ON A STRUCTURE OF NON-WANDERING SET OF AN Ω-STABLE 3-DIFFEOMORPHISM POSSESSING A HYPERBOLIC ATTRACTOR

Marina Barinova ${ }^{\boxtimes * 1}$, Olga Pochinka ${ }^{\boxtimes 1}$ and Evgeniy Yakovlev ${ }^{\boxtimes 1}$
${ }^{1}$ HSE University, Russia

(Communicated by Shaobo Gan)

Abstract

This paper belongs to a series of papers devoted to the study of the structure of the non-wandering set of an A-diffeomorphism. We study such set $N W(f)$ for an Ω-stable diffeomorphism f, given on a closed connected 3manifold M^{3}. Namely, we prove that if all basic sets in $N W(f)$ are trivial except attractors, then every non-trivial attractor is either one-dimensional non-orientable or two-dimensional expanding.

1. Introduction and formulation of results. Let M^{n} be a smooth closed connected n-manifold with a Riemannian metric d and $f: M^{n} \rightarrow M^{n}$ be a diffeomorphism. A set $\Lambda \subset M^{n}$ is called an invariant set if $f(\Lambda)=\Lambda$. An invariant compact set $\Lambda \subset M^{n}$ is called hyperbolic if there is a continuous $D f$-invariant splitting of the tangent bundle $T_{\Lambda} M^{n}$ into stable and unstable subbundles $E_{\Lambda}^{s} \oplus E_{\Lambda}^{u}$, $\operatorname{dim} E_{x}^{s}+\operatorname{dim} E_{x}^{u}=n(x \in \Lambda)$ such that for $i>0$ and for some fixed $C_{s}>0$, $C_{u}>0,0<\lambda<1$

$$
\begin{array}{lr}
\left\|D f^{i}(v)\right\| \leq C_{s} \lambda^{i}\|v\|, & v \in E_{\Lambda}^{s} \\
\left\|D f^{-i}(w)\right\| \leq C_{u} \lambda^{i}\|w\|, & w \in E_{\Lambda}^{u}
\end{array}
$$

The hyperbolic structure of Λ implies the existence of stable and unstable manifolds W_{x}^{s}, W_{x}^{u} respectively for any point $x \in \Lambda$:

$$
\begin{aligned}
& W_{x}^{s}=\left\{y \in M^{n}: \lim _{j \rightarrow+\infty} d\left(f^{j}(x), f^{j}(y)\right)=0\right\} \\
& W_{x}^{u}=\left\{y \in M^{n}: \lim _{j \rightarrow+\infty} d\left(f^{-j}(x), f^{-j}(y)\right)=0\right\}
\end{aligned}
$$

which are smooth injective immersions of the E_{x}^{s} and E_{x}^{u} into M^{n}. Moreover, W_{x}^{s}, W_{x}^{u} are tangent to E_{x}^{s} and E_{x}^{u} at x respectively. For $r>0$ we will denote by $W_{x, r}^{s}$, $W_{x, r}^{u}$ the immersions of discs on the subbundles E_{x}^{s}, E_{x}^{u} of the radius r.

Recall that a point $x \in M^{n}$ is non-wandering if for any neighborhood U of x the inequation $f^{n}(U) \cap U \neq \emptyset$ holds for infinitely many integers n. Then $N W(f)$, the non-wandering set of f, defined as the set of all non-wandering points, is an f-invariant closed set.

[^0]If the non-wandering set $N W(f)$ of f is hyperbolic and periodic points are dense in $N W(f)$ then f is called an A-diffeomorphism [22]. In this case the non-wandering set is a finite union of pairwise disjoint sets, called basic sets

$$
N W(f)=\Lambda_{1} \sqcup \cdots \sqcup \Lambda_{m},
$$

each of which is compact, invariant and topologically transitive. A basic set Λ_{i} of an A-diffeomorphism $f: M^{n} \rightarrow M^{n}$ is called trivial if it coincides with a periodic orbit and non-trivial in the opposite case.

By [3], every non-trivial basic set Λ_{i}, similarly to a periodic orbit, is uniquely expressed as a finite union of compact subsets

$$
\Lambda_{i}=\Lambda_{i_{1}} \sqcup \cdots \sqcup \Lambda_{i_{q_{i}}}, q_{i} \geqslant 1
$$

such that $f^{q_{i}}\left(\Lambda_{i_{j}}\right)=\Lambda_{i_{j}}, f\left(\Lambda_{i_{j}}\right)=\Lambda_{i_{j+1}}, j \in\left\{1, \ldots, q_{i}\right\}\left(\Lambda_{i_{q_{i}+1}}=\Lambda_{i_{1}}\right)$. These subsets $\Lambda_{i_{i}}, q_{i} \geqslant 1$ are called periodic components of the set $\Lambda_{i}{ }^{1}$. For every point x of a periodic component $\Lambda_{i_{j}}$ the set $W_{x}^{s} \cap \Lambda_{i_{j}}\left(W_{x}^{u} \cap \Lambda_{i_{j}}\right)$ is dense in $\Lambda_{i_{j}}$.

Without loss of generality, everywhere below we will assume that Λ_{i} consists of a unique periodic component and, in addition, $\left.f\right|_{W_{\Lambda_{i}}^{u}}$ preserves orientation if Λ_{i} is trivial.

A sequence of basic sets $\Lambda_{1}, \ldots, \Lambda_{l}$ of an A-diffeomorphism $f: M^{n} \rightarrow M^{n}$ is called a cycle if $W_{\Lambda_{i}}^{s} \cap W_{\Lambda_{i+1}}^{u} \neq \emptyset$ for $i=1, \ldots, l$, where $\Lambda_{l+1}=\Lambda_{1}$. Adiffeomorphisms without cycles form the set of Ω-stable diffeomorphisms; if, in addition, the stable and the unstable manifolds of every non-wandering point intersect transversaly then f is structurally stable (see, for example, [21]).

A non-trivial basic set Λ_{i} is called orientable if for any point $x \in \Lambda_{i}$ and any fixed numbers $\alpha>0, \beta>0$ the intersection $\operatorname{index}^{2}(+1$ or -1$)$ [9]. Otherwise, the basic set is called non-orientable.

A basic set Λ_{i} is called an attractor if there exists a compact neighborhood $U_{\Lambda_{i}}(a$ trapping neighborhood) of Λ_{i} such that $f\left(U_{\Lambda_{i}}\right) \subset \operatorname{int} U_{\Lambda_{i}}$ and $\Lambda_{i}=\bigcap_{i=0}^{\infty} f^{i}\left(U_{\Lambda_{i}}\right)$. Due to [23], a non-trivial attractor Λ_{i} of f is said to be expanding if $\operatorname{dim} \Lambda_{i}=\operatorname{dim} W_{x}^{u}$, $x \in \Lambda_{i}$.

The main result of this paper is following.
Theorem 1.1. Let $f: M^{3} \rightarrow M^{3}$ be an Ω-stable diffeomorphism whose basic sets are trivial except attractors. Then every non-trivial attractor is either onedimensional non-orientable or two-dimensional expanding.

Notice, that the attractors of both types described in the Theorem 1.1 are realized. In particular, the Figure 1 shows a phase portrait of a structurally stable

[^1]

Figure 1. Ω-stable diffeomorphism $f: \mathbb{S}^{3} \rightarrow \mathbb{S}^{3}$ with the unique nontrivial basic set which is Plykin attractor
diffeomorphism of a 3-sphere, whose non-wandering set consists of a one-dimensional non-orientable Plykin attractor, four saddle points with a two-dimensional unstable manifold and two sources. The DA-diffeomorphism of 3 -torus on Figure 2 is an example of a combination of an orientable two-dimensional expanding attractor with a source in the non-wandering set of a structurally stable diffeomorphism. An example of a diffeomorphism with non-orientable 2-dimensional expanding attractor will be constructed in section 6 .

Figure 2. DA-map on \mathbb{T}^{3}

2. Attractor, index of a hyperbolic point, filtration.

2.1. Attractors of an A-diffeomorphism. Let $f: M^{3} \rightarrow M^{3}$ be an A-diffeomorphism and Λ_{i} be its basic set. Then

$$
\operatorname{dim} W_{x}^{u}+\operatorname{dim} W_{x}^{s}=3, x \in \Lambda_{i}
$$

If Λ_{i} is a non-trivial then, moreover, $\operatorname{dim} W_{x}^{u}>0, \operatorname{dim} W_{x}^{s}>0$.
Now let Λ_{i} be a non-trivial attractor. It follows from [18] that

$$
\Lambda_{i}=\bigcup_{x \in \Lambda_{i}} W_{x}^{u}
$$

and, hence, $\operatorname{dim} \Lambda_{i}>0$.
If $\operatorname{dim} \boldsymbol{\Lambda}_{\mathbf{i}}=\mathbf{3}$ then $\Lambda_{i}=M^{3} \cong \mathbb{T}^{3}$ [17].
If $\operatorname{dim} \boldsymbol{\Lambda}_{\mathbf{i}}=\mathbf{2}$ then Λ_{i} is either expanding (as in the Figure 2) or an Anosov torus $\left(\left.f\right|_{\Lambda_{i}}\right.$ is conjugate to an Anosov algebraic automorphism of a torus \mathbb{T}^{2}) [4], [11]. Herewith, an expanding attractor Λ_{i} is locally homeomorphic to the product of \mathbb{R}^{2} with a cantor set $[19,20]$. There are both type of such attractor, orientable and non-orientable [24]. By [11] every Anosov torus Λ_{i} is a locally flat (possible non-smoothly [16]) embedded in M^{3} and, hence, it is always orientable and has a trapping neighborhood $U_{\Lambda_{i}}$ which is homeomorphic to $\mathbb{T}^{2} \times[-1,1]$.

