̃(Ṽ ) = X̃, where η∗ : η∗E|A → E|A is the natural 
surjective morphism induced by η. Moreover, there exists an open neighborhood Ω of Ṽ
in An+1 such that s̃(Ω) = X̃ and s̃|Ω : Ω → X̃ is smooth. �
1.6. Generalized affine cones

By Theorem 1.3 the punctured affine cones over uniformly rational projective varieties 
are elliptic. Let us mention further examples.

Recall that an effective Gm-action λ : Gm × Ȳ → Ȳ on a normal affine variety Ȳ is 
called good if there exists a point y0 ∈ Ȳ which belongs to the closure of any λ-orbit. The 
structure algebra A = OȲ (Ȳ ) of such a Gm-variety Ȳ is positively graded: A =

⊕
k≥0 Ak

where A0 = K and Ak for k > 0 consists of λ-homogeneous elements of weight k. Let 
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Y = Ȳ \ {y0} and X = Proj(A) = Y/λ. Then X is a normal projective variety, see 
[12, Proposition 3.3]. According to [12, Theorem 3.5], see also [13, Theorem 3.3.4], there 
exists an ample Q-Cartier divisor D =

∑
i pi/qiDi on X, where the Di are prime divisors 

and the integers pi, qi are coprime, such that

Ak = H0(X,OX(�kD�)) for every k ≥ 0.

Furthermore, the Gm-action λ on Y is free if and only if D is a Cartier divisor that is, 
qi = 1 ∀i, see [12, Corollaire 2.8.1].

Conversely, given a smooth projective variety X and an ample Cartier divisor D on 
X one can consider the generalized affine cone

Ȳ = Spec
( ∞⊕

n=0
H0 (X,OX(nD))

)
.

This is a normal affine variety equipped with a good Gm-action, see [12, Sec. 3] or [13, 
Proposition 3.3.5]. Letting Y = Ȳ \ {y0} where y0 ∈ Ȳ is the unique Gm-fixed point, 
one gets a morphism π : Y → X = Y/Gm. Every fiber of π is reduced, irreducible and 
isomorphic to A1

∗, see [12, Proposition 2.8] and [13, Proposition 3.4.5]. Furthermore, the 
Gm-action on Y is free and π is locally trivial, see [12, the proof of Proposition 2.8].

Consider also the line bundle F = OX(−D) → X equipped with the associated 
Gm-action. We have a birational morphism F → Ȳ contracting the zero section ZF to a 
normal point y0 ∈ Ȳ , cf. [12, 3.4]. It restricts to an equivariant isomorphism of smooth 
quasiaffine varieties

F \ ZF � Ȳ \ {y0}

equipped with free Gm-actions, see [12, Corollaire 2.9], [13, Sec. 3.4, p. 49] and [27, Sec. 
1.15]; cf. [36, p. 183].

Notice that while Ȳ above is normal, for X ⊂ PN the affine cone cone(X) is normal 
if and only if the embedding X ↪→ PN is projectively normal, that is, for every d ≥ 1 the 
linear system cut out on X by the hypersurfaces of degree d is complete, see [22, Chap. 
II, Example 7.8.4]. Thus, if D is a hyperplane section of X ⊂ PN then Ȳ as above is the 
normalization of the affine cone cone(X). In particular, the punctured cone cone(X) \{0}
is Gm-equivariantly isomorphic to Ȳ \ {y0}.

2. The curve-orbit property

We need the following more general analog of the curve-orbit property (∗) for 
Ga-sprays defined in [26, Definition 2.7].

Definition 2.1. Given a smooth variety B of dimension n − 1 consider the Ga-action on 
the cylinder V = B ×A1 by shifts on the second factor:
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sV : Ga × V → V, (t, (b, v)) �→ (b, v + t)

along with the associated Ga-spray (EV , pV , sV ) on V where EV = V × A1 and 
pV : EV → V is the first projection.

Let X be a smooth variety of dimension n. Assume that X admits a birational mor-
phism ψ : V → X biregular on an open dense subset V0 ⊂ V with image X0 ⊂ X. 
Consider the spray (E0, p0, s0) on X0 with values in X conjugate to (EV , pV , sV )|V0

via ψ. That is, E0 = X0 ×A1, p0 : E0 → X0 is the first projection and

s0 : E0 → X, (x, t) �→ ψ(sV (t, ψ−1(x))).

