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Abstract—In this paper, we obtain a classification of gradient-like flows on arbitrary surfaces
by generalizing the circular Fleitas scheme. In 1975 he proved that such a scheme is a complete
invariant of topological equivalence for polar flows on 2- and 3-manifolds. In this paper, we
generalize the concept of a circular scheme to arbitrary gradient-like flows on surfaces. We prove
that the isomorphism class of such schemes is a complete invariant of topological equivalence.
We also solve exhaustively the realization problem by describing an abstract circular scheme
and the process of realizing a gradient-like flow on the surface. In addition, we construct an
efficient algorithm for distinguishing the isomorphism of circular schemes.

MSC2010 numbers: 03C15

DOI: 10.1134/S1560354723060047

Keywords: gradient-like flows, circular scheme, flows on the surface

1. INTRODUCTION

Let Mn, n � 2 be a closed connected n-manifold with a Riemannian metric d.

A flow on a manifold Mn is a continuous map F : Mn ×R → Mn satisfying the group properties:

1) F (x, 0) = x, ∀x ∈ Mn;

2) F (F (x, t), s) = F (x, t+ s), ∀x ∈ Mn, ∀s, t ∈ R.

We will use the notation f t(x) = F (x, t), x ∈ Mn, t ∈ R. Notice that, for a fixed t ∈ R, the map
f t : Mn → Mn is a homeomorphism (see, for example, [7]), so the flow is also called a one-parameter
group of homeomorphisms acting on the manifold Mn.

The set Ox = {f t(x), t ∈ R} is called the trajectory or flow orbit of a point x ∈ Mn. Any flow
orbit either consists of a unique point (in this case this point is called fixed), or is homeomorphic to a
circle (in this case the orbit is called periodic), or is an injectively immersive line. It is assumed that
all trajectories other than a fixed point are oriented in accordance with the increasing parameter t.
Two flows f t : Mn → Mn and f ′t : Mn → Mn are called topologically equivalent if there exists a
homeomorphism h : Mn → Mn sending the trajectories of f t to the trajectory f ′t with orientation
preserved. If the homeomorphism h has the property hf t(x) = f ′th(x) for any t ∈ R, then the flows
are called topologically conjugate.

An ε-chain of length T connecting a point x with a point y for a flow f t is a sequence of points
x = x0, . . . , xn = y for which there is a sequence of times t1, . . . , tn such that d

(
f ti(xi−1), xi

)
< ε,
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ti � 1 for 1 � i � n and t1 + · · ·+ tn = T (see Fig. 1). A point x ∈ Mn is called chain recurrent
for a flow f t if for any ε > 0 there exists T > 0 depending on ε > 0, and an ε-chain of length T ,
connecting the point x with itself. The set of all chain recurrent points is called the chain recurrent
set and is denoted by Rf t . If the chain recurrent set of the flow is finite, then it consists of fixed
points.

Fig. 1. ε-chain of length T .

Obviously, a fixed point p of a flow f t is chain recurrent. The stable and unstable manifolds of
a fixed point p are defined, respectively, as the sets:

W s
p = {x ∈ Mn : lim

t→+∞
d
(
p, f t(x)

)
= 0}, W u

p = {x ∈ Mn : lim
t→−∞

d
(
p, f t(x)

)
= 0}.

Following [8], we call a fixed point p of the flow f t hyperbolic if there exists a neighborhood Up ⊂ Mn

of p, a number λp ∈ {0, 1, . . . , n} and a homeomorphism hp : Up → R
n, conjugating the flow f t|Up

with the linear flow atλp
: Rn → R

n, given by the formula

atλp
(x1, . . . , xλp , xλp+1, . . . , xn) = (2tx1, . . . , 2

txλp , 2
−txλp+1, . . . , 2

−txn).

The number λp is called the Morse index of the hyperbolic point p. The index points n and 0 are
called a source and a sink, respectively, otherwise the point p is called a saddle (see Fig. 2).

Fig. 2. Dynamics in the neighborhood of a hyperbolic fixed point: (a) saddle point, (b) source point, (c) sink
point.