If $\operatorname{dim} \boldsymbol{\Lambda}_{\mathbf{i}}=\mathbf{1}$ then Λ_{i} is automatically expanding, derived from an expansions on a 1-dimensional branched manifold [23] and is the nested intersections of handlebodies [2]. Thus, any one-dimensional attractor Λ_{i} of an A-diffeomorphism $f: M^{3} \rightarrow M^{3}$ has a trapping neighborhood $U_{\Lambda_{i}}$ which is a handlebody. There are both type of such attractor, orientable and non-orientable, it is enough to consider $f=f_{D A} \times f_{N S}$ (see Figure 3) and $f=f_{P l} \times f_{N S}$, where $f_{D A}: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ is derived from Anosov diffeomorphism, $f_{N S}: \mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ is a "source-sink" diffeomorphism, $f_{P l}: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ is a diffeomorphism with the Plykin attractor (as in the Figure 1) and four sources.

Figure 3. A one-dimensional attractor for a diffeomorphism $f_{D A} \times f_{N S}$
The most famous one-dimensional attractor is Smale solenoid (see Figure 4) which appears as intersection of the nested tori $f^{k}\left(\mathbb{D}^{2} \times \mathbb{S}^{1}\right), k \in \mathbb{N}$ for $f(d, z)=$ $(d / 10,2 z)$. An arbitrary one-dimensional attractor is sometimes called SmaleWilliams solenoid.

It is well known that the presence of an attractor with certain properties in a non-wandering set of an A-diffeomorphism can determine both the character of the remaining basic sets and the topology of the ambient manifold.

Figure 4. Smale's solenoid

- If $f: M^{3} \rightarrow M^{3}$ is a structurally stable diffeomorphism whose non-wandering set $N W(f)$ contains a two-dimensional expanding attractor Λ_{i}, then it is orientable, $M^{3} \cong \mathbb{T}^{3}$ and the set $N W(f) \backslash \Lambda_{i}$ consists of a finite number of isolated sources and saddles [12], [24].
- If $f: M^{3} \rightarrow M^{3}$ is an A-diffeomorphism whose every basic set is twodimensional then its attractors are either all Anosov tori or all expanding [1].
- If $f: M^{3} \rightarrow M^{3}$ is a structural stable diffeomorphism whose every basic set is two-dimensional then its attractors are all Anosov tori and M^{3} is a mapping torus [8].
- An orientable manifold M^{3} admits an A-diffeomorphism $f: M^{3} \rightarrow M^{3}$ with the non-wandering set which is a union of finitely many Smale solenoids if and only if M^{3} is a Lens space $L_{p, q}, p \neq 0$. Every such a diffeomorphism is not structurally stable [15].
2.2. Orientability of the basic set and index of the hyperbolic point. In this section let M be a compact smooth n-manifold M (possibly with a non-empty boundary) and $f: M \rightarrow f(M)$ be a smooth embedding of a compact n-manifold M to itself and Fix (f) be its set of the fixed points.

Let $p \in F i x(f)$ be an isolated hyperbolic point. By [22, Proposition 4.11] the index $I(p)=I(p, f)$ of p is defined by the formula

$$
I(p)=(-1)^{\operatorname{dim} W_{p}^{u}} \Delta_{p}
$$

where $\Delta_{p}=+1$ if f preserves orientation on W_{p}^{u} and $\Delta_{p}=-1$ if f reverses it.
Lemma 2.1. If Λ_{i} is an orientable hyperbolic attractor with $\operatorname{dim} W_{x}^{u}=1, x \in \Lambda_{i}$ for f then $I(p)=I(q)$ for any $p, q \in\left(F i x(f) \cap \Lambda_{i}\right)$.

Proof. Suppose the contrary: there are different points $p, q \in\left(\operatorname{Fix}(f) \cap \Lambda_{i}\right)$ such that $I(p)=-I(q)$. As p, q belongs to the same basic set Λ_{i} then $\operatorname{dim} W_{p}^{u}=\operatorname{dim} W_{q}^{u}$ and, hence, $\Delta_{p}=-\Delta_{q}$. Let us assume for the definiteness that $\Delta_{q}=-1$ and $\Delta_{p}=+1$. As Λ_{i} is an attractor then $W_{p}^{u}, W_{q}^{u} \subset \Lambda_{i}$, moreover, $\operatorname{cl} W_{p}^{u}=\operatorname{cl} W_{p}^{u}=\Lambda_{i}$. Denote by $\ell_{p}^{1}, \ell_{p}^{2} ; \ell_{q}^{1}, \ell_{q}^{2}$ the connected components of the sets $W_{p}^{u} \backslash p ; W_{q}^{u} \backslash q$. By [10] every such a component is dense in Λ_{i}. Due to hyperbolicity of Λ_{i} there is a point x_{1} of the transversal intersection $\ell_{q}^{1} \cap W_{p}^{s}$ (see Figure 5).

Figure 5. Illustration to the proof of Lemma 2.1

As $\Delta_{q}=-1$ then $x_{2}=f\left(x_{1}\right)$ belongs to ℓ_{q}^{2}. Let $\left(y_{1}, z_{1}\right) \subset \ell_{q}^{1}$ be a neighbourhood of the point x_{1} and $y_{2}=f\left(y_{1}\right), z_{2}=f\left(z_{1}\right)$. Then the $\operatorname{arc}\left(y_{2}, z_{2}\right) \subset \ell_{q}^{2}$ be a neighbourhood of the point x_{2}. By the orientability of Λ_{i} we get that y_{1}, y_{2} are separated by W_{p}^{s}. By λ-lemma (see, for example, [21]) the iteration of $\left(y_{1}, z_{1}\right),\left(y_{2}, z_{2}\right)$ with respect to f are C^{1}-closed to W_{p}^{u}. By continuity of f we conclude that $f\left(\ell_{p}^{1}\right)=\ell_{p}^{2}$. Thus, $\Delta_{p}=-1$, that contradicts to the assumption.

Denote by $f_{* k}: H_{k}(M) \rightarrow H_{k}(M), k \in\{0, \ldots, n\}$ the induced automorphism of the k-th homology group $H_{k}(M)$ of M with real coefficients. The number

$$
\Lambda(f)=\sum_{k=0}^{n}(-1)^{k} \operatorname{tr}\left(f_{* k}\right)
$$

is called a Lefschetz number of f [5].
Suppose f has only hyperbolic fixed points and their set Fix (f) is finite. The following equality is named Lefschetz-Hopf theorem.

$$
\begin{equation*}
\sum_{p \in F i x(f)} I(p)=\Lambda(f) \tag{1}
\end{equation*}
$$

Denote by $N_{m}, m \in \mathbb{N}$ the number of points in $\operatorname{Fix}\left(f^{m}\right)$. Let $\lambda_{* k, j}, j \in\{1, \ldots$, $\left.\operatorname{dim} H_{k}(M)\right\}$ be eigenvalues of $f_{* k}$. If $I\left(p, f^{m}\right)=I\left(q, f^{m}\right)$ for any $p, q \in \operatorname{Fix}\left(f^{m}\right)$ then the Lefschetz-Hopf theorem has the following form

$$
\begin{equation*}
N_{m}=\left|\sum_{k=0}^{n}(-1)^{k}\left(\sum_{j=1}^{\operatorname{dim} H_{k}(M)} \lambda_{* k, j}^{m}\right)\right| . \tag{2}
\end{equation*}
$$

Sometimes it is convenient to pass from homology groups to cohomology groups. Let us prove the following lemma for this aim.

Lemma 2.2. Let M be an n-dimensional orientable smooth manifold with boundary $\partial M, f: M \rightarrow M$ be a diffeomorphism, $k \in\{0,1, \ldots, n\}, f_{*}: H_{k}(M) \rightarrow H_{k}(M)$, $\tilde{f}_{*}: H_{n-k}(M, \partial M) \rightarrow H_{n-k}(M, \partial M)$ and $f^{*}: H^{k}(M) \rightarrow H^{k}(M)$ be induced automorphisms for groups with real coefficients. Then:

- if λ is an eigenvalue for f_{*}, then $\tilde{\lambda}= \pm \lambda^{-1}$ is an eigenvalue for \tilde{f}_{*};
- if $\tilde{\lambda}$ is an eigenvalue for \tilde{f}_{*}, then $\lambda= \pm \tilde{\lambda}^{-1}$ is an eigenvalue for f^{*}.

In the both cases a sign + corresponds to an orientation-preserving diffeomorphism and a sign - is used in the opposite situation.

Proof. According to the strong part of the Poincare-Lefschetz duality groups $H_{k}(M)$ and $H_{n-k}(M, \partial M)$ have bases e_{1}, \ldots, e_{m} and $\varepsilon_{1}, \ldots, \varepsilon_{m}$, dual with respect to the intersection form Ind : $H_{k}(M) \times H_{n-k}(M, \partial M) \rightarrow \mathbb{R}$. The duality means that the following equalities take place

$$
\operatorname{Ind}\left(e_{i}, \varepsilon_{j}\right)=\delta_{i j}, \quad i, j=1, \ldots, m
$$

Let A and B be matrices of automorphisms f_{*} and \tilde{f}_{*} in the bases e_{1}, \ldots, e_{m} and $\varepsilon_{1}, \ldots, \varepsilon_{m}$ correspondingly. Then

$$
f_{*}\left(e_{i}\right)=\sum_{s=1}^{m} a_{i s} e_{s}, \quad \tilde{f}_{*}\left(\varepsilon_{j}\right)=\sum_{t=1}^{m} b_{j t} \varepsilon_{t}
$$

Herewith

$$
\begin{equation*}
\operatorname{Ind}\left(f_{*}\left(e_{i}\right), \tilde{f}_{*}\left(\varepsilon_{j}\right)\right)=\sum_{s, t=1}^{m} a_{i s} b_{j t} \operatorname{Ind}\left(e_{s}, \varepsilon_{t}\right)=\sum_{s, t=1}^{m} a_{i s} b_{j t} \delta_{s t}=\sum_{s=1}^{m} a_{i s} b_{j s} \tag{3}
\end{equation*}
$$

On the other hand, since $\operatorname{deg} f= \pm 1$, then

$$
\begin{equation*}
\operatorname{Ind}\left(f_{*}\left(e_{i}\right), \tilde{f}_{*}\left(\varepsilon_{j}\right)\right)= \pm \operatorname{Ind}\left(e_{i}, \varepsilon_{j}\right)= \pm \delta_{i j} \tag{4}
\end{equation*}
$$

(3) and (4) imply $B^{T}= \pm A^{-1}$. Therefore, the roots of the characteristic equations $|A-\lambda E|=0$ and $|B-\tilde{\lambda} E|=0$ are related by the equation $\tilde{\lambda}= \pm \lambda^{-1}$. Thus, the first statement is proved.