Extend (E0, p0, s0) to a rank 1 spray (E, p, s) on X; the latter spray exists due to Gro-
mov’s Extension Lemma, see [21, 3.5B], [16, Propositions 6.4.1-6.4.2] or [26, Proposition 
8.1]. We call (E, p, s) a Ga-like spray on X. This spray is associated with the birational 
Ga-action on X conjugate via ψ to the standard Ga-action on the cylinder V , see [11, 
Chap. 1].

Remark 2.2. The closure Cx = Ox in X of the s0-orbit Ox of a point x ∈ X0 is a 
rational curve. By construction, the intersection Cx∩X0 is smooth and (E, p, s) restricts 
to a dominating spray on Ox ∩ X0, cf. Lemma 2.4 below. Moreover, the morphism 
s : Ex � A1 → Cx admits a lift to the normalization P 1 of Cx, and the latter morphism 
A1 → P 1 is an embedding.

However, the curve Cx can have singularities off X0. Thus, the setup of Definition 2.1
does not guarantee that X verifies on X0 either the curve-orbit property (∗) of [26, 
Definition 2.7], or the enhanced curve-orbit property (∗∗) of [26, Proposition 3.1]. Indeed, 
the latter properties postulate the smoothness of Cx for x ∈ X0, which occurs to be a 
rather restrictive condition for our purposes. The question arises whether any smooth 
complete variety of class A0, or even every complete uniformly rational variety, verifies 
the curve-orbit property (∗) of [26] with smooth rational curves; cf. Corollary 2.7 and 
Lemma 3.1 below. Notice that this property holds for smooth complete rational surfaces 
and for flag varieties G/P , see [26].

In order to use the criterion of ellipticity of cones over projective varieties from [26, 
Corollary 2.9] we introduce the following objects.

Definition 2.3. Let X and B be as in Definition 2.1. Consider a P 1-cylinder W = B×P 1

with base B. Assume that X admits a birational morphism ϕ : W → X biregular on an 
open dense subset W0 ⊂ W with image X0 ⊂ X. Given a point u ∈ P 1 consider the 
cylinder Vu := B × (P 1 \ {u}) � B × A1, the birational morphism ψu = ϕ|Vu

: Vu → X

and the open dense subsets Vu ∩ W0 ⊂ Vu and Xu = ψu(Vu ∩ W0) ⊂ X0. Thus, the 
data (W, ϕ, X0) yields a one-parameter family of Ga-like sprays (Eu, pu, su) on X where 
u ∈ P 1, see Definition 2.1.
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Lemma 2.4. Under the setup of Definition 2.3 let for x ∈ X0,

w = ϕ−1(x) = (b, ux) ∈ W0 and Cx = ϕ({b} × P 1) ⊂ X. (1)

Then Cx is a complete rational curve in X through x such that Cx ∩ X0 is smooth. 
If x ∈ Xu, that is ϕ(b, u) �= x, then the su-orbit Ou,x of x is one-dimensional and 
(Eu, pu, su) restricts to a spray on Cx dominating at x and such that su|Eu,x

: Eu,x → Ou,x

is a birational morphism étale over x.

Proof. The Ga-like spray (Eu, pu, su) inherits a kind of the composition property of a 
Ga-action. Namely, for any x′ ∈ Ou,x ∩X0 the su-orbits Ou,x′ and Ou,x coincide. This 
implies that (Eu, pu, su) restricts to a spray on Cx. The rest of the proof is easy and is 
left to the reader. �
Definition 2.5. Modifying [26, Definition 2.7] we say that a complete rational curve C on 
a smooth variety X verifies the strengthened two-orbit property at a smooth point x ∈ C

if

(∗) there exists a pair of rank 1 sprays (Ei, pi, si) (i = 1, 2) on X such that C is covered 
by the one-dimensional si-orbits Oi,x, si : Ei,x → Oi,x is a birational morphism étale 
over x and (Ei, pi, si) restricts to a spray on Oi,x dominating at x.

If for any x ∈ X there exists a curve C = Cx as above, then we say that X verifies the 
strengthened curve-orbit property.