Proposition 1 ([14, Theorem 1]). Let f t : Mn → Mn be a flow with a finite hyperbolic chain
recurrent set. Then

1) Mn =
⋃

p∈Rft

W u
p =

⋃

p∈Rft

W s
p ;

2) the unstable (resp., unstable) manifold W u
p (resp., W s

p ) of a fixed point p is a topological

submanifold of a manifold Mn, homeomorphic to R
λp(Rn−λp);

3) cl(W u
p ) \W u

p ⊂
⋃

q∈Rft :W
s
q∩Wu

p �=∅
W u

q

(
cl(W s

p ) \W s
p ⊂

⋃

q∈Rft :W
u
q ∩W s

p �=∅
W s

q

)
.
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CIRCULAR FLEITAS SCHEME FOR GRADIENT-LIKE FLOWS ON THE SURFACE 867

A flow f t : M2 → M2 is called a gradient-like flow if its chain recurrent set is finite and hyperbolic
and the stable and unstable manifolds of different saddle points do not intersect. In this case
invariant (stable or unstable) manifolds of every saddle point p of f t have dimension one, each of
the sets W s

p \ p, W u
p \ p consists of two connected components named separatrices. The flows of the

class under consideration have the simplest dynamics, which has inspired many mathematicians to
search for invariants of their topological equivalence.

Under the assumptions of different generality for the class under consideration, the following
invariants were obtained: the Peixoto graph (M.Peixoto [13]), the equipped Peixoto graph
(V. Grines, O. Pochinka [5]), two-color graph (K.Wong [15]), three-color graph (A.Oshemkov,
V. Sharko [11]), and circular scheme (G. Fleitas [2]).

In particular, the circular Fleitas scheme was constructed as a complete equivalence invariant
for polar flows (flows with one sink and one source) on the surface. The scheme consists of a circle
around the source point with intersections with saddle stable manifolds marked on it. For every
saddle point such an intersection consists of two points, marked by a spin which is + (-) if the union
of a disk bounded by a circle and a tubular neighborhood of a stable manifold of the saddle point
is an annulus (a Möbius band) (see Figs. 3, 4). Two circular schemes are called isomorphic if there
is a circle homeomorphism preserving the pairs of points and their spins. The isomorphic class of
such a scheme is a complete invariant of topological equivalence of a polar flow f t : M2 → M2.

Fig. 3. Polar flow f t on the torus and its circular scheme.

Fig. 4. Polar flow f t on a projective plane with points of the negative spin.

In this paper we generalize the circular scheme to gradient-like flows. In more detail.

Let f t : M2 → M2 be a gradient-like flow. Denote by Ωλ
f t , λ ∈ {0, 1, 2} the set of fixed points

of the flow f t with the Morse index λ. Directly from Proposition 1 we conclude that the sets Ω0
f t

REGULAR AND CHAOTIC DYNAMICS Vol. 28 No. 6 2023
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and Ω2
f t, the sink and source points, respectively, are not empty for any gradient-like flow f t. For

any subset of P ⊂ Rf t we will assume W s
P =

⋃

p∈P
W s

p , W
u
P =

⋃

p∈P
W u

p . For any (possibly empty) set

δ ⊂ Ω1
f t of saddle points we put

Ωδ = Ω0
f t ∪ δ, Aδ = W u

Ωδ
.

In [4] it is proved that, for any gradient-like flow f t : M2 → M2, the set Aδ is an attractor1) of the
flow f t and has a trapping neighborhood Uδ whose boundary Σδ intersects every flow trajectory in
f t|W s

Ωδ
\Aδ

at exactly one point.

Proposition 2 ([4, Theorem 1]). For any gradient-like flow f t : M2→M2 there is a set δ∗⊂ Ω1
f t

consisting of |Ω0
f t | − 1 points and such that Uδ∗

∼= D
2.

Let Σδ∗
∼= S

1, Ls
δ∗

= {W s
σ ∩Σδ∗ , σ ∈ δ∗}, Lu

δ∗
= {W u

σ ∩Σδ∗ , σ ∈ (Ω1
f t \ δ∗)}. Every element of the

set Ls
δ∗
(Lu

δ∗
) is a pair of intersection points of the circle Σδ∗ with the stable (unstable) saddle

manifold W s
σ (W

u
σ ) of a saddle point σ ∈ δ∗ (σ ∈ Ω1

f t \ δ∗). Pairs of points of the set Lu
δ∗

are marked

by the spin + (−) if the union of the disk Uδ∗ with the tubular neighborhood of the unstable
manifold W u

σ of the corresponding saddle σ is homeomorphic to the annulus (Möbius band). The
set

Sδ∗ = (Σδ∗ , L
s
δ∗ , L

u
δ∗)

is called a circular scheme of a gradient-like flow f t : M2 → M2 (see Figs. 5, 6). Two circular

schemes Sδ∗ and Sδ′∗ of gradient-like flows f t : M2 → M2 and f ′t : M ′2 → M ′2 are called equivalent
if there is a homeomorphism ψ : Σδ∗ → Σδ′∗ , sending pairs of points of sets Ls

δ∗
, Lu

δ∗
into pairs of

points of sets Ls
δ′∗
, Lu

δ′∗
, respectively, with the spins being preserved2).