For the Poincare-Lefschetz isomorphism $l: H^{k}(M) \rightarrow H_{n-k}(M, \partial M)$ the following diagram is commutative

Let $v \in H_{n-k}(M, \partial M), v \neq 0, \tilde{\lambda} \in \mathbb{R}$ and $\tilde{f}_{*}(v)=\tilde{\lambda} v$. Then $\tilde{f}_{*}^{-1}(v)=\tilde{\lambda}^{-1} v$. Set $\alpha=l^{-1}(v)$. Since l is an isomorphism, then $\alpha \neq 0$. According to (5) we have
$f^{*}(\alpha)= \pm l^{-1} \circ \tilde{f}_{*}^{-1} \circ l(\alpha)= \pm l^{-1} \circ \tilde{f}_{*}^{-1}(v)= \pm l^{-1}\left(\tilde{\lambda}^{-1} v\right)= \pm \tilde{\lambda}^{-1} l^{-1}(v)= \pm \tilde{\lambda}^{-1} \alpha$.
Thus, $\lambda=\tilde{\lambda}^{-1}$ is an eigenvalue of the automorphism f^{*} corresponding to the eigenvector $\alpha \in H^{k}(M)$.

According to the lemma proved above for the eigenvalues $\lambda_{k, j}^{*}, j \in\{1, \ldots$, $\left.\operatorname{dim} H^{k}(M)\right\}$ of f_{k}^{*} and f^{m} such that $I\left(p, f^{m}\right)=I\left(q, f^{m}\right)$ for any $p, q \in \operatorname{Fix}\left(f^{m}\right)$ the following equality takes place

$$
\begin{equation*}
N_{m}=\left|\sum_{k=0}^{n}(-1)^{n-k}\left(\sum_{j=1}^{\operatorname{dim} H^{k}(M)} \lambda_{k, j}^{* m}\right)\right| \tag{6}
\end{equation*}
$$

2.3. Filtration. Let $f: M^{n} \rightarrow M^{n}$ be an Ω-stable diffeomorphism. As f has no cycles then \prec is a partial order relation on the basic sets

$$
\Lambda_{i} \prec \Lambda_{j} \Longleftrightarrow W_{\Lambda_{i}}^{s} \cap W_{\Lambda_{j}}^{u} \neq \emptyset .
$$

Intuitively the definition means that "everything trickles down" towards "smaller elements". The partial order \prec extends to the order relation, i.e. the basic sets can be enumerated $\Lambda_{1}, \ldots, \Lambda_{m}$ in accordance with the relation \prec :

$$
\text { if } \Lambda_{i} \prec \Lambda_{j} \text {, then } i \leq j \text {. }
$$

We pick a sequence of nested subsets of the ambient manifold M^{n} in the following way. Let the first subset of M^{n} be a neighborhood M_{1} of the basic set Λ_{1}, let the next subset M_{2} be the union of M_{1} and some neighborhood of the unstable manifold of the element Λ_{2}. If we continue this process we get the entire manifold M^{n}. This construction gives the idea to the following notion of filtration.

A sequence M_{1}, \ldots, M_{m-1} of compact n-submanifolds of M^{n}, each having a smooth boundary, and such that $M^{n}=M_{m} \supset M_{m-1} \supset \cdots \supset M_{1} \supset M_{0}=\emptyset$ is called a filtration for a diffeomorphism f with its ordered basic sets $\Lambda_{1} \prec \cdots \prec \Lambda_{m}$ if for each $i=1, \ldots, m$ the following holds:

1. $f\left(M_{i}\right) \subset \operatorname{int} M_{i}$;
2. $\Lambda_{i} \subset \operatorname{int}\left(M_{i} \backslash M_{i-1}\right)$;
3. $\Lambda_{i}=\bigcap_{l \in \mathbb{Z}} f^{l}\left(M_{i} \backslash M_{i-1}\right)$;
4. $\bigcap_{l \geq 0} f^{l}\left(M_{i}\right)=\bigcup_{j \leq i} W_{\Lambda_{j}}^{u}=\bigcup_{j \leq i} c l\left(W_{\Lambda_{j}}^{u}\right)$.

Below we describe following from [7] interrelations between actions f on cohomology groups $H^{k}\left(M^{n}\right), H^{k}\left(M_{i}, M_{i-1}\right)$ and homology group $H_{k}\left(M^{n}\right)$ with real coefficients. If an action in these group is nilpotent then all eigenvalues equal zero and if it is unipotent then it has only roots of unity as eigenvalues.
Proposition 2.3. Let $f: M^{n} \rightarrow M^{n}$ be an Ω-stable diffeomorphism and $M^{n}=$ $M_{m} \supset M_{m-1} \supset \cdots \supset M_{1} \supset M_{0}=\emptyset$ be a filtration for its ordered basic sets $\Lambda_{1} \prec \cdots \prec \Lambda_{m}$. Then

1. If λ is an eigenvalue of $f_{k}^{*}: H^{k}\left(M^{n}\right) \rightarrow H^{k}\left(M^{n}\right)$, then there is an $i \in$ $\{1, \ldots, m\}$ such that $f_{k}^{*}: H^{k}\left(M_{i}, M_{i-1}\right) \rightarrow H^{k}\left(M_{i}, M_{i-1}\right)$ has λ as an eigenvalue.
2. If Λ_{i} is a trivial basic set then $f_{k}^{*}: H^{k}\left(M_{i}, M_{i-1}\right) \rightarrow H^{k}\left(M_{i}, M_{i-1}\right)$ is nilpotent unless $k=\operatorname{dim} W_{x}^{u}, x \in \Lambda_{i}$ and $f_{k}^{*}: H^{k}\left(M_{i}, M_{i-1}\right) \rightarrow H^{k}\left(M_{i}, M_{i-1}\right)$ is unipotent for $k=\operatorname{dim} W_{x}^{u}, x \in \Lambda_{i}$.
3. Proof of theorem 1.1. In this section we prove that if $f: M^{3} \rightarrow M^{3}$ is an Ω-stable diffeomorphism whose basic sets are trivial except attractors, then every non-trivial attractor is either one-dimensional non-orientable or two-dimensional expanding. We will use in this proof some results, which will be proven in the next section. As above, the symbols $H_{k}(X, A)$ and $H^{k}(X, A)$ will denote homology and cohomology groups with real coefficients. For homology groups with integer coefficients, the notation $H_{k}(X, A ; \mathbb{Z})$ will be used.

Proof. Suppose the contrary: $N W(f)$ contains a non-trivial attractor A such that A is either one-dimensional orientable or two-dimensional Anosov torus. Without loss of generality we can assume that in the order \prec, first positions occupied by attractors and A is the last of them. Let $M^{n}=M_{k} \supset M_{k-1} \supset \cdots \supset M_{1} \supset M_{0}=\emptyset$
be a filtration for the ordered basic sets $\Lambda_{1} \prec \cdots \prec \Lambda_{k}$. Then $\tilde{M}_{i}=M^{n} \backslash \operatorname{int} M_{k-i}$ is the filtration for the basic sets $\tilde{\Lambda}_{i}=\Lambda_{k-i}$ of the diffeomorphism $g=f^{-1}$. Let $A=\tilde{\Lambda}_{i_{0}}$. Without loss of generality we can assume that the manifold $\tilde{M}_{i_{0}}$ is connected (in the opposite case let us consider its connected component containing A). Then $g\left(\tilde{M}_{i_{0}}\right) \subset \operatorname{int} \tilde{M}_{i_{0}}$. Notice, that $i_{0}>1$ since any Ω-stable diffeomorphism has non-empty sets of attractors and repellers.

Let N_{m} be a number of points in Fix $\left(g^{m}\right)$. As the non-trivial basic set A belongs to $\tilde{M}_{i_{0}}$ then $\lim _{m \rightarrow \infty} N_{m}=\infty$. Since A is orientable then the Lemma 2.1 and the formula (6) gives the existence of an eigenvalue λ with absolute value greater than 1 for $g_{k}^{*}: H^{k}\left(\tilde{M}_{i_{0}}\right) \rightarrow H^{k}\left(\tilde{M}_{i_{0}}\right)$ for some $k \in\{0, \ldots, 3\}$.