Remark 2.6. Following the lines of the proof of Proposition 2.8 one can establish the 
ellipticity of the punctured affine cone over an elliptic smooth projective variety with an 
ample polarization under the following weaker assumption:

(∗′) for each x ∈ X there exists a rational curve Cx in X and a pair of sprays 
{(Ei, pi, si)}i=1,2 on X such that
• x is a smooth point of Cx;
• si|Ei,x

: Ei,x → Oi,x is a birational morphism étale over x;
• Cx = O1,x ∪O2,x.

However, in the concrete setup of the present paper the strengthened curve-orbit property 
(∗) holds as well.

We have the following corollary.

Corollary 2.7. Let X be a smooth projective variety, and let (W, ϕ, X0) be a data as in 
Definition 2.3. For x ∈ X0 let Cx be a curve as in (1). Then Cx verifies the strengthened 
two-orbit property (∗) at x with a pair of Ga-like sprays. If for each x ∈ X there exists a 
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data (W, ϕ, X0) such that x ∈ X0 then the strengthened curve-orbit property holds on X

with pairs of Ga-like sprays.

Proof. Let ϕ−1(x) = (b, ux) ∈ W0. Pick two distinct points u1, u2 ∈ P 1 different from ux

and consider the corresponding Ga-like sprays (Ei, pi, si) = (Eui
, pui

, sui
), i = 1, 2, see 

Definition 2.3. Due to Lemma 2.4 these sprays fit in Definition 2.5 of the strengthened 
two-orbit property. This yields the first assertion. Now the second is immediate. �

Using Definitions 2.1 and 2.3 we can generalize the ellipticity criterion for cones in 
[26, Corollary 2.9] as follows. The proof repeats verbatim the proof of Corollary 2.9 in 
[26] with minor changes.

Proposition 2.8. Let X be a smooth projective variety and � : F → X be an ample line 
bundle. Suppose that X is elliptic and for any point x ∈ X there exists a data (W, ϕ, X0)
as in Definition 2.3 such that x ∈ X0. Then Y = F \ ZF is elliptic.

Proof. A dominating spray (E, p, s) on X lifts to a spray (Ê, p̂, ̂s) of rank n = dim(X)
on Y where Ê fits in the commutative diagrams

Ê
p̂−→ Y

↓�̂ ↓�|Y
E

p−→ X

and
Ê

ŝ−→ Y

↓�̂ ↓�|Y
E

s−→ X

(2)

see [26, Lemma 2.3].
Given y ∈ Y we let x = �(y) ∈ X and let Cx be a rational curve on X passing 

through x which is smooth at x and such that (Cx, x) satisfies the strengthened two-
orbit property with a pair of Ga-like sprays (Ei, pi, si) on X, i = 1, 2, see Definition 2.5
and Corollary 2.7. Due to [26, Lemma 2.3] these sprays admit a lift to a pair of rank 1
sprays (Êi, p̂i, ̂si) on Y .

We will show, following the lines of the proof of Proposition 2.6 in [26], that the triplet 
of sprays (Ê, p̂, ̂s) and (Êi, p̂i, ̂si), i = 1, 2 is dominating at y. This implies the assertion.

Notice that the tangent space at y to the ŝ-orbit is a hyperplane H ⊂ TyY such that 
d�(H) = TxX. We claim that the pair of tangent vectors at y to the ŝi-orbits Ôi,y on 
Y span a plane P in TyY such that d�(P ) = TxCx. Accepting this claim, there exists 
a nonzero vector v ∈ P such that d�(v) = 0. Hence v /∈ H and so, span(H, P ) = TyY , 
which gives the desired domination.

To show the claim, consider a morphism of normalization ϕx : P 1 → Cx and the 
pullback line bundle F̃ = F̃ (x) = ϕ∗

x(F |Cx
) → P 1. Since F → X is ample one has 

[F ] · [Cx] �= 0. Hence, F̃ → P 1 is nontrivial and so is the associated principal Gm-fiber 
bundle Ỹ = Ỹ (x) = ϕ∗

x(Y |Cx
) → P 1, see, e.g., [35, Proposition 4.1]. For i = 1, 2 consider 

the pullback p̃i : Ẽi → Ỹ of the line bundle p̂i : Êi → Y via the induced morphism 
Ỹ → Y |Cx

.
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According to the second diagram in (2) we have

�(Ôi,y) = � ◦ ŝi(Êi,y) = si(Ei,x) = Oi,x ⊂ Cx.