Since there is no unique way to choose Aδ∗ (see Figs. 5, 6), we denote by Sf t the set of all possible

different circular schemes of gradient-like flow f t : M2 → M2. The sets Sf t and Sf ′t of gradient-

like flows f t and f ′t are called equivalent if they contain equivalent circular schemes Sδ∗ ∈ Sf t and
Sδ′∗ ∈ Sf ′t .

Next, the main result of this paper follows.

Theorem 1. Let f t, f ′t be gradient-like flows which are topologically equivalent if and only if the
sets of their circular schemes Sf t, Sf ′t are equivalent.

Corollary 1. It follows from Theorem 1 that, if Sf t and Sf
′t are equivalent, then all their circular

schemes are pairwise equivalent.

To solve the realization problem, we introduce the concept of an abstract circular scheme. Let
Σ = S

1 and Ls, Lu ⊂ Σ be sets of pairs of pairwise distinct points having the following properties:

1) the paired points in Ls are arranged so that the chords joining them are pairwise disjoint;

2) the paired points in Lu are marked by + or −.

1)An invariant set A ⊂ Mn of a flow f t : Mn → Mn is called an attractor if it has a closed neighborhood UA, which
is called trapping, such that f t(UA) ⊂ intUA for t > 0 and

⋂

t>0

f t(UA) = A.

2)Notice that an invariant similar to the circular scheme was used in [6] for a description of the connected
components of gradient-like vector fields on closed surfaces.
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Fig. 5. Gradient-like flow on a sphere with a set of all possible circular schemes.

Fig. 6. Gradient-like flow on a projective plane with a set of all possible circular schemes.

A collection

S = (Σ, Ls, Lu)

with properties 1, 2 above will be called an abstract circular scheme. Obviously, the circular scheme
of any gradient-like flow f t : M2 → M2 is equivalent to some abstract scheme.

REGULAR AND CHAOTIC DYNAMICS Vol. 28 No. 6 2023
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Denote by ks the number of paired points in Ls, by ku+ (ku−) the number of the paired
points with spin + (-) in Lu. Let ku = ku− + ku+ and k = ks + ku. We assume that the circle Σ
is counterclockwise oriented and the paired points in Lu are numbered: (z1, y1), . . . , (zku , yku).
Select the arcs [ai, bi], [ci, di] ⊂ Σ, i ∈ {1, . . . , ku} (oriented consistent with the orientation of the
circle Σ) so that [ai, bi]∩ (Lu ∪Ls) = zi, [ci, di]∩ (Lu ∪Ls) = yi. Now, choose pairwise disjoint arcs
γa1 , γb1 , . . . , γaku , γbku whose interiors avoid Σ, as follows:

• ∂γai = ai 	 di, ∂γbi = bi 	 ci if a pair of points zi, yi has a spin +;

• ∂γai = ai 	 ci, ∂γbi = bi 	 di if a pair of points zi, yi has a spin −.

Let Cu =

(
Σ \

ku⋃

i=1

(
(ai, bi) ∪ (ci, di)

)
)
∪

ku⋃

i=1
(γai ∪ γbi) (see Fig. 7). Denote by mu the number of the

connected components of the set Cu.

Fig. 7. Building a set Cu.

Theorem 2. For every abstract circular scheme S there is a gradient-like flow f t : M2 → M2 with
a circular scheme Sδ∗ equivalent to S. Also, the surface M2 is orientable (nonorientable) if and
only if the scheme S does not contain (contains) a point with negative spin, and its genus g is
calculated by the formula

g =
ku −mu + 1

2
(g = ku −mu + 1).

Theorem 3. Let S = (Σ, Ls, Lu) and S′ = (Σ, L′s, L′u) be abstract circular schemes such that
ks = k′s, ku− = k′u− , ku+ = k′u+ . Then there is an efficient (polynomial-dependent on k = ks + ku− + ku+)
algorithm for distinguishing their isomorphism.