First of all, let us show that it is impossible for orientable M^{3}. We will prove it separately for each dimension $k=0,1,2,3$.
a) $k=0$. Eigenvalues of the automorphism $g^{*}: H^{0}\left(\tilde{M}_{i_{0}}\right) \rightarrow H^{0}\left(\tilde{M}_{i_{0}}\right)$ are roots of unity by the lemma 4.7 .
b) $k=3$. The group $H_{3}\left(\tilde{M}_{i_{0}} ; \mathbb{Z}\right)$ is trivial when $\partial \tilde{M}_{i_{0}} \neq \emptyset$ and is isomorphic to \mathbb{Z} when $\partial \tilde{M}_{i_{0}}=\emptyset$. In the first case we have $H^{3}\left(\tilde{M}_{i_{0}}\right)=0$ and so $g^{*}: H^{3}\left(\tilde{M}_{i_{0}}\right) \rightarrow$ $H^{3}\left(\tilde{M}_{i_{0}}\right)$ does not have eigenvalues. In the second case, $g^{*}= \pm$ id by the lemma 4.6.
c) $k=1$. Suppose, that the automorphism $g^{*}: H^{1}\left(\tilde{M}_{i_{0}}\right) \rightarrow H^{1}\left(\tilde{M}_{i_{0}}\right)$ has an eigenvalue λ, for which $\lambda^{2} \neq 1$. Then it follows from the item 1 of the proposition 2.3 , that there exists a number $i, 1 \leqslant i \leqslant i_{0}$ such that the automorphism g^{*} : $H^{1}\left(M_{i}, M_{i-1}\right) \rightarrow H^{1}\left(M_{i}, M_{i-1}\right)$ also has the eigenvalue λ.

As all basic sets of g before A in the Smale order \prec are trivial then by the item 2 of proposition 2.3 for $i<i_{0}$ we get that the automorphisms g^{*} on $H^{1}\left(M_{i}, M_{i-1}\right)$ are either nilpotent or uniponent. Hence, it is precisely the automorphism g^{*} : $H^{1}\left(\tilde{M}_{i_{0}}, \tilde{M}_{i_{0}-1}\right) \rightarrow H^{1}\left(\tilde{M}_{i_{0}}, \tilde{M}_{i_{0}-1}\right)$ must have the eigenvalue λ.

Let $\operatorname{dim} A=1$. In this case $\tilde{M}_{i_{0}}=Q_{g} \cup \tilde{M}_{i_{0}-1}$, where Q_{g} is a handlebody of a genus $g \geqslant 0$ such that $Q_{g} \cap \tilde{M}_{i_{0}-1}=\partial Q_{g}$. By lemma $4.2 H_{1}\left(\tilde{M}_{i_{0}}, \tilde{M}_{i_{0}-1} ; \mathbb{Z}\right)=0$. Then $H^{1}\left(\tilde{M}_{i_{0}}, \tilde{M}_{i_{0}-1}\right)=0$ and therefore λ cannot be an eigenvalue of the automorphism g^{*}.

If $\operatorname{dim} A=2$, then $\tilde{M}_{i_{0}}=Q \cup \tilde{M}_{i_{0}-1}$, where $Q \cong \mathbb{T}^{2} \times[0,1]$ and $Q \cap \tilde{M}_{i_{0}-1}=\partial Q$. In this situation by the lemma $4.3 H_{1}\left(\tilde{M}_{i_{0}}, \tilde{M}_{i_{0}-1} ; \mathbb{Z}\right) \cong \mathbb{Z}$. From here and from the lemma 4.6 it follows, that $g^{*}= \pm \mathrm{id}$. Thus, we obtain a contradiction for $k=1$ as well.
d) $k=2$. Let us finally assume that $g^{*}: H^{2}\left(\tilde{M}_{i_{0}}\right) \rightarrow H^{2}\left(\tilde{M}_{i_{0}}\right)$ has as eigenvalue λ, for which $\lambda^{2} \neq 1$. Due to lemma 2.2 , in such a situation the automorphism $g^{*}: H^{1}\left(\tilde{M}_{i_{0}}, \partial \tilde{M}_{i_{0}}\right) \rightarrow H^{1}\left(\tilde{M}_{i_{0}}, \partial \tilde{M}_{i_{0}}\right)$ has an eigenvalue $\tilde{\lambda}= \pm \lambda^{-1}$.

Consider the following diagram

where the rows are taken from the cohomological sequence of the pair ($\left.\tilde{M}_{i_{0}}, \partial \tilde{M}_{i_{0}}\right)$ and the vertical arrows denote the mappings induced by the diffeomorphism g. All squares of the diagram are commutative, and the middle automorphism g^{*} from (7) has an eigenvalue $\tilde{\lambda}$. From this, by [7, Lemma 3] it follows that for one of the
extreme vertical automorphisms of the diagram (7) $\tilde{\lambda}$ is also an eigenvalue. Since $\tilde{\lambda}^{2} \neq 1$, then for the automorphism $g^{*}: H^{1}\left(\tilde{M}_{i_{0}}\right) \rightarrow H^{1}\left(\tilde{M}_{i_{0}}\right)$ this is impossible according to proven in c). Since the manifold $\tilde{M}_{i_{0}}$ is compact, its boundary $\partial \tilde{M}_{i_{0}}$ consists of a finite set of connected components. Then by Lemma 4.7 all eigenvalues of the automorphism $g^{*}: H^{0}\left(\partial \tilde{M}_{i_{0}}\right) \rightarrow H^{0}\left(\partial \tilde{M}_{i_{0}}\right)$ are roots of unity. Thus, in this case we also obtain a contradiction.

If M^{n} is non-orientable then, by lemma 5.2 , there is an oriented two-fold covering $p: \bar{M}^{n} \rightarrow M^{n}$ and a lift $\bar{g}: \bar{M}^{n} \rightarrow \bar{M}^{n}$ of the diffeomorphism ${ }^{3} g$. Herewith, by lemma 5.3, $\bar{A}=p^{-1}(A)$ is orientable, like A. So we can apply all arguments from an orientable case to \bar{g} and get a contradiction.
4. Homology and induced automorphisms. In this section, we calculate the homology groups of some topological pairs and study the properties of automorphisms of cohomology groups induced by homeomorphisms.
4.1. Calculations. In this section we calculate relative homology for the following situation. Let M and N be smooth 3-manifolds with boundaries such that $P=$ $M \cup N$ is connected, $M \cap N=\partial M$ and connected components of ∂M are some of connected components of ∂N. Let us calculate the relative homology groups of the pair (P, N).

Firstly notice that $H_{0}(P, N ; \mathbb{Z})=0$ as the manifold P is connected and N is not empty. For the calculation of other relative homology groups we need the following fact.

Lemma 4.1. For every natural k the following isomorphism takes place

$$
H_{k}(P, N ; \mathbb{Z}) \cong H_{k}(M, \partial M ; \mathbb{Z})
$$

Proof. By [13, Theorem 6.1, Chapter 4] the boundary ∂N possesses a collar in N. As connected components of ∂M are connected components of ∂N then there is an embedding $\phi: \partial M \times[0,1) \rightarrow N$ such that $\phi(a, 0)=a$ for every $a \in \partial M$. Let $V=\phi(\partial M \times[0,1)), B=N \backslash V$ and $\operatorname{cl} B$ be the closure of $B \subset P$ in P, int N be the interior of $N \subset P$ in P. By the construction $\mathrm{cl} B=B \subset N \backslash \partial M=\operatorname{int} N$. The excision theorem [6, Corollary 7.4, Chapter III] claims in such case that

$$
H_{k}(P, N ; \mathbb{Z}) \cong H_{k}(P \backslash B, N \backslash B ; \mathbb{Z})=H_{k}(M \cup V, V ; \mathbb{Z})
$$

But the pair $(M \cup V, V)$ is homotopically equivalent to the pair $(M, \partial M)$. Hence, $H_{k}(M \cup V, V ; \mathbb{Z}) \cong H_{k}(M, \partial M ; \mathbb{Z})$ for a natural k.

Below we calculate $H_{k}(M, \partial M ; \mathbb{Z})$ in two cases: 1) M is a handlebody of a genus $g \geqslant 0,2) M \cong \mathbb{T}^{2} \times[0,1]$.

Lemma 4.2. If M is a handlebody of a genus $g \geqslant 0$ then

$$
\begin{equation*}
H_{3}(M, \partial M ; \mathbb{Z}) \cong \mathbb{Z}, \quad H_{2}(M, \partial M ; \mathbb{Z}) \cong \mathbb{Z}^{g}, \quad H_{1}(M, \partial M ; \mathbb{Z})=0 \tag{8}
\end{equation*}
$$

Proof. As $H_{3}(M ; \mathbb{Z})=0$ and $H_{0}(M, \partial M ; \mathbb{Z})=0$ then the homological sequence of the pair $(M, \partial M)$ has the following form [6, Proposition 4.4, Chapter III]:

$$
\begin{gathered}
0 \longrightarrow H_{3}(M, \partial M ; \mathbb{Z}) \xrightarrow{\partial_{*}^{3}} H_{2}(\partial M ; \mathbb{Z}) \xrightarrow{\nu_{*}^{2}} H_{2}(M ; \mathbb{Z}) \xrightarrow{\rho_{*}^{2}} H_{2}(M, \partial M ; \mathbb{Z}) \xrightarrow{\partial_{*}^{2}} \\
\longrightarrow H_{1}(\partial M ; \mathbb{Z}) \xrightarrow{\nu_{*}^{1}} H_{1}(M ; \mathbb{Z}) \xrightarrow{\partial_{*}^{1}} H_{1}(M, \partial M ; \mathbb{Z}) \xrightarrow{\partial_{*}^{1}}
\end{gathered}
$$

[^2]\[

$$
\begin{equation*}
\longrightarrow H_{0}(\partial M ; \mathbb{Z}) \xrightarrow{\iota_{*}^{0}} H_{0}(M ; \mathbb{Z}) \xrightarrow{\jmath_{*}^{0}} 0 . \tag{9}
\end{equation*}
$$

\]