The birational morphism si|Ei,x
: Ei,x = A1 → Cx admits a lift to normalization 

s̃i,x : A1 → P 1. In fact, s̃i,x is a birational morphism smooth at 0. Hence, s̃i,x sends 
A1 isomorphically onto Ui := P 1 \ {ui}, the notation being as in the proof of Corol-
lary 2.7.

By Lemma 2.4 (Ei, pi, si) restricts to a Ga-like spray on Cx. It is easily seen that there 
is a pullback ϕ∗

x((Ei, pi, si)|Cx
) to a Ga-like spray (E′

i, p
′
i, s

′
i) on P 1 dominating at x and 

such that the s′i-orbit of x coincides with Ui. Now, the pullback of (E′
i, p

′
i, s

′
i) to Ỹ via 

Ỹ → P 1 gives a Ga-like spray (Ẽi, p̃i, ̃si) on Ỹ with p̃i : Ẽi → Ỹ as above.
There are trivializations Ỹ |Ui

∼=Ui
Ui × A1

∗, i = 1, 2. The standard Ga-action on 
Ui � A1 lifts to a Ga-action on Ỹ |Ui

whose orbits are the constant sections. Since any 
morphism A1 → A1

∗ is constant, the one-dimensional s̃i-orbits in Ỹ also are constant 
sections. Since the Gm-fiber bundle Ỹ → P 1 is nontrivial, it admits no global section. 
Hence, in an appropriate affine coordinate z on U1 ∩ U2 the transition function equals 
zk with k �= 0. It follows that the constant sections over U1 meet transversally the ones 
over U2.

The normalization morphism ϕ : P 1 → Cx is étale over x. Hence, also the morphism 
Ỹ → Y |Cx

is étale over y. Finally, the ŝi-orbits Ô1,y and Ô2,y meet transversally at y. 
This proves our claim. �
3. Uniformly rational varieties

3.1. The ellipticity and the curve-orbit property of complete uniformly rational varieties

In order to apply Proposition 2.8 to complete (e.g., projective) varieties we need the 
following Lemmas 3.1–3.2.

Lemma 3.1. Let X be a smooth complete variety of dimension n ≥ 2. Then X is uni-
formly rational if and only if for any point x ∈ X there exists a data (W, ϕ, X0) where 
W = B × P 1 is a cylinder over an open set B ⊂ An−1 and ϕ : W ��� X is a birational 
map which sends biregularly an open subset W0 ⊂ B ×A1 ⊂ W onto a neighborhood X0
of x in X; cf. Definitions 2.1 and 2.3. Furthermore, if X is uniformly rational, then one 
can choose a Ga-like spray (Eu, pu, su) as in Definition 2.3 so that the differential dsu
sends T0x

Eu,x to a general line in TxX.

Proof. The “if” part is immediate. To show the “only if” part, suppose X is uniformly 
rational. Then for any x ∈ X there is an open subset V0 ⊂ An and an isomorphism h0
of V0 onto a neighborhood of x in X.

Embed An ↪→ Pn and let h : Pn ��� X be the birational extension of h0. Let 
v = h−1

0 (x) ∈ V0. Fix a general point P ∈ H = Pn \ An and let L be the family of 
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projective lines in Pn which pass through P . The projection πP : Pn ��� Pn−1 with cen-
ter P restricts to a linear projection τ : An → An−1. The latter defines a decomposition 
An ∼= An−1×A1 and a family of parallel affine lines ly = {y} ×A1 in An where y ∈ An−1

and l̄y ∈ L. We may assume that l̄0 ∈ L passes through v.
The embedding An = An−1 × A1 ↪→ Pn extends to a birational morphism 

ψ : An−1 × P 1 → Pn which contracts An−1 × {∞} to P . The birational map
ϕ̃ := h ◦ ψ : An−1 × P 1 ��� X fits in the lower triangle of the commutative diagram

X̂

Pn X
h

f g

An−1 × P 1

ψ ϕ̃

In the upper triangle, X̂ stands for the resolution of the closure Γh of the graph of h in 
Pn ×X, while f and g stand for the standard projections of Γh to the factors composed 
with the resolution morphism X̂ → Γh. Thus, X̂ is a smooth projective variety and f
and g are birational morphisms.