2. THE CIRCULAR SCHEME IS A COMPLETE EQUIVALENCE INVARIANT
OF GRADIENT-LIKE FLOWS ON SURFACES

In this section we prove Theorem 1: gradient-like flows f t and f ′t on surfaces are topologically
equivalent if and only if the sets of their circular schemes Sf t and Sf ′t are equivalent.
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Proof.

Necessity. Let gradient-like flows f t : M2 → M2, f ′t : M ′2 → M ′2 be topologically equivalent by
means of a homeomorphism h : M2 → M ′2. Let us show that the sets of circular schemes Sf t and
Sf ′t are equivalent.

Let Sδ∗ = (Σδ∗ , L
s
δ∗ , L

u
δ∗) be a circular scheme of flow f t and δ′∗ = h(δ∗). Let us show that Sδ′∗

is a circular scheme for f ′t which is equivalent to Sδ∗ , which completes the proof.

Indeed, h(Aδ∗) = Aδ′∗ and the disk h(Uδ∗) is a trapping neighborhood of the attractor Aδ′∗ . The
homeomorphism h sends the circle Σδ∗ into the circle h(Σδ∗) which intersects every trajectory in
f ′t|W s

δ′∗
\Aδ′∗

at the unique point, similar to the circle Σδ′∗ . Define homeomorphism ψ : Σδ∗ → Σδ′∗ by

the formula

ψ(y) = f ′τy(h(y)
)
,

where τy ∈ R, y ∈ Σδ∗ is a value for which f ′τy
(
h(y)

)
∈ Σδ′∗ .

Sufficiency. Let Sδ∗, Sδ′∗ be circular schemes of the flows f t : M2 → M2, f ′t : M ′2 → M ′2

equivalent by means of a homeomorphism ψ : Σδ∗ → Σδ′∗ . Let us construct, step-by-step, a

homeomorphism h : M2 → M ′2 sending the trajectories of f t : M2 → M2 to the trajectories of
f ′t : M ′2 → M ′2 with the saving orientation on the trajectories.

Step 1. For a point x ∈ M2 (x′ ∈ M ′2) denote by Ox (O′
x′) the trajectory of f t (f ′t) passing

through the point x (x′). Let N =
⋃

x∈Σδ∗

Ox and N ′ =
⋃

x′∈Σδ′∗

O′
x′ . Define a homeomorphism h1 :

N → N ′ realizing the equivalence of flows f t|N , f ′t|N ′ by the formula

h1(y) = f ′−τy ◦ ψ ◦ f τy(x),

where τy ∈ R is a value for which f τy(y) ∈ Σδ∗ for y ∈ N . From the definition of the section Σδ∗ (Σδ′∗)

it follows that it intersects exactly one invariant manifold of each saddle point p ∈ Ω1
f t (p′ ∈ Ω1

f ′t)

exactly at a pair of points. Since the homeomorphism ψ sends the paired points into the paired
points preserving their stability, the homeomorphism h1 sends an invariant manifold of a point p
without a point p into an invariant manifold of the same stability of a point p′ without a point p′.
That is, the homeomorphism h1 uniquely extends to the set Ω1

f t so that h1(p) = p′.

Step 2. Consider the linear flow at : R2 → R
2, given by the formula at(x1, x2) = (2tx1, 2

−tx2).
Let U0 = {(x1, x2) ∈ R

2 : x21 + x22 � 1}. The definition of a hyperbolic point implies the existence
of a neighborhood Up of the point p ∈ Ω1

f t and a homeomorphism hp : Up → U0 conjugating

f t|Up and at|U0 . Let Vp =
⋃

x∈Up

Ox and V0 =
{
(x1, x2) ∈ R

2 : |x1x2| � 1
2

}
(see Fig. 8). Define a

homeomorphism hVp : Vp → V0 realizing the equivalence of the flows f t|Vp , a
t|V0 by the formula

hVp(y) = a−τy ◦ hp ◦ f τy(y),

where τy ∈ R is a value for which f τy(y) ∈ ap for y ∈ Vp.

Then we construct a homeomorphism hVp′ (y) : Vp′ → V0 for points p′ ∈ Ω1
f ′t analogous to

homeomorphism hVp . At the same time, we choose the homeomorphism hp′ so that for a

connected component v of the set V0 \ (Ox1 ∪Ox2) the intersection hVp′ (v) ∩ h1
(
hVp(v)

)
is not

empty. Let h̃Vp = h−1
Vp′

◦ hVp : Vp → Vp′ , V =
⋃

p∈Ω1
ft

Vp, V
′ =

⋃

p′∈Ω1
f ′t

Vp and denote by h0 : V → V ′ a

homeomorphism composed by the homeomorphisms h̃Vp for all p ∈ Ω1
f t .