Handlebody M of a genus g is the 3 -ball with glued g 3-handles of the index 1 . That is M is homotopically equivalent to the bouquet of g circles. Therefore,

$$
H_{2}(M ; \mathbb{Z})=0, \quad H_{1}(M ; \mathbb{Z}) \cong \mathbb{Z}^{g}, \quad H_{0}(M ; \mathbb{Z}) \cong \mathbb{Z}
$$

On the other side the boundary ∂M is homeomorphic to the surface S_{g} of the genus g. Hence,

$$
H_{2}(\partial M ; \mathbb{Z}) \cong \mathbb{Z}, \quad H_{1}(\partial M ; \mathbb{Z}) \cong \mathbb{Z}^{2 g}, \quad H_{0}(\partial M ; \mathbb{Z}) \cong \mathbb{Z}
$$

Substituting the latter in (9), we get the exact sequence

$$
\begin{align*}
0 \longrightarrow H_{3}(M, \partial M ; \mathbb{Z}) & \xrightarrow{\partial_{*}^{3}} \mathbb{Z} \xrightarrow{\imath_{*}^{2}} 0 \xrightarrow{{\rho_{*}^{2}}_{\longrightarrow}} H_{2}(M, \partial M ; \mathbb{Z}) \xrightarrow{\partial_{*}^{2}} \\
& \longrightarrow \mathbb{Z}^{2 g} \xrightarrow{\iota_{*}^{1}} \mathbb{Z}^{g} \xrightarrow{\jmath_{*}^{1}} H_{1}(M, \partial M ; \mathbb{Z}) \xrightarrow{\partial_{*}^{1}} \mathbb{Z} \xrightarrow{\iota_{*}^{0}} \mathbb{Z} \xrightarrow{J_{*}^{0}} 0 . \tag{10}
\end{align*}
$$

As \imath_{*}^{1} is an epimorphism then (10) decomposes into short exact sequences

$$
\begin{aligned}
& 0 \longrightarrow H_{3}(M, \partial M ; \mathbb{Z}) \xrightarrow{\partial_{*}^{3}} \mathbb{Z} \xrightarrow{\stackrel{i}{*}_{2}} 0, \\
& 0 \longrightarrow H_{2}(M, \partial M ; \mathbb{Z}) \xrightarrow{\partial_{*}^{2}} \mathbb{Z}^{2 g} \xrightarrow{\iota_{*}^{1}} \mathbb{Z}^{g} \longrightarrow 0, \\
& 0 \longrightarrow H_{1}(M, \partial M ; \mathbb{Z}) \xrightarrow{\partial_{*}^{1}} \mathbb{Z} \xrightarrow{\stackrel{\nu}{*}_{0}^{\longrightarrow}} \mathbb{Z} \longrightarrow 0,
\end{aligned}
$$

from which follows the statement of the lemma.
Lemma 4.3. If $M=\mathbb{T}^{2} \times[0,1]$ then

$$
\begin{equation*}
H_{3}(M, \partial M ; \mathbb{Z}) \cong \mathbb{Z}, \quad H_{2}(M, \partial M ; \mathbb{Z}) \cong \mathbb{Z}^{2}, \quad H_{1}(M, \partial M ; \mathbb{Z})=\mathbb{Z} \tag{11}
\end{equation*}
$$

Proof. As M is homotopically equivalent to \mathbb{T}^{2} and ∂M is homeomorphic to $\mathbb{T}^{2} \times \mathbb{S}^{0}$ then $H_{k}(M ; \mathbb{Z}) \cong H_{k}\left(\mathbb{T}^{2} ; \mathbb{Z}\right)$ and $H_{k}(\partial M ; \mathbb{Z}) \cong H_{k}\left(\mathbb{T}^{2} ; \mathbb{Z}\right) \times H_{k}\left(\mathbb{T}^{2} ; \mathbb{Z}\right)$. In such situation the homological sequence (9) of the pair $(M, \partial M)$ has the following form:

$$
\begin{align*}
0 \longrightarrow H_{3}(M, \partial M ; \mathbb{Z}) & \xrightarrow{\partial_{*}^{3}} \mathbb{Z}^{2} \xrightarrow{\iota_{*}^{2}} \mathbb{Z} \xrightarrow{{\rho_{*}^{2}}_{\longrightarrow}} H_{2}(M, \partial M ; \mathbb{Z}) \xrightarrow{\partial_{*}^{2}} \\
& \longrightarrow \mathbb{Z}^{4} \xrightarrow{\iota_{*}^{1}} \mathbb{Z}^{2} \xrightarrow{\jmath_{*}^{1}} H_{1}(M, \partial M ; \mathbb{Z}) \xrightarrow{\partial_{*}^{1}} \mathbb{Z}^{2} \xrightarrow{\iota_{*}^{0}} \mathbb{Z} \xrightarrow{\rho_{*}^{0}} 0 . \tag{12}
\end{align*}
$$

As the inclusion of every connected component of ∂M to M is a homotopical equivalence then \imath_{*}^{2} and \imath_{*}^{1} are epimorphisms. Herewith (12) decomposes into short exact sequences

$$
\begin{aligned}
& 0 \longrightarrow H_{3}(M, \partial M ; \mathbb{Z}) \xrightarrow{\partial_{*}^{3}} \mathbb{Z}^{2} \xrightarrow{{\imath_{*}^{2}}^{2}} \mathbb{Z} \longrightarrow 0 \\
& 0 \longrightarrow H_{2}(M, \partial M ; \mathbb{Z}) \xrightarrow{\partial_{*}^{2}} \mathbb{Z}^{4} \xrightarrow{\iota_{*}^{1}} \mathbb{Z}^{2} \longrightarrow 0, \\
& 0 \longrightarrow H_{1}(M, \partial M ; \mathbb{Z}) \xrightarrow{\partial_{*}^{1}} \mathbb{Z}^{2} \xrightarrow{\iota_{*}^{0}} \mathbb{Z} \longrightarrow 0,
\end{aligned}
$$

from which follows the statement of the lemma.
4.2. Eigenvalues of induced automorphisms. In this section we again consider all homology groups $H_{k}(X, A ; \mathbb{Z})$ with integer coefficients and cohomology groups $H^{k}(X, A)$ with real coefficients. Firstly, by the Universal Coefficient Formula [6, Section 7, Chapter VI], the previous subsection results give the following calculations.

Lemma 4.4. If M is a handlebody of a genus $g \geqslant 0$ then

$$
H^{3}(M, \partial M) \cong \mathbb{R}, H^{2}(M, \partial M) \cong \mathbb{R}^{g}, H^{1}(M, \partial M)=0, H^{0}(M, \partial M)=0
$$

Lemma 4.5. If $M=\mathbb{T}^{2} \times[0,1]$ then

$$
H^{3}(M, \partial M) \cong \mathbb{R}, H^{2}(M, \partial M) \cong \mathbb{R}^{2}, H^{1}(M, \partial M)=\mathbb{R}, H^{0}(M, \partial M)=0
$$

The groups $H^{k}(X, A) \cong \mathbb{R}^{m}$ admit many automorphisms even for $m=1$. But in some cases only a small part of them can be induced by homeomorphisms of the topological space X.

Lemma 4.6. Let X be a topological space, $A \subset X$ be its subspace, $f: X \rightarrow X$ be homeomorphism, and $f(A) \subset A$. Denote by $H_{k}^{\prime}(X, A ; \mathbb{Z})$ a free part of the group of k-dimensional singular homology of the pair (X, A), and by $H^{k}(X, A)$ its k dimensional cohomology group with real coefficients. It $H_{k}^{\prime}(X, A ; \mathbb{Z}) \cong \mathbb{Z}$ for some k, then for the induced automorphism $f^{*}: H^{k}(X, A) \rightarrow H^{k}(X, A)$ the equality $f^{*}= \pm \mathrm{id}$ holds.
Proof. Let the automorphism $f_{*}: H_{k}^{\prime}(X, A ; \mathbb{Z}) \rightarrow H_{k}^{\prime}(X, A ; \mathbb{Z})$ also induced by the homeomorphism f. The formula $f_{h}^{*}(q)=q \circ f_{*}$ defines the automorphism $f_{h}^{*}: \operatorname{Hom}\left(H_{k}^{\prime}(X, A ; \mathbb{Z}) ; \mathbb{R}\right) \rightarrow \operatorname{Hom}\left(H_{k}^{\prime}(X, A ; \mathbb{Z}) ; \mathbb{R}\right)$. If $H_{k}^{\prime}(X, A ; \mathbb{Z}) \cong \mathbb{Z}$, then $f_{*}=$ $\pm \mathrm{id}$. Moreover, $f_{h}^{*}(q)=q \circ(\pm \mathrm{id})= \pm q$ for all $q \in \operatorname{Hom}\left(H_{k}^{\prime}(X, A ; \mathbb{Z}) ; \mathbb{R}\right)$. Hence $f_{h}^{*}= \pm \mathrm{id}$.

It follows for the Universal Coefficient Formula for cohomology [6, Chapter VI, Section 7] that there exists the natural isomorphism $\kappa: H^{k}(X, A) \rightarrow \operatorname{Hom}\left(H_{k}^{\prime}(X, A\right.$; $\mathbb{Z}) ; \mathbb{R})$. The naturalness means commutativity of the diagram

It follows from (13) and the equation $f_{h}^{*}= \pm \operatorname{id}$ that $f^{*}=\kappa^{-1} \circ f_{h}^{*} \circ \kappa=\kappa^{-1} \circ$ $(\pm \mathrm{id}) \circ \kappa= \pm \mathrm{id}$.

Lemma 4.7. Let X be a topological space with a finite number of path-connected components, $f: X \rightarrow X$ be a homeomorphism, and $f^{*}: H^{0}(X) \rightarrow H^{0}(X)$ be an induced automorphism. Then any eigenvalue λ for f^{*} satisfies the equality $\lambda^{2}=1$.