We claim that one can choose an open neighborhood B of τ(v) = 0 ∈ An−1

and an open subset W0 ⊂ W := B × P 1 which contains v so that the restriction 
ϕ = ϕ̃|W0 : W0 → X is biregular onto its image X0 = ϕ(W0) � x, as desired.

To show the claim notice that the inverse f−1 of the birational morphism f : X̂ → Pn

between smooth projective varieties is a blowup of Pn whose center is an ideal sheaf 
supported on a closed subvariety Z ⊂ Pn of codimension at least 2, see [22, Ch. II, 
Theorem 7.17]. On the other hand, Z is the indeterminacy locus of h = g ◦ f−1 ([22, Ch. 
II, Proposition 7.13(b)]). Thus, h is regular on Pn \ Z and so, ϕ̃ = h ◦ ψ is regular on 
(An−1 × P 1) \ ψ−1(Z).

Since P ∈ H is a general point, we may assume that P /∈ Z. Thus, h is regular in 
P and ϕ̃ = h ◦ ψ is regular on An−1 × {∞} (recall that ψ(An−1 × {∞}) = P ). Since 
P /∈ Z the image πP (Z) is a closed subvariety of Pn−1. Since codimPn Z ≥ 2 the image 
Δ := τ(Z \H) = πP (Z) \ πP (H) is a proper closed subvariety of An−1 = Pn−1 \ πP (H). 
Since P is a general point of H and codimPn Z ≥ 2 we may suppose that l̄0 ∩Z = ∅ and 
so, τ(v) /∈ Δ. Since by our construction h is regular on V0 we have Z ∩ V0 = ∅.

Let B = An−1 \ Δ. It follows from the preceding that ϕ̃ is regular on B × A1. 
Furthermore, ϕ̃ is regular on W = B × P 1 and sends biregularly the neighborhood 
W0 := ψ−1(V0) ⊂ W of ψ−1(v) onto the neighborhood X0 := ϕ̃(W0) of x in X. Letting 
ϕ = ϕ̃|W the claim follows. This proves the first assertion of the lemma.
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To show the second assertion we let u = ∞ ∈ P 1 so that v ∈ Vu = B × A1, see 
Definition 2.3. Via the conjugation with ϕ, the Ga-action on Vu by shifts on the factor 
A1 yields a Ga-like spray (Eu, pu, su) on X as in Definition 2.1. The restriction of su to 
Eu,x is an immersion at the origin 0x ∈ Eu,x, see Lemma 2.4.

Since τ : An → An−1 is a general linear projection, the tangent vector at v to the orbit 
of v under the Ga-action on Vu is a general vector in TvV0. It follows that the differential 
dsu sends T0x

Eu,x to a general line in TxX. �
Lemma 3.2. A complete uniformly rational variety X is elliptic.

Proof. By Lemma 3.1 one can find n different rank 1 sprays (Ei, pi, si) on X, i = 1, . . . , n
where n = dim(X) such that the lines dsi(T0i,x

Ei,x) span the tangent space TxX. The 
composition of these sprays gives a rank n spray on X dominating at x, see [25, Corollary 
2.2]. This implies that X is locally elliptic, hence elliptic, see [25, Theorem 1.1]. �
3.2. The main results

We can now deduce our main result.

Theorem 3.3. For a complete uniformly rational variety X the following holds.

(i) X is elliptic.
(ii) Assume that X is projective and let F → X be an ample or anti-ample line bundle 

on X with zero section ZF . Then Y = F \ ZF is elliptic.

Proof. Statement (i) follows from Lemma 3.2 and (ii) follows from Proposition 2.8 due 
to Lemma 3.1. �

In Corollary 3.7 below we slightly generalize statement (i). Let us introduce the fol-
lowing notion.

Definition 3.4. We say that a variety X is stably uniformly rational if for some k ≥ 0 the 
variety X ×Ak is uniformly rational.

Remark 3.5. There exist non-rational stably rational varieties, see [5]. However, we do 
not know whether every stably uniformly rational variety is uniformly rational. One may 
also ask whether there exists a non-rational stably uniformly rational variety.

On the other hand, we have the following lemma suggested by Lárusson, see [24, 
Proposition 1.9].

Lemma 3.6. If the product X = X1 ×X2 of smooth varieties X1 and X2 is elliptic, then 
the Xi are elliptic.
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For the reader’s convenience we sketch the proof.