Step 3. Denote by Ṽp′ a subset of M2 containing the invariant manifolds of saddle p′ and

bounded by curves h1(∂Vp). For ρ > 0 let V ρ
0 = {(x1, x2) ∈ R

2 : |x1x2| � ρ}. Choose 0 < ρp <
1
2

such that h0(V
ρp
p ) ⊂ int Ṽp′ . Let Wp = V

ρp
p , W̃p′ = h0(Wp). Let T be a connected component of the

REGULAR AND CHAOTIC DYNAMICS Vol. 28 No. 6 2023
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Fig. 8. Neighborhood of U0.

set Vp \ intWp. Then one of its boundary components (denote it by T0) belongs to ∂Wp, and the

other (denote it by T1) belongs to ∂Vp. Denote by T̃ the connected component of the set Ṽp′ \ int W̃p′

having boundary components T̃0 = h0(T0) and T̃1 = h1(T1).

Let φ : T → [0, 1] × R (φ̃ : T̃ → [0, 1] × R) be a homeomorphism such that φ(Ox) = {s} × R

(φ̃(O′
x̃) = {s̃} ×R) for x ∈ T, s ∈ [0, 1] (x̃ ∈ T̃ , s̃ ∈ [0, 1]) and φ(T0) = {0} × R, φ(T1) = {1} × R

(φ̃(T̃0) = {0} ×R, φ̃(T̃1) = {1} ×R). Then the homeomorphism ζ0 = φ̃ ◦ h0 ◦ (φ|T0)
−1 : {0} ×R →

{0}×R has a form ζ0(0, r) = (0, η0(r)). Similarly, the homeomorphism ζ1 = φ̃ ◦ h1 ◦ (φ|T1)
−1 : {1}×

R → {1} ×R has a form ζ1(1, r) =
(
1, η1(r)

)
. For s ∈ [0, 1] denote by ηs : R → R a homeomorphism

given by the formula

ηs(r) = sη1(r) + (1− s)η0(r)

and let ζ : [0, 1] × R → [0, 1] × R be a homeomorphism given by the formula

ζ(s, r) =
(
s, ηs(r)

)
.

By construction, the homeomorphism ζT = φ̃ ◦ ζ ◦ φ−1 : T → T ′ realizes the equivalence of flows
f t|T , f ′t|T ′ , it coincides with h0 on T0 and with h1 on T1. Similarly, we construct a homeomorphism

on all connected components of the set Vp \ intWp and get a homeomorphism h̃Vp : Vp → Ṽp′ . Let

Ṽ ′ =
⋃

p′∈Ω1
f ′t

Ṽp′ and denote by h̃0 : V → Ṽ ′ a homeomorphism composed by the homeomorphisms

h̃Vp for all p ∈ Ω1
f t .

Step 4. Let Ṁ = M2 \ (Ω0
f t ∪ Ω2

f t), Ṁ ′ = M ′2 \ (Ω0
f ′t ∪ Ω2

f ′t) and define a homeomorphism

h : Ṁ → Ṁ ′ coinciding with h̃0 on V and with h1 on Ṁ \ V . We show that the homeomorphism h
uniquely extends to M2, which completes the proof.

Assume that the circle Σδ∗ is oriented and the paired points of the sets Lu
δ∗

are numbered:

(z1, y1), . . . , (zku , yku) and belong to unstable manifolds of saddle points p1, . . . , pku , respectively.

Then the set V
ρpi
pi ∩ Σδ∗ consists of two arcs [ai, bi] 	 [ci, di] (oriented in accordance with the

orientation of the circle),which are the neighborhoods of the points zi, yi, respectively. Let Ai =
hVpi

(ai), Bi = hVpi
(bi), Ci = hVpi

(ci),Di = hVpi
(di). Without loss of generality, we assume that the

points Ai and Bi belong to the fourth and first quadrants of R2 (in other cases, the reasoning is
similar). Then for a pair of points zi, yi with spin + (−), the points Ci and Di belong to the second
and third (third and second) quadrants, respectively. Next, we construct the section γAi , γBi for
trajectories in at|V ρi

0 \Wu
O
as follows (we will construct for spin +, for spin − it is similar).