Proof. Firstly consider a case when X_{1} and X_{2} are path-connected topological spaces and $f_{2}: X_{1} \rightarrow X_{2}$ is a homeomorphism. All elements of groups $H^{0}\left(X_{j}\right)$ are constant functions $c_{j}: X_{j} \rightarrow \mathbb{R}$. Therefore, the formula $\nu_{j}\left(c_{j}\right)=\operatorname{im} c_{j}$ defines isomorphisms $\nu_{j}: H^{0}\left(X_{j}\right) \rightarrow \mathbb{R}, j=1,2$. The induced isomorphism $f_{2}^{*}: H^{0}\left(X_{2}\right) \rightarrow H^{0}\left(X_{1}\right)$ is defined by the formula $f_{2}^{*}\left(c_{2}\right)=c_{2} \circ f_{2}$. Since values of the functions c_{2} and $c_{2} \circ f_{2}$ are equal, then

$$
\begin{equation*}
\nu_{1} \circ f_{2}^{*}=\nu_{2} \tag{14}
\end{equation*}
$$

Now suppose that X consists of path-connected components X_{1}, \ldots, X_{m}. Then there exists a permutation $\sigma \in S_{m}$ such that f maps the component X_{j} onto the
component $X_{\sigma(j)}$ homeomorphically. Thus, setting $f_{\sigma(j)}(x)=f(x)$ for all $x \in X_{j}$, we obtain homeomorphisms $f_{\sigma(j)}: X_{j} \rightarrow X_{\sigma(j)}, j=1, \ldots, m$. Moreover, the induced homomorphisms $f_{j}^{*}: H^{0}\left(X_{j}\right) \rightarrow H^{0}\left(X_{\tau(j)}\right)$ are defined, where $\tau=\sigma^{-1}$. By virtue of (14)

$$
\begin{equation*}
\nu_{\tau(j)} \circ f_{j}^{*}=\nu_{j}, \quad j=1, \ldots, m \tag{15}
\end{equation*}
$$

For each element $c \in H^{0}(X)$ we set $c_{j}=\left.c\right|_{X_{j}}$. Then $c_{j} \in H^{0}\left(X_{j}\right)$. Define isomorphisms $\mu: H^{0}(X) \rightarrow H^{0}\left(X_{1}\right) \times \cdots \times H^{0}\left(X_{m}\right)$ and $\nu: H^{0}\left(X_{1}\right) \times \cdots \times H^{0}\left(X_{m}\right) \rightarrow \mathbb{R}^{m}$ by the formulas $\mu(c)=\left(c_{1}, \ldots, c_{m}\right)$ and $\nu\left(\left(c_{1}, \ldots, c_{m}\right)\right)=\left(\nu_{1}\left(c_{1}\right), \ldots, \nu_{m}\left(c_{m}\right)\right)$. We construct the automorphism $p: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that the diagram is commutative

For all $y=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$ we set $\|y\|=\sqrt{y_{1}^{2}+\cdots+y_{m}^{2}}$. Since f_{j}^{*} maps $H^{0}\left(X_{j}\right)$ onto $H^{0}\left(X_{\tau(j)}\right)$, then it follows from the equality (15) and the diagram (16) that $p(y)=\left(y_{\tau(1)}, \ldots, y_{\tau(1)}\right)$. Moreover, $\|p(y)\|=\|y\|$.

Finally, let $\lambda \in \mathbb{R}, c \in H^{0}(X), c \neq 0$ and $f^{*}(c)=\lambda c$. We set $y=\nu \circ \mu(c)$. Then by virtue of (16) $p(y)=\mu \circ \nu\left(f^{*}(c)\right)=\mu \circ \nu(\lambda c)=\lambda y$. Hence, according to what was proved above, we obtain $\|y\|^{2}=\|p(y)\|^{2}=\lambda^{2}\|y\|^{2}$. Hence, $\lambda^{2}=1$.
5. On oriented two-fold covering. Let M be a non-orientable connected smooth n-manifold, $a \in M$ and $x: I \rightarrow M$ be a loop based at a point a. Let us consider continuous vector fields X_{1}, \ldots, X_{n} along x such that $X_{1}(t), \ldots, X_{n}(t)$ linearly independent for each $t \in I$. Then there is a matrix $A=\left(a_{i}^{j}\right) \in \mathrm{GL}_{n}(\mathbb{R})$ such that

$$
\begin{equation*}
X_{i}(1)=a_{i}^{j} X_{j}(0), \quad i, j=1, \ldots, n \tag{17}
\end{equation*}
$$

Let $\omega_{a}(x)=\operatorname{sign} \operatorname{det} A$. If y is a loop which based at the same starting point and $x \sim y$ then $\omega_{a}(x)=\omega_{a}(y)$. Therefore the formula $\omega_{a}([x])=\omega_{a}(x)$ defines a homeomorphism $\omega_{a}: \pi_{1}(M, a) \rightarrow G$, where $G=\{1,-1\}$. The manifold M is orientable if and only if $\operatorname{ker} \omega_{a}=\pi_{1}(M, a)$.

Let $a, b \in M, z: I \rightarrow M$ be a path which starts in $z(0)=a$ and ends in $z(1)=b$ and $T_{z}: \pi_{1}(M, a) \rightarrow \pi_{1}(M, b)$ be the isomorphism defined by the formula $T_{z}([x])=\left[z^{-1} x z\right]$. Then $z z^{-1} \sim 1_{a}$ and $z^{-1} z \sim 1_{b}$ implies commutativity of the diagram

Lemma 5.1. Let M, N be connected smooth manifolds, $f: M \rightarrow N$ be a local diffeomorphism, $a \in M, b=f(a)$ and $f_{*}: \pi_{1}(M, a) \rightarrow \pi_{1}(N, b)$ be an induced homeomorphism. Then the following diagram is commutative

Proof. Let $[x] \in \pi_{1}(M, a), X_{1}, \ldots, X_{n}$ be continuous vector fields along x, linearly independent at each point $x(t)$, and the equality (17) is satisfied. Let $y=f \circ x$ and $Y_{i}(t)=d f_{x(t)}\left(X_{i}(t)\right)$ for every $i=1, \ldots, n$ and $t \in I$. Then $[y] \in \pi_{1}(N, b),[y]=$ $f_{*}([x])$ and Y_{1}, \ldots, Y_{n} are continuous vector fields along the loop y. According to the condition, $d f_{x(t)}: T_{x(t)} M \rightarrow T_{y(t)} N$ are isomorphisms. Therefore $Y_{1}(t), \ldots, Y_{n}(t)$ are linearly dependent for all $t \in I$. But

$$
Y_{i}(1)=d f_{a}\left(X_{i}(1)\right)=d f_{a}\left(a_{i}^{j} X_{j}(0)\right)=a_{i}^{j} d f_{a}\left(X_{j}(0)\right)=a_{i}^{j} Y_{j}(0)
$$

from (17) and the linearity of the differential $d f_{a}: T_{a} M \rightarrow T_{b} N$. Thus, $\omega_{b}([y])=$ sign $\operatorname{det} A=\omega_{a}([x])$.

Lemma 5.2. Let M be a non-orientable connected smooth manifold and $f: M \rightarrow$ M be a diffeomorphism. Then there exists a connected smooth orientable manifold \bar{M}, a smooth two-fold cover $p: \bar{M} \rightarrow M$ and a diffeomorphism $\bar{f}: \bar{M} \rightarrow \bar{M}$ for which the diagram is commutative

Proof. Let $a \in M$. Then $\operatorname{ker} \omega_{a}$ is the normal divisor of the group $\pi_{1}(M, a)$. By the theorem of the existence of covers, there will be a connected smooth manifold \bar{M}, a regular smooth cover $p: \bar{M} \rightarrow M$ and a point $u \in \bar{M}$ such that $p(u)=a$ and the induced homomorphism $p_{*}^{u}: \pi_{1}(\bar{M}, u) \rightarrow \pi_{1}(M, a)$ has the image $\operatorname{im} p_{*}^{u}=\operatorname{ker} \omega_{a}$. As the manifold M is non-orientable then $\pi_{1}(M, a) / \operatorname{ker} \omega_{a} \cong G$. Therefore p is a two-fold covering. As $p_{*}^{u}: \pi_{1}(\bar{M}, u) \rightarrow \operatorname{ker} \omega_{a}$ is an isomorphism then by Lemma 5.1 we get $\operatorname{ker} \omega_{u}=\pi_{1}(\bar{M}, u)$. That means \bar{M} is an orientable manifold.