Proof. Let (E, p, s) be a dominating spray on X. Pick a point P ∈ X2 and consider the 
restriction p1 : E1 → X1 of p : E → X to X1 × {P} ⊂ X. Letting now

s1 = pr1 ◦ s|E|X1×{P} : E1 → X1

yields a desired dominating spray (E1, p1, s1) on X1, cf. the proof of Proposition 1.9 in 
[24]. �
Corollary 3.7. A complete stably uniformly rational variety X is elliptic.

Proof. Let X ×Ak be uniformly rational. Then also X̂ = X ×Pk is. By Theorem 3.3(i) 
X̂ is elliptic. By Lárusson’s Lemma 3.6 X is elliptic too. �

The ampleness assumption in Theorem 3.3(ii) is not a necessary one. Indeed, we have 
the following version of this theorem.

Theorem 3.8. Let π : X → B be a locally trivial fiber bundle with the base B and the 
fiber V being uniformly rational smooth complete varieties. Let D be a relatively ample 
divisor on X, that is, D ·Xb is an ample divisor on the fiber Xb = π−1(b) � V for all 
b ∈ B. Let F = OX(±D). Then X and Y = F \ ZF are elliptic.

Proof. The ellipticity of X follows from Lemma 3.2 and the remark after Theorem 1.2. 
For every b ∈ B the conclusion of Lemma 3.1 holds for the fiber Xb. It follows that 
Xb verifies the strengthened curve-orbit property (∗), see Lemma 2.7, that is, for any 
x ∈ Xb there is a rational curve Cx on Xb smooth at x and a pair of Ga-like spays 
(Ei, pi, si), i = 1, 2 on Xb as in Remark 2.6. Due to the local triviality of π and Gromov’s 
Localization Lemma these sprays can be extended on X. Now the argument from the 
proof of Proposition 2.8 applies and yields the ellipticity of Y . �

Observe that a relatively ample divisor D as in Theorem 3.8 does not need to be 
ample on X; cf. e.g., [26, Example 2.11].

4. Examples

We start with the following well known example. For the reader’s convenience we 
provide an argument.

Lemma 4.1. A smooth complete toric variety X belongs to class A0.

Proof. Let N be a lattice of rank n = dim(X) and Σ be the complete fan in NQ = N⊗ZQ

associated with X. Since X is smooth every n-cone σ ∈ Σ is simplicial generated by 
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vectors v1, . . . , vn ∈ N which form a base of N . The corresponding affine variety Xσ is 
isomorphic to An and the affine charts Xσ cover X, see, e.g., [19, Sec. 1.4]. �

For the proof of the next lemma we address the original paper.

Lemma 4.2 ([3, Theorem 5]). A smooth complete rational variety X with a torus action 
of complexity 1 belongs to class A0.

Remark 4.3. As a weak analog of the last result for affine varieties, let us mention that 
every smooth rational affine variety with a torus action of complexity 0 or 1 is uniformly 
rational, see [34]. See also [38] for examples of smooth contractible uniformly rational 
affine threefolds with a torus action of complexity 2 non-isomorphic to A3. These include, 
in particular, the famous Koras-Russell cubic.

Lemma 4.1 extends to complete spherical varieties. For the reader’s convenience we 
sketch a proof.

Lemma 4.4 ([8, Sec. 1.5, Corollaire]). A smooth complete spherical variety X belongs to 
class A0.

Proof. Recall first the Local Structure Theorem, see [8, Théorème 1.4]. Consider a nor-
mal G-variety Z, where G is a connected reductive algebraic group. Let z ∈ Z be a 
point such that the orbit Gz is a projective variety. Then the stabilizer Gz is a parabolic 
subgroup. Let P ⊂ G be the opposite parabolic subgroup with the Levi decomposition 
P = LPu where Pu is the unipotent radical of P and L = P ∩Gz is the Levi subgroup 
in P . The Local Structure Theorem asserts that there is a locally closed affine subset 
V ⊂ Z such that z ∈ V , LV = V , PuV is open in Z and the action of Pu on Z defines 
an isomorphism PuV ∼= Pu × V .

Returning to Lemma 4.4 we let Z = X and we apply the notation above. It suffices 
to show that any point x ∈ X whose orbit Gx is closed in X admits a neighborhood in 
X isomorphic to An. Indeed, for any y ∈ X the closure of the orbit Gy contains such a 
point x.