Let Ai = aTAi (1,−ρi), Di = aTDi (−1,−ρi). For x1 ∈ [−1, 1] let

ti(x1) = 0, 5(x1 + 1)(TAi − TDi) + TDi , γAi =
⋃

x1∈[−1,1]

f ti(x1)(x1,−ρi).

REGULAR AND CHAOTIC DYNAMICS Vol. 28 No. 6 2023
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Fig. 9. Illustration of step 3.

Similarly, we construct a section γBi with boundary points Bi, Ci. Let γai = h−1
Vp

(γAi), γbi =

h−1
Vp

(γBi) (see Fig. 10) and

Cu =

(

Σδ∗ \
ku⋃

i=1

(
(ai, bi) ∪ (ci, di)

)
)

∪
ku⋃

i=1

(γai ∪ γbi).

By construction, every connected component cgj of the set Cg is a section for trajectories of f t

in the basin of some source αj . Then h(cuj ) is also a section for the trajectories of f ′t in the basin

of some source α′
j . Hence, |Ω2

f t | = |Ω2
f ′t | and h can be continuously extended to the set Ω2

f t .

It follows from the definition of the circular scheme that the circle Σδ∗ bounds a two-dimensional
disk Uδ∗ on the surface M2. Also, the arcs W s

δ∗ divide this disk into |Ω0
f t | two-dimensional disks,

whose the interiors belong to basins of pairwise different sinks of f t. It follows from the construction
of the homeomorphism h that the circle h(Σδ∗) bounds the two-dimensional disk h(Uδ∗) on the

Fig. 10. Illustration of step 4.

REGULAR AND CHAOTIC DYNAMICS Vol. 28 No. 6 2023
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surface M ′2 and the arcs W s
δ′∗ = h(W s

δ∗) divide it into |Ω0
f ′t | two-dimensional disks. It implies that

|Ω0
f t | = |Ω0

f ′t | and the homeomorphism h continuously extends to the set Ω0
f t.

3. REALIZATION

The proof of the realization theorem consists of the construction of a gradient-like flow
f t : M2 → M2 having a circular scheme Sδ∗ = (Σδ∗ , L

s
δ∗
, Lu

δ∗
) equivalent to the given abstract

scheme S = (Σ, Ls, Lu).

Step 1. Consider an abstract circular scheme S = (Σ, Ls, Lu). Set the flow qt on the manifold
R× Σ by the formula qt(s, r) = (s, r + t). Assume that the circle Σ is counterclockwise oriented
and the paired points of the set Lu are numbered: (z1, y1), . . . , (zku , yku). Choose pairwise disjoint
arcs oriented in accordance with the circle orientation [ai, bi], [ci, di] ⊂ Σ, i ∈ {1, . . . , ku} such that
[ai, bi] ∩ (Lu ∪ Ls) = zi, [ci, di] ∩ (Lu ∪ Ls) = yi.

Let �uzi = {zi} ×R, �uyi = {yi} ×R, Nu
zi = [ai, bi]×R, Nu

yi = [ci, di]×R, �ui = �uzi ∪ �uyi and Nu
i =

Nu
zi ∪Nu

yi . On the set N = {(x1, x2) ∈ R
2 : |x1x2| � 1} we define the flow at by the formula

at(x1, x2) = (2tx1, 2
−tx2). Let N u = N \Ox2. Define a diffeomorphism μu

i : Nu
i → N u, realizing

the equivalence of flows qt, at, by the formulas

μu
i |Nu

zi
(s, r) =

(
2r, 2−r

(
2s − bi − ai

bi − ai

))
,

μu
i |Nu

yi
(s, r) =

(
−2r, δi2

−r

(
2s − di − ci

di − ci

))
,

where δi ∈ {−,+} is the spin of the pair (zi, yi). It is directly checked that atμu
i = μu

i q
t. Let

Λu =
ku⋃

i=1
�ui and NΛu =

ku⋃

i=1
Nu

i . Denote by μu : NΛu → N u × Zku a diffeomorphism composed by

the diffeomorphisms μu
1 , . . . , μ

u
ku.