Let $b=f(a)$ and $v \in p^{-1}(b)$. As the manifold \bar{M} is connected then there is a path $\bar{z}: I \rightarrow \bar{M}$ with the starting in $\bar{z}(0)=u$ and the end in $\bar{z}(1)=v$. Let $z=p \circ \bar{z}$. Then $z(0)=a, z(1)=b$ and

$$
\begin{equation*}
\operatorname{im} p_{*}^{v}=T_{z}\left(\operatorname{im} p_{*}^{u}\right) \tag{21}
\end{equation*}
$$

As $T_{z}: \pi_{1}(M, a) \rightarrow \pi_{1}(M, b)$ is an isomorphism then (18) implies

$$
\begin{equation*}
\operatorname{ker} \omega_{b}=T_{z}\left(\operatorname{ker} \omega_{a}\right) \tag{22}
\end{equation*}
$$

Finitely, as $f_{*}: \pi_{1}(M, a) \rightarrow \pi_{1}(M, b)$ is an isomorphism, (19) implies the equality

$$
\begin{equation*}
\operatorname{ker} \omega_{b}=f_{*}\left(\operatorname{ker} \omega_{a}\right) \tag{23}
\end{equation*}
$$

If follows from (21), (22), (23) and the equality $\operatorname{im} p_{*}^{u}=\operatorname{ker} \omega_{a}$ that

$$
\operatorname{im}(f \circ p)_{*}^{u}=f_{*}\left(\operatorname{im} p_{*}^{u}\right)=f_{*}\left(\operatorname{ker} \omega_{a}\right)=\operatorname{ker} \omega_{b}=T_{z}\left(\operatorname{ker} \omega_{a}\right)=T_{z}\left(\operatorname{im} p_{*}^{u}\right)=\operatorname{im} p_{*}^{v} .
$$

According to a theorem from the theory of covering, in such a situation there is a map $\bar{f}: \bar{M} \rightarrow \bar{M}$ such that $\bar{f}(u)=v$ and the diagram (20) is commutative. This mapping is uniquely defined and is smooth. Similarly, it is proved that for the inverse diffeomorphism $f^{-1}: M \rightarrow M$ there is a smooth map $\overline{f^{-1}}: \bar{M} \rightarrow \bar{M}$ such that $\overline{f^{-1}}(v)=u$ and the following diagram is commutative

Adding (24) to (20) on the right and on the left, we get the equality $\overline{f-1} \circ \bar{f}=\mathrm{id}$ and $\bar{f} \circ \overline{f^{-1}}=\mathrm{id}$. Therefore $\overline{f^{-1}}=\bar{f}^{-1}$ and \bar{f} is a diffeomorphism.
Lemma 5.3. Let M be a smooth closed non-orientable connected 3-manifold and $W^{1}, W^{2} \subset M$ be immersions of open balls D^{1}, D^{2} accordingly, such that $\operatorname{Ind}_{x}\left(W^{1}\right.$, $\left.W^{2}\right)=\operatorname{Ind}_{y}\left(W^{1}, W^{2}\right)$ for every points $x, y \in\left(W^{1} \cap W^{2}\right)$. If $p: \bar{M} \rightarrow M$ is an oriented double covering then $\bar{W}^{1}=p^{-1}\left(W^{1}\right), \bar{W}^{2}=p^{-1}\left(W^{2}\right)$ be immersions of two copies of open balls D^{1}, D^{2} accordingly, $\bar{W}^{1}=\bar{W}_{1}^{1} \sqcup \bar{W}_{2}^{1}, \bar{W}^{2}=\bar{W}_{1}^{2} \sqcup \bar{W}_{2}^{2}$, and $\operatorname{Ind}_{\bar{x}}\left(\bar{W}_{i}^{1}, \bar{W}_{j}^{2}\right)=\operatorname{Ind}_{\bar{y}}\left(\bar{W}_{i}^{1}, \bar{W}_{j}^{2}\right)$ for every points $\bar{x}, \bar{y} \in\left(\bar{W}_{i}^{1} \cap \bar{W}_{j}^{2}\right), i, j=1,2$.
Proof. Consider a tubular neighborhood U^{k} of the submanifolds W^{k}. Since the open subsets $U^{k} \subset M, k=1,2$, are contractible, they are regular covered neighborhoods. That is $p^{-1}\left(U^{k}\right)=\bar{U}_{1}^{k} \cup \bar{U}_{2}^{k}$, where $\bar{U}_{1}^{k} \cap \bar{U}_{2}^{k}=\emptyset$ and $\left.p\right|_{\bar{U}_{i}^{k}}: \bar{U}_{i}^{k} \rightarrow U^{k}$ are diffeomorphisms, $i=1,2$. Then the sets \bar{U}_{i}^{k} are tubular neighborhoods of smooth submanifolds $\bar{W}_{i}^{k} \subset \bar{M}$, and the differences $\bar{U}_{i}^{2} \backslash \bar{W}_{i}^{2}$ consist of the connected components \bar{U}_{i+}^{2} and $\bar{U}_{\underline{i-}}^{2}$.

Let $\bar{\sigma}_{i}: \bar{U}_{i+}^{2} \cup \bar{U}_{i-}^{2} \rightarrow \mathbb{Z}$ be a function such that $\bar{\sigma}(\bar{x})=1$ for $\bar{x} \in \bar{U}_{i+}^{2}$ and $\bar{\sigma}(\bar{x})=0$ for $\bar{x} \in \bar{U}_{i-}^{2}$. As $\bar{W}_{i}^{1}=\left(\left.p\right|_{\bar{W}_{i}^{1}}\right)^{-1}\left(J^{1}\left(D^{1}\right)\right)$ then the intersection index in $\bar{x} \in\left(\bar{W}_{i}^{1} \cap \bar{W}_{j}^{2}\right)$ is equal to $\operatorname{Ind}_{\bar{x}}\left(\bar{W}_{i}^{1}, \bar{W}_{j}^{2}\right)=\bar{\sigma}(t+\delta)-\bar{\sigma}(t-\delta)$, where δ is a small enough positive number. Then $\operatorname{Ind}_{x}\left(W^{1}, W^{2}\right)=\operatorname{Ind}_{\bar{x}}\left(\bar{W}_{i}^{1}, \bar{W}_{j}^{2}\right)$ and $\operatorname{Ind}_{y}\left(W^{1}, W^{2}\right)=\operatorname{Ind}_{\bar{y}}\left(\bar{W}_{i}^{1}, \bar{W}_{j}^{2}\right)$. So if $\operatorname{Ind}_{x}\left(W^{1}, W^{2}\right)=\operatorname{Ind}_{y}\left(W^{1}, W^{2}\right)$ for every points $x, y \in\left(W^{1} \cap W^{2}\right)$ then $\operatorname{Ind}_{\bar{x}}\left(\bar{W}_{i}^{1}, \bar{W}_{j}^{2}\right)=\operatorname{Ind}_{\bar{y}}\left(\bar{W}_{i}^{1}, \bar{W}_{j}^{2}\right)$ for every points $\bar{x}, \bar{y} \in\left(\bar{W}_{i}^{1} \cap \bar{W}_{j}^{2}\right), i, j=1,2$.
6. Example of a diffeomorphism with a non-orientable expanding 2-dimensional attractor. Let us construct an example of an Ω-stable diffeomorphism of a closed connected 3 -manifold M^{3} the non-wandering set of which consists of trivial sources, saddles, and a non-orientable expanding 2-dimensional attractor Λ.

We will start with hyperbolic toral automorphism $L_{A}: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ induced by linear map of \mathbb{R}^{3} with a hyperbolic matrix $A \in G L(3, \mathbb{Z})$, eigenvalues $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of which such that $0<\lambda_{1}<1<\lambda_{2} \leqslant \lambda_{3}$. The involution $J: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ defined by the formula $J(x)=-x(\bmod 1)$ has 8 fixed points in the 3 -torus of the form (a, b, c), where $a, b, c \in\left\{0, \frac{1}{2}\right\}$. Notice that these points are also fixed for L_{A}^{k} for some $k \in \mathbb{N}$. Let us "blow up" these points like to the classical Smale surgery and such that the surgery commutes with the involution. We will obtain generalized DA-diffeomorphism $f_{G D A}: \mathbb{T}^{3} \rightarrow \mathbb{T}^{3}$ with 8 fixed sources $\alpha_{i}, i \in\{1,2, \ldots, 8\}$ and one 2-dimensional expanding attractor obtained from the diffeomorphism L_{A}^{k}.

After that we will remove all sources and factorize the basin of the attractor to obtain a new manifold \tilde{M}, i.e. $\tilde{M}=\left(\mathbb{T}^{3} \backslash \bigcup_{i=1}^{8} \alpha_{i}\right) / x \sim-x$. The natural projection $p: \mathbb{T}^{3} \backslash \bigcup_{i=1}^{8} \alpha_{i} \rightarrow \tilde{M}$ is a 2-fold cover. As $f_{G D A} J=J f_{G D A}$ then $f_{G D A}$ is projected to \tilde{M} by the diffeomorphism $\tilde{f}=p f_{G D A} p^{-1}: \tilde{M} \rightarrow \tilde{M}$ with one 2-dimensional expanding attractor Λ and \tilde{M} is its basin. The set $\tilde{M} \backslash \Lambda$ consists of 8 connected components \tilde{N}_{i} each of which is diffeomorphic to $\mathbb{R} P^{2} \times \mathbb{R}$, where $\mathbb{R} P^{2}$ is the real projective plane.

To obtain a fundamental domain \tilde{D}_{i} of $\left.\tilde{f}\right|_{\tilde{N}_{i}}$ we can consider a local coordinates $(x, y, z): U_{i} \rightarrow \mathbb{R}^{3}$ in a neighborhood U_{i} of α_{i} in which the diffeomorphism $f_{G D A}$ has a form $f_{G D A}(x, y, z)=(2 x, 2 y, 2 z)$. A fundamental domain of $\left.f_{G D A}\right|_{W_{\alpha_{i}}^{u}} ^{u} \backslash\left\{\alpha_{i}\right\}$
is $D_{i}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 1 \leqslant x^{2}+y^{2}+z^{2} \leqslant 4\right\}$ and then the desired fundamental domain $\tilde{D}_{i}=p\left(D_{i}\right)$. By the construction it is homeomorphic to $R P^{2} \times[0,1]$. The orbit space of $\left.f_{G D A}\right|_{W_{\alpha_{i}}} ^{u} \backslash\left\{\alpha_{i}\right\}$ is homeomorphic to $S^{2} \times S^{1}$ since each orientation preserving diffeomorphism of S^{2} is homotopic to identity. Then the orbit space $\tilde{N}_{i} / \tilde{f}$ can be obtained as $S^{2} \times\left. S^{1}\right|_{\tilde{J}}$, where \tilde{J} is involution of $S_{\tilde{\mathcal{N}}}^{2} \times S^{1}$ induced by J. Since $\tilde{N}_{i} / \tilde{f}$ is non-orientable, it follows from [14] that $\tilde{N}_{i} / \tilde{f}$ is either $S^{2} \tilde{\times} S^{1}$, $R P^{2} \times S^{1}$, or $R P^{3} \# R P^{3}$. The orbit space $\tilde{N}_{i} / \tilde{f}$ can also be obtained from the fundamental domain \tilde{D}_{i} as a mapping torus $R P^{2} \times\left.[0,1]\right|_{(x, 0) \sim(\tilde{f}(x), 1)}$. Hence a fundamental group of the orbit space $\pi_{1}\left(\tilde{N}_{i} / \tilde{f}\right)=\mathbb{Z}_{2} \rtimes_{\tilde{f}} \mathbb{Z}$ and then it can be only $R P^{2} \times S^{1}$.