Since X is spherical, in the setup of the Local Structure Theorem the reductive Levi 
subgroup L of P = G−

x acts on the corresponding smooth affine variety V with an open 
orbit and with an L-fixed point x. Applying Luna’s Étale Slice theorem, see, e.g., [40, 
Corollary of Theorem 6.7], we deduce that V is equivariantly isomorphic to an L-module. 
It follows that x has a neighborhood in X isomorphic to Pu × V , which is an affine 
space. �
Remark 4.5. A similar argument proves the following fact, see [39, Theorem 3]. Let G be 
a connected reductive algebraic group and X be a smooth affine G-variety. Assume that 
OX(X)G = K and the unique closed G-orbit O in X is rational. Then X is uniformly 
rational.
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Due to Lemmas 4.1, 4.2 and 4.4 the following corollary of Theorem 3.3 is immediate.

Corollary 4.6. The punctured affine and generalized affine cones over a smooth projective 
spherical variety equipped with an ample polarization are elliptic. This remains true after 
successively blowing up such a variety in smooth subvarieties. The same holds for a 
smooth projective rational variety X with a torus action of complexity 1.

Remark 4.7. Recall that the normalization of the affine cone cone(X) over a smooth toric 
variety X in Pn is a normal affine toric variety with no torus factor. It is known that such 
a variety is flexible, see [2, Theorem 0.2(2)]. It follows that Y = cone(X) \ {0} is elliptic. 
However, it is not clear whether the flexibility of cone(X) survives under blowing-up a 
point in X.

Let us mention some known examples of uniformly rational smooth Fano varieties.

Examples 4.8. 1. It is known that a smooth rational cubic hypersurface in Pn+1, n ≥ 2
and a smooth intersection of two smooth quadric hypersurfaces in Pn+2, n ≥ 3 are 
uniformly rational, cf. [21, 3.5.E′′′] and [7, Examples 2.4 and 2.5]. According to Theo-
rem 3.3, such a variety X is elliptic and the punctured (generalized) affine cone Y over 
X equipped with an ample polarization is elliptic.

Notice that any smooth cubic hypersurface of dimension n ≥ 2 in Pn+1 is unira-
tional, see [30, Theorem 1.38]. All smooth cubic surfaces in P 3 are rational. By contrast, 
no smooth cubic threefold in P 4 is rational, see [10]. It is unknown (but is plausible) 
whether for n ≥ 4 the general cubic hypersurface in Pn+1 is irrational. However, for any 
k ≥ 1 there are smooth cubic hypersurfaces in P 2k+1 which contain two disjoint linear 
k-subspaces. Any such cubic hypersurface is rational (hence also uniformly rational), see 
[30, 1.33–1.35].

A smooth intersection X of two smooth quadric hypersurfaces in Pn+2, n ≥ 3 is 
always rational, see, e.g., [20, p. 796]. For n = 3 no smooth quartic threefold X as above 
belongs to class A0. The latter follows from the classification of smooth Fano threefolds 
with Picard number 1 which contain an open subset isomorphic to A3, see [9, Theorem 
4.31].

2. It is shown in [7, Proposition 3.2] that the moduli space M0,n of stable n-pointed 
rational curves is a complete uniformly rational variety. By Theorem 3.3 it is elliptic, 
hence is the image of an affine space under a surjective morphism.

3. The same holds for a small algebraic resolution of a nodal cubic threefold in P 4, 
see [7, Example 2.4 and Theorem 3.5]. See also [7, Section 3] for further examples.

4. Any smooth Fano-Mukai fourfold with Picard number 1, genus 10 and index 2 is 
rational. The moduli space M of such fourfolds is one-dimensional. With one exception, 
every such fourfold Xt belongs to class A0, see [42, Theorem 2]. The exceptional Fano-
Mukai fourfold X0 is covered by open A2-cylinders Zi × A2 where the Zi are smooth 
rational affine surfaces, see [42, Proposition 7.3]. Since the Zi are uniformly rational, 
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so is X0. By Theorem 3.3 the punctured affine cones and generalized affine cones over 
Xt ∈ M are elliptic. In fact, all these cones over Xt, without any exception, are even 
flexible, see [42, Theorem 1].
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