Then, we number the points of the set Ls: (z̄1, ȳ1), . . . , (z̄ks , ȳks) and choose pairwise disjoint
arcs [āi, b̄i], [c̄i, d̄i] ⊂ Σ, i ∈ {1, . . . , ks}, avoiding Σ, such that [āi, b̄i] ∩ (NΛu ∪ Ls) = z̄i, [c̄i, d̄i] ∩
(NΛu ∪ Ls) = ȳi. Let �

s
z̄i = {z̄i} ×R, �sȳi = {ȳi} ×R, N s

z̄i = [āi, b̄i]×R, N s
ȳi = [c̄i, d̄i]×R, �si = �sz̄i ∪

�sȳi and N s
i = N s

z̄i ∪N s
ȳi . Let N

s = N \Ox1. Define a diffeomorphism μs
i : N

s
i → N s, realizing the

equivalence of the flows qt, at, by the formulas

μs
i |Ns

z̄i
(w, r) =

(
2r

(
2w − b̄i − āi

b̄i − āi

)
, 2−r

)
,

μs
i |Ns

ȳi
(w, r) =

(
2r

(
2w − d̄i − c̄i

d̄i − c̄i

)
,−2−r

)
.

It is directly checked that atμs
i = μs

iq
t. Let Λs =

ks⋃

i=1
�si and NΛs =

ks⋃

i=1
N s

i . Denote by μs : NΛs →

N s × Zks a diffeomorphism composed by the diffeomorphisms μs
1, . . . , μ

s
ks . Let Q = (R ×Σ) ∪μu

(N × Zku) ∪μs (N × Zks), Q = (R × Σ) 	 (N × Zku) 	 (N × Zks) and denote by p : Q → Q the
natural projection. Let p1 = p|(R×Σ), p2 = p|N×Zku

, p3 = p|N×Zks
. Let us define on the manifold

Q a flow Y t : Q → Q by the formula

Y t =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p1

(
qt
(
p−1
1 (x)

))
x ∈ p1(R × Σ)

p2

(
at
(
p−1
2 (x)

))
x ∈ p2(N × {i}), i ∈ Zku

p3

(
at
(
p−1
3 (x)

))
x ∈ p3(N × {i}), i ∈ Zks
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By construction, the nonwandering set of the flow Y t consists of ku + ks saddle fixed hyperbolic
points.

Step 2. Let Rs = Q \W s
RY t

and denote by �s1, . . . , �
s
ks+1 the connected components of the set Rs.

Consider the linear flow bt(x1, x2) = (2−tx1, 2
−tx2). From property 1 of the definition of the abstract

scheme it follows that the flow Y t|ϕs
i
is conjugated to the flow bt|R2\O by some diffeomorphism

νsi . Denote by νs : Rs → (R2 \O)× Zks+1 a diffeomorphism composed by the diffeomorphisms
νs1 , . . . , ν

s
ks+1. Let Ms = Q ∪νs (R

2 × Zks+1), M̄s = Q 	 (R2 × Zks+1) and denote by ps : M̄s → Ms

the natural projection. Let ps,1 = ps|Q, ps,2 = ps|R2×Zks+1
. Then the flow Xt

s on the manifold Ms is

defined by the formula

Xt
s =

⎧
⎨

⎩

ps,1

(
Y t

(
p−1
s,1(x)

))
x ∈ ps,1(Q)

ps,2

(
bt
(
p−1
s,2(x)

))
x ∈ ps,2(R

2 × {i}), i ∈ Zks+1.

By construction, the nonwandering set of the flow Xt
s consists of ku + ks saddle and ks + 1 sink

fixed hyperbolic points.
Step 3. Let Ru = Ms \W u

R
Xt

s

and denote by �u1 , . . . , �
u
mu the connected components of the

set Ru. Similarly to step 4 of the proof of Theorem 1, a set of circles Cu = {cu1 , . . . , cumu} can
be constructed, which are sections to the trajectories of flow in the components. Then the
flow Xt

s|	ui is conjugated with the flow b−t|R2\O by means of some diffeomorphism νui . Denote

by νu : Ru → (R2 \O)× Zmu a diffeomorphism composed by the diffeomorphisms νu1 , . . . , ν
u
mu .

Let M2 = Ms ∪νu (R2 × Zmu), M̄2 = Ms 	 (R2 × Zmu) and denote by pu : M̄2 → M2 the natural
projection. Let pu,1 = pu|Ms , pu,2 = pu|R2×Zmu . Then the flow f t on the surface of M2 is determined
by the formula

f t =

⎧
⎨

⎩

pu,1

(
Xt

s

(
p−1
u,1(x)

))
x ∈ pu,1(Ms)

pu,2

(
b−t

(
p−1
u,2(x)

))
x ∈ pu,2(R

2 × {i}), i ∈ Zmu .