Consider a gradient-like diffeomorphism $g_{1}: \mathbb{R} P^{2} \rightarrow \mathbb{R} P^{2}$ with exactly 3 fixed points: a source α, a sink ω and a saddle σ (see Fig. 6). Let $g_{2}: \mathbb{R} \rightarrow \mathbb{R}$ be

Figure 6. Diffeomorphism g on the projective plane
a diffeomorphism given by the formula $g_{2}(x)=2 x$ and $g(w, x)=\left(g_{1}(w), g_{2}(x)\right)$: $\mathbb{R} P^{2} \times \mathbb{R} \rightarrow \mathbb{R} P^{2} \times \mathbb{R}$. Let us denote N_{1}, N_{2} the connected components of $\mathbb{R} P^{2} \times$ $(\mathbb{R} \backslash\{0\})$. Analogically with cases with \tilde{N}_{i} the orbit spaces N_{j} / g are diffeomorphic to $\mathbb{R} P^{2} \times \mathbb{S}^{1}$.

As $\tilde{N}_{i} / \tilde{f}$ are diffeomorphic to N_{j} / g then there is a diffeomorphism $h: \tilde{N}_{i} \rightarrow N_{j}$ conjugating \tilde{f} with g. Let $h_{i}: \tilde{N}_{i} \rightarrow N_{1}, i=1,3,5,7$ and $h_{i}: \tilde{N}_{i} \rightarrow N_{2}, i=2,4,6,8$ be such diffeomorphisms. For $\tilde{N}=\bigcup_{i=1}^{8} \tilde{N}_{i}$ denote by $h: \tilde{N} \rightarrow\left(N_{1} \sqcup N_{2}\right) \times \mathbb{Z}_{4}$ a diffeomorphism composed by $h_{i}, i \in\{1, \ldots, 8\}$. Let $\tilde{P}=\mathbb{R} P^{2} \times \mathbb{R} \times \mathbb{Z}_{4}$ and $G: \tilde{P} \rightarrow \tilde{P}$ be a diffeomorphism composed by g on every copy of $\mathbb{R} P^{2} \times \mathbb{R}$. Finitely, let $M^{3}=\tilde{M} \cup_{h} \tilde{P}$. Denote by $q: \tilde{M} \sqcup \tilde{P} \rightarrow M^{3}$ the natural projection. Then the desired diffeomorphism $f: M^{3} \rightarrow M^{3}$ coincides with the diffeomorphism $\left.q \tilde{f} q^{-1}\right|_{q(\tilde{M})}$ on $q(\tilde{M})$ and with the diffeomorphism $\left.q G q^{-1}\right|_{q(\tilde{P})}$ on $q(\tilde{P})$.

Acknowledgments. This work was supported by grant 22-11-00027, except section 2.3, whose results were supported by the Laboratory of Dynamical Systems and Applications NRU HSE, by the Ministry of Science and Higher Education of the Russian Federation (ag. 075-15-2022-1101).

REFERENCES

[1] M. Barinova, V. Grines and O. Pochinka, Dynamics of three-dimensional a-diffeomorphisms with two-dimensional attractors and repellers, Journal of Difference Equations and Applications, (2022), 1-12.
[2] H. G. Bothe, The ambient structure of expanding attractors i, local triviality, tubular neighborhoods, Mathematische Nachrichten, 107 (1982), 327-348.
[3] R. Bowen, Periodic points and measures for axiom a diffeomorphisms, Trans. Amer. Math. Soc, 154 (1971), 377-397.
[4] A. W. Brown, Nonexpanding attractors: Conjugacy to algebraic models and classification in 3-manifolds, Journal of Modern Dynamics, 4 (2010), 517-548.
[5] A. Dold, Fixed point index and fixed point theorem for euclidean neighborhood retracts, Topology, 4 (1965), 1-8.
[6] A. Dold, Lectures on Algebraic Topology, Springer Science \& Business Media, 2012.
[7] J. M. Franks, The dimension of basic sets, Journal of Differential Geometry, 12 (1977), 435-441.
[8] V. Grines, Yu. Levchenko, V. Medvedev and O. Pochinka, The topological classification of structurally stable 3-diffeomorphisms with two-dimensional basic sets, Nonlinearity, $\mathbf{2 8}$ (2015), 4081-4102.
[9] V. Z. Grines, On topological conjugacy of diffeomorphisms of a two-dimensional manifold onto one-dimensional orientable basic sets i, Transactions of the Moscow Mathematical Society, 32 (1975), 31-56.
[10] V. Z. Grines, T. V. Medvedev and O. V. Pochinka, Dynamical Systems on 2- and 3-Manifolds, volume 46. Springer, 2016.
[11] V. Z. Grines, V. S. Medvedev and E. V. Zhuzhoma, On surface attractors and repellers in 3-manifolds, Math. Notes, 78 (2005), 757-767.
[12] V. Z. Grines and E. V. Zhuzhoma. Structurally stable diffeomorphisms with basis sets of codimension one, Izvestiya: Mathematics, 66 (2022), 223-284.
[13] M. W. Hirsch, Differential Topology, volume 33. Springer Science \& Business Media, 2012.
[14] B. Jahren and S. Kwasik, Free involutions on $s^{1} \times s^{n}$, Mathematische Annalen, 351 (2011), 281-303.
[15] B. Jiang, Y. Ni and S. Wang, 3-manifolds that admit knotted solenoids as attractors, Transactions of the American Mathematical Society, 356 (2004), 4371-4382.
[16] J. L. Kaplan, J. Mallet-Paret and J. A.Yorke, The lyapunov dimension of nowhere differentiable attracting torus, Erhodic Theory Dynamical Systems, 4 (1984), 261-281.
[17] S. E. Newhouse, On codimension one anosov diffeomorphisms, American Journal of Mathematics, 92 (1970), 761-770.
[18] R. V. Plykin, Sources and sinks of a-diffeomorphisms of surfaces, Mathematics of the USSRSbornik, 23 (1974), 243-264.
[19] R. V. Plykin, The topology of basis sets for smale diffeomorphisms, Math. USSR-Sb., 13 (1971), 301-312.
[20] R. V. Plykin, On the geometry of hyperbolic attractors of smooth cascades, Russian Mathematical Surveys, 39 (1984), 85.
[21] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, Studies in Advanced Mathematics. CRC-Press, 1999.
[22] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
[23] R. F. Williams, Expanding attractors, Publications Mathématiques de l'IHÉS, 43 (1974), 169-203.
[24] E. V. Zhuzhoma and V. S. Medvedev, On non-orientable two-dimensional basic sets on 3manifolds, Sbornik: Mathematics, 193 (2002), 869-888.

Received May 2023; revised June 2023; early access August 2023.

[^0]: 2020 Mathematics Subject Classification. Primary: 37C70, 37D20, 37D45.
 Key words and phrases. Hyperbolic attractor, expanding attractor, omega-stable diffeomorphism, A-system, orientable attractor.

 * Corresponding author: Marina Barinova.

[^1]: ${ }^{1} \mathrm{R}$. Bowen [3] called these components C-dense.
 ${ }^{2}$ Let $J^{k}: \mathbb{R}^{k} \rightarrow M^{3}$ be immersions, D^{k} be open balls of finite radii in $\mathbb{R}^{k}, k=1,2$. Then the restrictions $J^{k}: D^{k} \rightarrow M$ are embeddings and their images $W^{k}=J^{k}\left(D^{k}\right)$ are smooth embedded submanifolds of the manifold M^{3}. Let U^{k} be a tubular neighborhood of W^{k}, which are images of embeddings in M^{3} of spaces of $(3-k)$-dimensional vector bundles on W^{k} [13, Chapter 4, par. 5]. Since the balls D^{k} are contractible, then these bundles are trivial and, hence, $U^{2} \backslash W^{2}$ consists of two connected components U_{+}^{2} and U_{-}^{2}. It allows to define a function $\sigma: U_{+}^{2} \cup U_{-}^{2} \rightarrow \mathbb{Z}$, such that $\sigma(x)=1$ if $x \in U_{+}^{2}$ and $\sigma(x)=0$ if $x \in U_{-}^{2}$. If submanifolds W^{1} and W^{2} intersect transversally at a point $x=J^{1}(t), t \in D^{1}$ then there exists a number $\delta>0$ such that $J^{1}(t-2 \delta, t+2 \delta) \subset U^{2}$. The number

 $$
 \operatorname{Ind}_{x}\left(W^{1}, W^{2}\right)=\sigma(t+\delta)-\sigma(t-\delta)
 $$

 is called an intersection index of submanifolds W^{1} and W^{2} in the point x. Notice, that this definition does not require orientability of the manifold M^{3}.

[^2]: ${ }^{3}$ We have not found a reference for this fact, so we prove it in the section 5 below.