By construction, the nonwandering set of the flow f t consists of ku + ks saddle, ks + 1 sink and
mu sources, all of them are fixed hyperbolic points. The surface M2 is closed, its orientability
(nonorientability) is determined by the presence (absence) of points with negative spin in the
scheme S, and its genus g is calculated by the Poincaré –Hopf formula (see, for example, [10])

g =
ku −mu + 1

2
(g = ku −mu + 1).

4. AN EFFICIENT ALGORITHM FOR DISTINGUISHING ABSTRACT
CIRCULAR SCHEMES

Recall that a graph Γ is an ordered pair (B,E), where B is a nonempty set of vertices and E is
a set of pairs of vertices, called edges. Each vertex a, b of the edge e = ab is called an incident to
the edge e, and one says that a, b are joined by the edge e.

The valency of the vertex is the number of edges incident to it. If the edges are ordered pairs of
vertices, then the graph is called oriented. A graph is called connected if any two of its vertices a, b
can be joined by a path from edges, the number of edges included in the path is called path length.
If the beginning and the end of the path coincide, then the path is called a cycle. If both vertices of

an edge coincide, then the edge is called a loop. A subgraph of the graph Γ is a pair (B̃, Ẽ), where

B̃ ⊂ B, Ẽ ⊂ E.

Next, we call an operation in which the edge e is removed from the graph and new vertices
c1, c2, . . . , ck with edges ac1, c1c2, . . . , ck−1ck, ckb are added a k-subdivision of the edge e = ab.

Then we call an operation in which the edge e is removed from the graph and new vertices
c1, c2, . . . , ck, d with edges ac1, c1c2, . . . , ck−1ck, ckb, c1d are added a k∗-subdivision of the edge
e = ab.
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A graph is called simple if it does not contain loops and multiple edges. A graph is called planar
if there is an embedding of it in the plane. If there is an embedding of a graph in a surface, then
the graph is called embeddable in the surface.

Two graphs Γ and Γ′ are called isomorphic if there is a map that sends the vertices and the
edges of the graph Γ into the vertices and the edges of the graph Γ′, respectively.

Next, we will prove Theorem 3: let S = (Σ, Ls, Lu) and S′ = (Σ, L′s, L′u) be abstract circular
schemes such that ks = k′s, ku− = k′u− , ku+ = k′u+ . Then there is an efficient (polynomial-dependent
on k = ks + ku− + ku+) algorithm for distinguishing their isomorphism.

Proof. Let S = (Σ, Ls, Lu) be an abstract circular scheme. Next, we construct a simple graph ΓS

from it as follows. The intersection points will be the vertices of the graph and the arcs of the circle
will be the edges. Connect the edges of the paired points of Ls ∪ Lu. Let us apply a 1-subdivision
to each edge joining the paired points from Lu with spin +, a 1∗-subdivision to each edge joining
the paired points from Lu with spin − and a 2-subdivision to each edge joining the paired points
from Ls (see Fig. 11). Notice that the graph ΓS is uniquely constructed by the circular scheme S.
Next, show that the converse is also true.

Fig. 11. Graph ΓF
ft and simple graph Γ̂ft .

The initial points of the circular scheme S are the vertices of the graph ΓS of valency 3 that
do not have neighboring vertices of valency 1. The vertices of the graph ΓS correspond to the
paired points of the set Ls if they are joined by a path of length 3 that does not contain other
similar vertices. The vertices of the graph correspond to the paired points of the set Lu if they are
connected by a path of length 2 that does not contain other similar vertices. If the vertices in such
a path have valency 2 (3), then the path corresponds to the spin + (−).

By construction, the graph ΓS has m = k + 2ks + ku+ + ku− = 2k + ks � 3k vertices and, by
Theorem 2, it can be embedded in a surface of genus g. Then, the graphs ΓS and ΓS′ have the same
number of vertices m and they can be embedded in a surface of genus p = max{g, g′}. According
to [9], the isomorphism of two simple m-vertex graphs embedded in a surface of genus p can be

checked in time O(mO(p)). Thus, there is a polynomial-dependent k algorithm for distinguishing
the circular schemes S and S′.

Applications. Typical gradient flows are a special case of the systems considered in this work.
A prototypical gradient flow is the diffusion equation that governs heat propagation in a physical
medium. The formal derivation of diffusion equations dates back to the nineteenth-century treatise
of Joseph Fourier on the Analytic Theory of Heat [3]. Such equations have a plethora of applications
in physics and have also been used in image processing, computer vision [12], and graph neural
networks [1].
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